Solving augmented systems in the potential fluid flow problem

Miroslav Tůma

Institute of Computer Science

Academy of Sciences of the Czech Republic

and

Technical University in Liberec

joint work with

Mario Arioli, Jiří Maryška, Miroslav Rozložník

Będlewo, March 4, 2005

- 1. Application
- 2. Continuous formulation and discretization
- 3. The system matrix
 - Structural properties
 - Spectral properties
- 4. Solution Approaches
 - Iterative indefinite solver MINRES
 - Schur complement approach
 - Null Space Approach
 - Direct LDL^T solver
- 5. Conclusions

1. Application / I.

region under consideration

1. Application / II.

detailed 3D view

1. Application / III.

Specific 3D Applications

- Transport of contaminants in porous media
 * Finite volumes, splitting convection and diffusion at each time step
- Flow in fractured and anisotropic rocks
 - * Combining two grids: network of fractures and FEM discretization of porous substrate
- Calibration of flow/transport models

(Vohralík, 2004)

Examples

• Contaminant transport with dual porosities for remediation (grid)

Examples

• Contaminant transport with dual porosity for remediation (drilled holes)

1. Application / VI.

Examples

• Mine flooding (grid)

1. Application / VII.

Examples

• Mine flooding (grid with velocities)

1. Application / VIII.

Examples

• Mine flooding (3D grid)

1. Application / IX.

Animations

Mine flooding (animation of pressure development)

Mine flooding (animation of **contamination development**)

General model of contaminant transport

$$\frac{\partial \beta(c)}{\partial t} \nabla . (\mathbf{S} \nabla c) + \mu \nabla . (c \mathbf{v}) + F(c) = q$$

- degenerate parabolic equation: for convection reaction diffusion
- c: concentration of contaminant
- S: diffusion dispersion tensor
- v: velocity of the convection
- *µ*: scalar parameter
- F: changes due to chemical reactions
- q: sources

2. Continuous formulation and discretization: II.

Our restrictions

- We restrict ourselves to the flow problem only: computing velocity v for the model from the Darcy's law
- Application-based discretization
 * in 2D projection determined by physically drilled holes
 - * possible different vertical positions of points of measurements
- Only partially interested in asymptotic complexity:
 * size of constants in efficiency evaluations is crucial
- Physical conditioning (in the flow tensor) is important

2. Continuous formulation and discretization: III.

The modelled domain is flat and layered

2. Continuous formulation and discretization: IV.

Equations for the velocity vector (Stationary potential fluid flow problem)

The Continuity Equation

 $\nabla \cdot \mathbf{u} = q,$

Darcy's Law

$$\mathbf{u} = -\mathbf{A} \nabla p$$

The Boundary Conditions

$$p = p_D \quad \text{on } \partial \Omega_D$$

$$-\mathbf{n}.(\mathbf{A}\nabla p) = \mathbf{n}.\mathbf{u} = u_N \text{ on } \partial\Omega_N$$

FEM Approximation

- Lowest-order Raviart-Thomas-Nédelec elements:
 - * extension of 2D elements (Raviart, Thomas, 1977) into 3D elements (Nédelec, 1980)
 - * pressure p is elementwise constant
 - * velocity \mathbf{u} is elementwise linear

Hybridization / Problem stretching

- enables natural condensation of unknowns to those coresponding to non-Dirichlet faces (Fraejis de Veubeke, 1965)
- larger, but more transparent system matrix
- other ways of condensation of unknowns (Maryška, Rozložník, T., 1998)
- simple aposteriori updates in the matrix

Matrix Structural Properties

$$\mathcal{A} = \begin{pmatrix} A & B & C \\ B^T & & \\ C^T & & \end{pmatrix}$$

- $(B|C_1|C_2)$ is an incomplete incidence matrix of a graph (some columns are missing)
- At least one Dirichlet condition \implies matrix regularity

3. System matrix: II.

3. System matrix: III.

Matrix Spectral Properties

$$\sigma(A) \subset [\frac{c_1}{h}, \frac{c_2}{h}]$$

from the properties of the discretization

 $sv(B\ C) \subset [c_3h,c_4]$

using the Courant-Fischer theorem and properties of paths in weighted graphs (see Maryška, Rozložník, T., 1995, 1996)

Using Rusten and Winter, 1992:

$$\sigma(\mathcal{A}) \subset \left[-\frac{c_4^2}{c_1}h, -\frac{c_3^2}{c_2}h^3\right] \cup \left[\frac{c_1}{h}, \frac{c_2}{h}\right]$$

Conditioning of A: $O(h^{-4})$

 \Downarrow

Scaling is necessary

Scaling I.

$$\begin{pmatrix} h^{\frac{1}{2}}I \\ I \end{pmatrix} \begin{pmatrix} A & (B \ C) \\ (B \ C)^T \end{pmatrix} \begin{pmatrix} h^{\frac{1}{2}}I \\ I \end{pmatrix}$$
$$= \begin{pmatrix} hA & h^{\frac{1}{2}}(B \ C) \\ h^{\frac{1}{2}}(B \ C)^T \end{pmatrix}$$

$$\left[-\frac{c_4^2}{c_1}h, -\frac{c_3^2}{c_2}h^3\right] \cup \left[c_1, c_2\right]$$

Scaling II.

$$\begin{pmatrix} h^{\frac{1}{2}}I \\ h^{-\frac{1}{2}}I \end{pmatrix} \begin{pmatrix} A & (B\ C) \\ (B\ C)^T \end{pmatrix} \begin{pmatrix} h^{\frac{1}{2}}I \\ h^{-\frac{1}{2}}I \end{pmatrix}$$
$$= \begin{pmatrix} hA & (B\ C) \\ (B\ C)^T \end{pmatrix}$$

$$\left[\frac{1}{2}(c_1 - \sqrt{c_1^2 + 4c_4^2}), -\frac{c_3^2}{c_2}h^2\right] \cup \left[c_1, \frac{1}{2}(c_2 + \sqrt{c_2^2 + 4c_4^2})\right]$$

4. Solution approaches: MINRES: I.

 $A) \ {\rm Indefinite\ Iterative\ Solver\ MINRES}$

Asymptotic convergence factor (optimal polynomial known only for specific sequences of inclusion sets)

$$\lim_{n \to +\infty} \left(\frac{\|r_n\|}{\|r_0\|} \right)^{1/n} \le \lim_{n \to +\infty} [\min_{P \in \Pi_n} \max_{\lambda \in \mathcal{G}} |P(\lambda)|]^{\frac{1}{n}}$$

Unscaled problem (Maryška, Rozložník, T., 1995, using technique of Wathen, Fischer, Silvester, 1995):

4. Solution approaches: MINRES: II.

a) considering size of constants:

$$\mathcal{G}: \left[-\frac{c_4^2}{c_1}h, -\frac{c_3^2}{c_2}h^3\right] \cup \left[\frac{c_1}{h}, \frac{c_2}{h}\right] \to \left[-c_4, -\frac{c_3^2}{c_2}h^3\right] \cup \left[\frac{c_1}{h}, c_4\right]$$

b) or scaled matrix problem:

$$\lim_{n \to +\infty} \left(\frac{\|r_n\|}{\|r_0\|} \right)^{\frac{1}{n}} \le 1 - c_6 h$$

4. Solution approaches: MINRES: III.

Unpreconditioned MINRES applied to the whole indefinite system

both in theory and in practice:

$$\lim_{n \to \infty} \left(\frac{\|r_n^{MINRES}\|}{\|r_0\|} \right)^{\frac{1}{n}} \le 1 - c_1 h$$

- preconditioning helps a lot in terms of number of iterations
- it still keeps the same behaviour of the curves: the same asymptotic complexity
- the implementation is easily parallelizable
- the implementation is often preferred when only a small precision needed, cf. Maryška, Rozložník, T., 1999

$B) \ {\rm Schur} \ {\rm Complement} \ {\rm Approach}$

the matrix

$$\mathcal{A} = \begin{pmatrix} A & B & C_1 & C_2 \\ B^T & & & \\ C^T & & & \\ C_2^T & & & \end{pmatrix}$$

 C_1 : internal faces C_2 : Neumann boundary conditions

 $|C_1|/|C_2| \approx volume/surface$ ratio

• First Schur complement

$$-\mathcal{A}/A = (B \ C_1 \ C_2)^T A^{-1} (B \ C_1 \ C_2)$$

* can be formed cheaply (A is block diagonal - Brezzi, Fortin, 1991)

Further Schur complements: -A/A induced by B and C₂
 * can be formed with no fill-in (Maryška, Rozložník, T., 1999)

4. Solution approaches: Schur complement: III.

Structural pattern of the (first) Schur complement matrix A/A

4. Solution approaches: Schur complement: IV.

Structural pattern of the (second) Schur complement matrix $-A/A)/A_{11}$

Schur Complement Spectral Properties

Estimate for the scaled matrix

$$\sigma(-\mathcal{A}/A) \subset \left[\frac{c_3^2}{c_2}h^2, \frac{c_4^2}{c_1}\right]$$

Residual norm for smoothed CG/CR method

$$\frac{\|r_n\|}{\|r_0\|} \le 2\left(\frac{1 - \frac{c_3}{c_4}\sqrt{\frac{c_1}{c_2}}h}{1 + \frac{c_3}{c_4}\sqrt{\frac{c_1}{c_2}}h}\right)^n$$

$$\lim_{n \to +\infty} \left(\frac{\|r_n\|}{\|r_0\|} \right)^{\frac{1}{n}} \le 1 - c_9 h$$

Successive Schur Complements: preconditioned and smoothed CG applied to third Schur complement

both in theory and in practice:

$$\lim_{n \to \infty} \left(\frac{\|r_n^{CR}\|}{\|r_0\|} \right)^{\frac{1}{n}} \le 1 - c_2 h$$

- preconditioning helps a lot in terms of number of iterations
- keeps the same behaviour of the curves: the same asymptotic complexity
- modelling of thin layers may use domain information in order to increase solver efficiency

C) Null-space approach

Motivation

- useful when iteratively changing material properties (solving inverse problems)
- sequences of time-dependent and nonlinear problems
- must be as efficient as possible

Two basic strategies

- use divergence-free finite elements: the null-space approach embedded in formulation
- algebraic null-space basis construction

divergence-free finite elements

- needed vector potentials of functions in an appropriate Sobolev space
- Raviart-Thomas-Nédelec elements as 3D curls of these potentials
- finding a linearly independent set of the potentials can be based on Nédelec edge elements
 - * taking curls of all edge elements, eliminating the kernel later (Hiptmair, Hoppe, 1999)
 - finding a basis based on a spanning tree graph of the discretization (Cai, Parashkevov, Russell, Ye, 2002; Scheichl, 2003)
 - * not clear how to generalize the procedure to unstructured meshes

Algebraic null-space based approaches

• Find a null-space basis Z

$$(B C_1 C_2)^T Z = 0$$

• Solve the projected system

$$Z^T A Z u_2 = Z^T (q_1 - A u_1)$$

Possible methods

- 1. (fundamental; spanning tree-based) cycle null-space basis based on incidence vectors of cycles in the mesh
- 2. orthogonal null space basis based on QR decomposition of $(B C_1 C_2)$
- 3. **partial** null space basis (formed only for a part of offdiagonal blocks of the matrix, namely for the matrix $(C_1 C_2)$)

C.1 Fundamental cycle null-space basis

- find a (shortest path) spanning tree
- form cycles using non-tree edges

$$sv(Z) \subset [1, \frac{c_{10}}{h^2}]$$

• notice the problem of long cycles!

$$\sigma(Z^T \mathbf{A} Z) \subset [c_1, \frac{c_2 c_{10}^2}{h^4}]$$

(Arioli, Maryška, Rozložník, T., 2001)

Relative residual norm

$$\frac{\|r_n\|}{\|r_0\|} \le 2\left(\frac{1 - \frac{1}{c_{10}}\sqrt{\frac{c_1}{c_2}}h^2}{1 + \frac{1}{c_{10}}\sqrt{\frac{c_1}{c_2}}h^2}\right)^n$$

$$\lim_{n \to +\infty} \left(\frac{\|r_n\|}{\|r_0\|} \right)^{\frac{1}{n}} \le 1 - c_{11}h^2$$

Fundamental Cycle Null-Space Approach: unpreconditioned and smoothed CG applied to the projected system

- in practice better than in theory
- explicit assembly of the projected system is feasible, but: difficult to precondition

C.2 Orthogonal null-space basis

- based on sparse QR of $(B C_1 C_2)$ (in our case, MA49 from HSL)
- projected system independent of *h*
- subsequent table: comparison of fundamental cycle approach (FC) versus orthogonal null-space basis approach (QR)

4. Solution approaches: Null-space approach: IX.

	memory rec	quirements	iteration counts	
h	QR	FC	QR	FC
	NNZ(QR)	NNZ(Z1)	QR/SN	UN
1/5	28360	3360	22/20	71
	(3e-2)	(7e-3)	(0.17/0.44)	(0.08)
1/10	410466	47120	22/21	163
	(0.97)	(0.07)	(1.87/4.23)	(1.57)
1/15	1979203	226780	22/21	252
	(9.73)	(0.30)	(8.48/17.1)	(19.9)
1/20	7120947	697840	22/21	346
	(59.6)	(0.93)	(25.0/48.6)	(75.9)
1/25	18105131	1675800	22/21	438
	(237)	(2.21)	(57.2/107)	(222)
1/30	40837823	3436160	21/21	523
	(980)	(4.60)	(110/214)	(510)
1/35	—	6314420	_	596
		(8.64)		(1009)
1/40		10706080	_	670
		(14.8)		(1900)

C.3 Null-space basis for the block $(C_1 C_2)$

$$(C_1 \ C_2)^T Z = 0$$

(Arioli, Maryška, Rozložník, T., 2001)

$$\begin{pmatrix} Z^T \mathbf{A} Z & Z^T B \\ B^T Z & \end{pmatrix} \begin{pmatrix} u_2 \\ p \end{pmatrix} = \begin{pmatrix} Z^T (q_1 - \mathbf{A} u_1) \\ q_2 - B^T u_1 \end{pmatrix}$$

Singular values of $Z^T B$

$$sv(Z^TB) \subset [c_{12}h, c_{13}]$$

Inclusion set

$$\left[\frac{1}{2}(c_1 - \sqrt{c_1^2 + 4c_{13}^2}, -\frac{c_{12}^2}{c_2}h^2\right] \cup \left[c_1, \frac{1}{2}(c_2 + \sqrt{c_2^2 + 4c_{13}^2})\right]$$

Asymptotic convergence factor

$$\lim_{n \to +\infty} \left(\frac{\|r_n\|}{\|r_0\|} \right)^{\frac{1}{n}} \le 1 - c_{14}h$$

Some results with the partial null-space approach follow

4. Solution approaches: Null-space approach: XII.

		implicit	sparse QR	
h	NNZ	IP/IQ	NNZ(QR)	QR/SN
1/5	14375	62/35	20834	18/14
		(0.05/0.03)	(0.02)	(0.09/0.09)
1/10	123000	103/64	356267	19/16
		(0.68/0.48)	(0.35)	(1.11/0.89)
1/15	424125	144/93	1840670	21/15
		(5.17/3.79)	(3.14)	(6.09/4.63)
1/20	1016000	186/118	6322468	21/15
		(20.2/14.2)	(17.97)	(18.3/14.94)
1/25	1996875	225/145	16661544	23/15
		(50.8/37.4)	(86.6)	(47.0/27.8)
1/30	3465000	260/174	40669978	22/15
		(111/84.2)	(584)	(96.7/85.5)
1/35	5518625	295/204	—	—
		(224/173)		
1/40	8256000	331/230		
		(383/295)		

Partial null-space approach: preconditioned and smoothed CG applied to the projected system

D) Direct indefinite LDL^{T} decomposition

 symmetric quasidefinite matrices are strongly factorizable (Vanderbei, 1995)

$$\begin{pmatrix} A & B \\ B^T & -D \end{pmatrix}$$

 $A \mbox{ is SPD}, D \mbox{ is SPD}$

Our matrix has zero block instead of D: Is there a LDL^T decomposition?

4. Solution approaches: Direct solver: II.

$\begin{array}{c|c} R & C \\ R & A & B \\ C & B^{T} & 0 \end{array}$

Supporting assertions

- Fact: Matrix K is factorizable only if leafs of the elimination tree T(K) belong to \mathcal{R} .
- **Problem:** Some leafs of T(K) are from C.
- **Cure:** Change the current permutation of K using a traversal through postordered T(K).

- Fact: Matrix *K* is factorizable only if each of its leading principal submatrices have the number of indices from *R* greater or equal to the number of indices from *C*.
- **Problem:** The assertion is not satisfied.
- Cure: Again, change the current permutation of K using a traversal through postordered T(K).

 $Q = \{1, \dots, i\}$

 $|Q \cap \mathcal{R}| \le |\mathcal{Q} \cap \mathcal{C}|$

- Fact: Our matrix K is factorizable if and only if there are no paths of odd lengths in search trees rooted in nodes from C in the bipartite graph of the outdiagonal block of the principal leading submatrices.
- **Problem:** The assertion is not satisfied.
- Cure: Change the current permutation of K constructing the set of search trees.

(T., 2002)

4. Solution approaches: Direct solver: VII.

 $Q \cap \mathcal{R} \quad \mathcal{Q} \cap \mathcal{C}$

Global Algorithmic Strategy

- MMD ordering.
- Delaying nodes coresponding to **leaves** of the elimination tree from C.
- Delaying nodes from C which do not satisfy criterion which balances nodes from R and C in the current offdiagonal graph.
- Delaying nodes based on **search trees construction**.

 \Downarrow Supernodal LDL^T solver

4. Solution approaches: Direct solver: IX.

Fill-in Comparison

MAT	n+m	n	nnz	SCHUR	SQSD
S3P	477	270	1539	3151	2957
LI5	868	480	2208	5098	4686
LI6	3707	2100	9575	40269	34498
M3P	3744	2160	12312	46504	44002
DRT2	12992	7515	42935	296818	231312
DORT	22967	13360	76199	641828	551215

Conclusions

- FEM hybridization is an important tool also from algebraic point of view
- No-fill construction of the third Schur complement makes it attractive for modelling of thin layers.
- Null-space approach (its partial variant) is a reasonable alternative for solving nonlinear and time-dependent problems.
- All the basic approaches have asymptotic convergence rate 1 O(h) after appropriate scaling.