
 
Modelling THM Processes in Rocks with 
the Aid of Parallel Computing 

R. Blaheta*, P. Byczanski*, R. Kohut*, J. Starý* 

*Institute of Geonics AS CR 
Studentska 1768, 
708 00 Ostrava, 
Czech Republic 
{blaheta, byczanski, kohut, stary}@ugn.cas.cz 
 
 

ABSTRACT: In this paper, we show the use of parallel computing in the finite element analysis 
of thermo-hydro-mechanical problems. Our approach is based on iterative solvers, 
partitioning of vectors and use of Schwarz type overlapping domain decomposition 
preconditioners. This technique is applied to standard, time-stepping and mixed finite element 
analysis, respectively.  
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1. Introduction 

For many nowadays geotechnical project, it is required to analyse thermo-hydro-
mechanical (T-H-M) processes in rocks. An illustrative example is the performance 
and safety assessment of projects for deep underground deposition of the spent 
nuclear fuel, for which the analysis of T-H-M processes in the host rocks is crucial, 
cf. (Blaheta et al. 2005, 2007), (Hudson et al. 2005).  

Numerical modelling of such processes is mostly based on the finite element 
method and requires considerable computational effort. The use of special numerical 
method and parallel computing then create a basis for a possible solution of complex 
multiphysics and nonlinear problems, modelling of multiscale problems given by 
high heterogeneity of geomaterials and the size of considered domains, analysing of 
uncertainty,  use of back analysis etc.  

In this paper, we do not consider the problems in full complexity described 
above. Instead of this, we select here representative model problems 
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• elasticity as simplest mechanical problem (M),  
• time dependent heat conduction as thermal problem (T), 
• saturated Darcy flow as hydraulic problem (H).  

 
Then, from the point of view of the finite element method, we consider 
 

• standard (primal) finite element formulation for the elasticity case,  
• time-stepping scheme for heat conduction, 
• mixed finite element formulation for the Darcy flow. 

 
Finally, we describe the use of overlapping domain decomposition technique for 

enabling parallel computations in the finite element analysis. We shall point out 
some differences for application to stationary and time–dependent problems and to 
the mixed finite element schemes. The behaviour of the methods is illustrated by 
solving selected model problems.  

2. THM processes and their finite element analysis 

First, we consider a mechanical response of a part Ω  of the rock mass. The 
elastic deformation process is described by the following equations  
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Above, 3Rx ⊂Ω∈ , 33)( ×∈ Rxσ  is the Cauchy stress tensor, F  is the density 

of body forces, 3333 ×××∈ RC  is the elasticity tensor, ε  is the small strain tensor, u  
is the displacement, n  is the unit outward normal vector, uΓ , σΓ  are disjoint parts 

of the boundary Ω∂  of Ω , σΓ∪Γ=Ω∂ u . 

Further, we consider a thermal process governed by the equations 
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)()0,( 0 xx ττ =   for all Ω∈x .      (7) 

Above, Ω∈x is the space variable, ],0[ Tt ∈  is the time variable, τ  is the 

temperature, c  is heat capacity, 33×∈ RKT  is the conductivity tensor, Q  represents 

the density of heat sources in Ω ,  Bτ  is the prescribed temperature on τΓ , q  is the 

heat flux through qΓ ,  0τ  is the initial temperature in Ω . 

Finally, we consider the stationary saturated Darcy flow described as follows 

0)())(( =+− xGxvdiv  for all Ω∈x ,     (8) 

pKv H∇−=   in  Ω ,       (9) 

gnvLp =−  on Ω∂=Γ                   (10) 

Above, v  is the Darcy velocity,  G  is the source/sink term, HK  is the hydraulic 
conductivity tensor, p  is the pressure (total head), L, g are given functions on 

0*
Γ∪Γ=Ω∂ , 0≠L  on 

*
Γ , 0=L   on 0Γ .  

3. Parallel finite element analysis  

The elasticity problem (1)-(3) can be discretized by the standard finite element 
method, which means that we use the variational formulation in terms of the 
displacements in a finite element space hV . For simplicity, we restrict here to the 
linear tetrahedral finite elements. Then we are ready to assembly the linear system  

Au=b                    (11) 

where MAA =  is a symmetric positive definite stiffness matrix, u  is the vector of 
unknowns (nodal displacements) and b  is the load vector. 

The assembling itself is easily parallelizable. Thus we shall concentrate only on 
the parallel solution of the linear system (11). It can be solved by both direct and 
iterative solvers. We prefer the latter one due to several reasons: better efficiency for 
very large systems, simpler implementation, better parallelizability as well as 
possible incomplete solution, which can save the effort e.g. in some THM coupling 
via staggered schemes.  

The system (11) can be solved iteratively by the conjugate gradient (CG) method. 
Then each iteration consists from matrix by vector multiplication, inner products, 
scalar by vector multiplication and additions of vectors. In the case of vectors 
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decomposed into blocks and the corresponding decomposition of the matrix, each of 
the mentioned operations (and therefore also the whole iteration) is easily 
parallelizable. Note that the decomposition of the vectors can be defined through a 
decomposition of the computational domain Ω .  

The remaining issue is a necessity for accelerating the convergence via a suitable 
preconditioning, i.e. via an approximation of the inverse 1−A . It can be done by 
using the block diagonal part of A  as the preconditioner or by using more efficient 
Schwarz type preconditioners: 
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To define the preconditioner, we first decompose the domain Ω into non-
overlapping subdomains kΩ , which are subsequently extended into overlapping 

subdomains δ
kΩ . Then kA  are the finite element matrices, which correspond to the 

finite element subspaces { }δ
khk invVvV ΩΩ=∈= \0: , kR  define restrictions to 

the subspaces. For solving (11), the efficiency of one-level method can be improved 
by two-level Schwarz method using an extended decomposition with an additional 
subspace hVV ⊂0  corresponding to a discretization of the solved problem with the 

aid of a coarser finite element division. The coarse space 0V  can be also constructed 

from hV  by aggregation, which means that the basis functions of hV  are divided 
into disjoint groups (aggregates) and sums of the basis functions in the individual 
groups create the basis of 0V . For more details see (Blaheta et al. 2006, 2007) and 
the references therein. 

For the time dependent heat flow problem, we can use a finite element 
discretization in space and a finite difference discretization in time. If the latter is 
done via standard θ  method, we get a time stepping scheme 
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Above TC  is the conductance matrix, TM  is the capacitance matrix, )(kτ  is the 

vector of nodal temperatures, 1,0∈θ   is a parameter and )(k
hq  is the source/sink 

vector in the k-th time step,  kt∆ is the size of the k-th time step.  
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The linear system (12) can be again solved by the CG method with Schwarz type 
preconditioning. Unlike to the elasticity case, it is not necessary to use two-level 
Schwarz methods for reasonable sizes of the time steps, see (Blaheta et al. 2007). 

For the Darcy flow problem, we use less standard mixed variational formulation 
and mixed finite element method. The advantage of this method is twofold – better 
approximation of fluxes and conservativeness of the discretization. We shall use the 
following variational formulation – find )(),,( 2 Ω∈Ω⊂∈ LpdivHVv   such that  
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This variational formulation is a basis for the mixed finite element method. In our 
paper we consider the lowest order Thomas-Raviart finite elements, which are 
triangular or tetrahedral finite elements with constant pressure in the element and 
constant flux along the edges. Mixed formulation leads to 22 ×  block system 
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with the matrix HA  which is symmetric, but indefinite.  

This system can be solved e.g. by the MINRES method instead of CG. The 
parallelization of one iteration remains the same, the preconditioner is again 
necessary for acceleration of the convergence. The preconditioner can be defined in 
two steps. First HA is approximated as shown in (14). Then the first block 

BBM T
H

1−+η , corresponding to the differential operator divgradKH −−1 , is 
approximated by the Schwarz method. For bigger values of η , it is again not 
necessary to use the two-level Schwarz method.  

The methods and statements from this Section are illustrated by the solution of 
two model problems. 

4.  An example of parallel TM computations – Äspö problem 

The 3D Äspö prototype repository problem aims at the solution of thermo-
elasticity problem, see (Blaheta et al. 2005) for more details and material parameters. 
It is discretized by linear tetrahedral FE with 15 088 320 tetrahedra, 2 586 465 DOF 
for heat transfer and 7 759 395 DOF for elasticity computations. The time interval is 
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Figure 1.  Finite element mesh for the Äspö model 

selected to be 50 years, the adaptive time stepping begins with the step of 0.0001 
year and requires totally 47 time steps. The development of stresses is monitored in 
selected time levels. 

 

 

 

 

 

  
Table 1. Äspö model problem – heat conduction in 50 years. #P – number  

of processors, #D –size of subdomains, #It – number of iterations,  
T[s]  computing time in seconds, S – parallel speedup 

 
The parallel solution of the arising linear systems uses CG with one level 

Schwarz preconditioners and approximate implementation of 1−A (incomplete 
factorization). The computations were performed on parallel computers of the 
UPPMAX centre. The first one is Ngorongoro-Simba with 48 UltraSPARC-III/900 
CPU’s, the second one is a cluster Ra with 280 AMD Opteron processor cores, see  
(Komminaho 2007) for more details. Two parallel codes are developed and 
compared. They differ in using OpenMP and MPI parallel programming paradigma. 

#P #D #It Simba - OpenMP  Simba – MPI  Ra    – MPI    
   T[s] S T[s] S T[s] S 

1 105 1341   9044  5931  1131  
2 54 1423 4782 1.89 3624 1.64  609 1.86 
4 29 1426     2818 3.21 1823 3.25  310 3.65 
8 16 1514   1594 5.67   967 6.13  176 6.43 

12 12 1580   1298 6.97   704 8.42  128 8.84 
16 10 1617   1076 8.41   545 10.88  101 11.20 
20 9 1689   1022 8.55   484 12.25    92 12.29 
24 8 1709     948 9.54   407 14.57    85 13.31 
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Table 1 reports the numbers of iterations and computing times for the whole 
temperature evolution during 50 years.  The parallel speed up is good for the 
computations on up to 16 processors. Later, the size of subdomains constructed by 
parallel cutting stagnates. For better speed up on more processors, we should solve 
larger problems. Code based on OpenMP and MPI are compared in the case of 
shared memory computer Simba. OpenMP proved to be simpler for code 
development but MPI proved to be 35-60% faster.  

Table 2 shows the result from solving elasticity part of Äspö model problem with 
two-level Schwarz method with aggressive 666 ××  aggregations. Computing time 
are from code runs on a Beowulf cluster with AMD Athlon 1.4 GHz processors. 
 

 
 
 
 
 
 

Table 2.  Äspö model problem – elastic deformation. 
One- and two-level Schwarz methods. 

5. Mixed finite element modelling of Darcy flow 

 

Fig. 2. The model Darcy flow problem- mesh type (left) and velocities (right). 
 

We solve only a 2D model problem described as follows  

0))(( =xvdiv  and pv ∇−= 2 for all Ω∈x ,    

567 =⋅− nvp  on innerΓ  and  12nnv =⋅−  on outerΓ  if )2,1( nnn = . 

 without coarse grid with aggregations 
#P #it CPU CPU/it #it CPU CPU/it 
3 560 4747s 8.46s 208 1836s 8.77s 
5 606 2733s 4.5s 201 939s 4.64s 
8 651 1798s 2.76s 206 620s 2.99s 
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The computational domain is an annulus see Fig. 2, the discretization is done in 
the style of Fig. 2 with 8 832 nodes, 17 408 triangles and 26 240 sides by a code 
implemented in MATLAB. The purpose is to demonstrate the efficiency of the 
MINRES iterations with the described grad-div Schwarz preconditioner, see Table 3. 
The subdomains are again of an annulus shape, the overlap is given by two-element 
layer, subproblems are solved exactly. The parallel 3D implementation will be done 
in a future. 

 

grad-div Schwarz preconditioner MINRES no 
precond. 

grad-div 
precond. 2 subdom. 4 subdom. 8 subdom. 

1=η  2184 66 121 125 121 

1.0=η  2184 27 48 60 81 

Table 1.  Numbers of iterations for the model Darcy flow problem, accuracy 610− . 
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