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Abstract. This paper introduces a 3-D finite-element package called
GEM and its aspirations for demanding mathematical simulations aris-
ing in geosciences. We deal mainly with GEM’s (basic) solvers for linear
systems arising from the linear elasticity problems, which are based on
the conjugate gradient method and parallelizable preconditioning be-
longing to a general framework of the DoF space decomposition. In par-
ticular, we show that the displacement decomposition and the black-box
overlapping domain decomposition techniques fit in this space decompo-
sition framework. Possible application types and some numerical results
are presented for illustration.

1 Introduction

The Institute of Geonics of the Czech Academy of Sciences is active in the scien-
tific research related to the Earth’s crust. Its main interests include mathematical
modelling and simulations of the thermo-hydro-mechanical processes in the rock
mass that are associated with the construction, operation and safety of under-
ground structures, e.g. mines or waste deposits. For this purpose, a proprietary
software called GEM is being developed and maintained at the Institute.

GEM can be characterized as non-commercial three-dimensional finite-ele-
ment (FE) package oriented on the solution of problems arising in geosciences.
GEM serves both research purposes and practical modelling and its development
is mainly problem-driven, reflecting the requirements of the current research and
applications on increasing complexity of the models and methods.

The following sections address GEM’s solvers, i.e. the modules responsible
for numerical processing of the systems of equations arising from the FE anal-
ysis, computationally the most demanding phase in the FE method simulation
chain preprocessing – assembling the FE system – solution of the system – post-
processing. We shall consider modelling of the mechanical response, which is
in the centre of our interest from the very beginning, while the heat and flow
phenomena have been taken account of in GEM only recently, see e.g. [8].

We focus on the iterative conjugate gradient method and its parallelizable
preconditioners. In particular, we describe our novel idea of the DoF (degrees
of freedom) space decomposition (SD) as a generalization of the Schwarz type
preconditioning framework [16], [17], [6]. This SD framework includes the dis-
placement decomposition [1], [4], leading to a basic parallelization limited in



scalability, and the overlapping domain decomposition, which combines a special
1D decomposition and coarse space created by aggregation and provides more
scalability. Moreover, the SD framework can also encompass the local refinement
[7] and multiscale hierarchical methods.

2 GEM’s building blocks

The solvers operating in GEM can be highlighted as follows:

Finite elements. For the solution of the problem of elastic deformation, see [13]
and Section 5, the finite element method (FEM) is employed. The FE discretiza-
tion of this boundary value problem, based on linear tetrahedral finite elements
in GEM, leads to the linear system of the type Au = b, u, b ∈ Rn, where A is a
symmetric positive definite n × n stiffness matrix, b ∈ Rn is the right-hand side
given by the loading and u ∈ Rn is the n-dimensional vector of unknown nodal
displacements.

Structured meshes. Since its very beginning, GEM uses structured meshes for
the discretization of the modeled domain, which can be viewed as adaptation
(deformation) of a regular rectangular (reference) grid of nodes to the solved
problem. More on this topic in Section 4.

Conjugate gradients and preconditioning. The symmetry and positive definite-
ness of the stiffness matrix A permit to solve the linear system above by the
standard (iterative) preconditioned conjugate gradient (PCG) method. In the
PCG algorithm, the preconditioning should be efficient and parallelizable. We
shall address this theme in the context of the general DoF space decomposition
and its two instances, see Sections 5 – 7.

Parallel processing. The increasing demands on the size and complexity of the
modelling and the growing availability of the multiprocessor systems promote
parallel processing in the numerical solution. However, the parallelization of
the solution is not straightforward, due to the irreducible global character of
the solved systems. In fact, this is the background topic of the whole paper.
Nevertheless we skip technical details on the parallel implementation (e.g. the
message passing scheme), and refer to [9] instead.

3 Large-scale modelling in focus

GEM’s development has always been strongly influenced by difficult real prob-
lems coming from geotechnical practice. In this section, we introduce two ex-
amples, expressed as linear elasticity problems (see Section 5, eq. (1)). Let us
premise that a fairly big number of DoF in both of them is a consequence of the
complicated inner structure in the 3D domains. In the first example, the mesh
structure reflects a complicated system of the mined-out spaces in complex ge-
ological conditions. The second example tries to utilize the entire information
gained from the computer tomograph scanning of the microstructure of material.



3.1 Stability of a mine opening – the DR problem

One of the most challenging mathematical models processed in the GEM envi-
ronment in the past1 and an example of large-scale modelling in geomechanics
was the simulation of mining in the uranium ore deposit at Dolńı Rož́ınka (DR)
in the Bohemian-Moravian Highlands. Mathematical modelling aimed at the
assessment of the geomechanical effects of mining, e.g. comparison of different
mining methods from the point of view of stress changes and possibility of dan-
gerous rockbursts, through a four-stage sequence of computations with chang-
ing material distribution. The 3D linear elastic model considered a domain of
1430 × 550 × 600 meters, located about 700 m under the surface, with three
longitudinal inclined uranium ore veins, where the mining was concentrated. Its
discretization led to a FE system of 3 873 264 DoF. Several variants of boundary
conditions have been considered to cope with the uncertainty in the pre-mining
stress measurements. This simulation, originally requiring 22 hours of (sequen-
tial) computation time on a powerful workstation, motivated experiments in
methods, e.g. with composite meshes, and novelties in computer realization, the
most important one being the parallelization. For benchmarking purposes in
Sections 6, 7, by the DR problem we understand just the solution of the fourth
mining stage.

3.2 Microstructure modelling – the CT problem

The second example shows GEM in a new area of interest, totally different in
scale: the µFEM analysis, in which FEM is adapted for the derivation of ma-
terial behaviour from its complex microstructure. This modelling helps in the
assessment and optimization of the grouting technology. Its goal may be to find
out some physical parameters of materials, which have complicated heteroge-
neous inner structure, but which can be considered as piecewise homogeneous
from a certain scale. In our modelling we are interested in geocomposite mate-
rials produced by injection of polyurethane resin into coal environment, e.g. to
reinforce coal pillars. Due to permeable and fractured coal, the geocomposites
have complex microstructure making their FE analysis difficult.

Our model captures the microstructure of a cubic geocomposite sample 75 mm
in size, which has been scanned with a special X-ray computer tomograph (CT)
and discretized by a uniform grid of 231 × 231 × 37 grid voxels, resulting in a
linear system of 6 135 936 DOF. The model assumes homogeneous material in
voxels – it is assigned according to the CT scan values. In GEM we compute the
homogenized material properties of the cube making use of numerical upscaling
via stress and strain driven tests. The voxel approach (uniform FE grid) has
some specific features with impact on the numerical algorithms. A paper with
more details is under preparation. In the numerical experiments in Sections 6,

1 A resumption of the modelling with even more demanding discretization is expected
in a near future, motivated by the plans to continue the extraction of ore in greater
depths.



7, the CT problem is computed with the Dirichlet boundary conditions (strain
driven test).

4 Structured FE meshes

Structured meshes, employed for discretization in GEM, originate from a regular
rectangular (reference) mesh by its adaptation to the domain geometry and inner
structure. The adaptation is finished by a division into tetrahedra. They bring
in the following advantages:

– relatively simple construction of a mesh generator, which can be based on
successive refinement of the mesh and interpolation of the data;

– efficient storage of the stiffness matrix, which takes advantage of the regular
stencil and/or diagonal format, and allows fast matrix handling routines;

– possibility of simple balanced mesh partitioning as well as construction of
the coarse approximation and transfer operators for one-level and two-level
Schwarz methods;

– simplification of the visualization techniques.

Of course, structured meshes may be inconvenient when complex geometries
are to be covered or local refinement is needed. In such cases, structured meshes
may imply too many DoF and/or distorted FE shapes. But in the geotechnical
problems such as investigation of processes in the near/far field of various under-
ground constructions (mines, repositories, reservoirs, tunnels, etc.), the benefits
outweigh the disadvantages and they are commonly used for this type of prob-
lems. Moreover, the flexibility can be increased e.g. by the use of the composite
meshes, which also fit into the DoF space decomposition framework, while pre-
serving the advantages of the structured grids [7].

5 Space decomposition preconditioning

We consider elasticity problems which can be formulated in terms of displace-
ment u(x) of points x of the body Ω ⊂ R3. The weak formulation is: Find
u : Ω → R3,

u − u0 ∈ V and a(u, v) = b(v) ∀v ∈ V , (1)

where

V = {v = (v1, v2, v3) : vi ∈ H1(Ω), vi = 0 on Γ
(i)
D ⊂ ∂Ω for i = 1, 2, 3},

a(u, v) =
∫

Ω

∑

cijkl εij(u) εkl(v) dx

εij(u) = 1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

, εkl(v) = 1
2

(

∂vk

∂xl
+ ∂vl

∂xk

)

.

Above, H1(Ω) is the Sobolev space, u0 ∈ [H1(Ω)]3 is the function that prescribes

nonzero Dirichlet boundary conditions, cijkl are elastic moduli, Γ
(i)
D are parts of



the boundary ∂Ω and b is a linear functional determined by the applied forces.
For more details see e.g. [13].

We shall solve the above problem by the FE method using the FE space (in
our case the space of continuous piecewise linear functions) V ⊂ V. Selected
FE basis {φi}

n
i=1 of V then defines an isomorphism of V and the space of DoF

V ≡ Rn. The FE approximation of the solution has the form

uV =

n
∑

i=1

uiφi. (2)

where the components (DoF) ui form the vector u ∈ V can be obtained from
the solution of the linear system

Au = b , u, b ∈ Rn. (3)

Here A = (a(φi, φj)) is the stiffness matrix, which is supposed to be symmetric,
positive definite, sparse and large2. The system (3) can be solved by the standard
preconditioned conjugate gradient (PCG) method.

In the PCG algorithm, let g = G(r) be the preconditioning operation, which
computes the pseudoresidual g from the residual r. Then the construction of the
preconditioner G, which aims at providing g approximating the error A−1r, can
be based on the decomposition of the FE and correspondingly the DoF space

V = V1 + . . . + Vp, V = V1 + . . . + Vp, (4)

where Vk, Vk are subspaces of V , V, respectively. The subspaces are not neces-
sarily linearly independent.

Let Vk be isomorphic to Rnk . We construct transfer matrices Ik, representing
the prolongation Ik : Rnk → Rn given by the inclusion Vk ⊂ V , and Rk repre-
senting the restriction Rk : Rn → Rnk given by Rk = IT

k . The transfer matrices
allow to introduce matrices Ak = RkAIk corresponding to the subproblems on
the subspaces. The matrices Ak will also be symmetric and positive definite.

Now, we can introduce a class of space decomposition preconditioners through
the algorithm shown in Fig. 1.

g0 = 0
for k = 1, . . . , p do

gk = gk−1 + IkA−1

k Rk zk

end

g = gp

Fig. 1. The SD algorithm.

The simplest choice zk = r gives the so called additive preconditioner

G(r) = GAr , GA =

p
∑

k=1

IkA−1
k Rk. (5)

2 Typically in the range from 105 to 107 for the considered geomechanical models.



It is easily parallelizable and directly applicable to the PCG method since GA

is symmetric positive definite.
The updated residuals zk = r − Agk−1 provide the so called multiplicative

preconditioner, which is represented by a nonsymmetric linear mapping GM . To
get a symmetric positive definite preconditioner, we can repeat the corrections
in the SD algorithm (Fig. 1) in the reverse order, i.e. the loop should be per-
formed for k = 1, . . . p, p − 1, . . . , 1. This modification defines the symmetrized

multiplicative preconditioner. More about general SD methods, including hybrid
additive/multiplicative variant, can be found e.g. in [6], [17].

The operations wk = A−1
k vk, which appear in all the space decomposition

preconditioners, can be replaced by inexact solutions of the systems Akwk = vk

by inner iterations. The inner iterations can be stopped to get an approximation
Sk(vk) to A−1

k vk with accuracy ‖ vk − AkSk(vk) ‖≤ ε0 ‖ vk ‖ .

For the nonsymmetric multiplicative preconditioner or inexact solution of the
subproblems, the space decomposition preconditioner cannot be represented by
a linear symmetric positive definite mapping. In this case, the standard PCG
method may be not efficient or can even fail. Therefore, it can be appropriate to
employ the generalized PCG method with an explicit orthogonalization of the
new search direction to m previous search directions. This GPCG[m] algorithm
is described and analyzed in [14], [5], a similar GCR method can be found in [2].

The use of inner-outer iterations can be very favourable for parallelization
since it also allows to balance the load of the processors as well as to tune the
ratio between computations and communications, as we shall see in the next
section (variants DiD-IF, DiD-II).

SD serves for data distribution and parallelization of the solution of the FE
systems (3). The additive space decomposition preconditioners are ready for
parallelization, p processors are employed to process p subspace computations
in parallel. The multiplicative preconditioners are parallelizable only in the case
that some groups of subproblems are independent and the computation is suit-
ably ordered. The subspace decomposition of the data allows to parallelize not
only preconditioners, but also the matrix-vector multiplication and other oper-
ations involved in the PCG algorithm.

6 Displacement decomposition

Let us introduce the first SD example. If we consider the solution of 3D elasticity
problems by the FE method with linear tetrahedral or more generally Lagrangian
finite elements, the degrees of freedom ui in (2) represent nodal displacements
in the coordinate directions. Then it is easy to define the displacement decom-

position (DiD) V = V1 + V2 + V3, where Vk corresponds to the vectors, which
have nonzero DoF only in the k-th coordinate direction.

In GEM, the DiD method was originally introduced for the construction of
incomplete factorizations in the solution of systems arising from the FE analy-
sis of elasticity problems, see [1] and [4], and only later taken advantage of in
parallel computations. The parallelization was uncomplicated: Each of the three



displacement direction is processed in parallel by one worker process. Thanks to
the block diagonal structure of the preconditioner, the preconditioning opera-
tion does not involve any communication. The most demanding data exchange
is hidden in the repeated matrix by vector multiplication.

Such parallelization made possible “comfortable” solution of demanding mod-
els of several millions DoF such as DR (see Section 3.1) ten years ago already.
It perfectly fits small parallel environments, at that time consisting of 3 – 4
workstations, usually with low-speed interconnecting network. But also nowa-
days parallel computations based on DiD can match e.g. PC’s with four-core
processors.

To get an idea about practical behaviour of the (additive) DiD preconditioner,
let us see Table 1.

DiD solver # Subdom. DR problem CT problem

PCG-DiD-IF (seq.) 1 94 / 892 75 / 1130
PCG-DiD-II (ε0 = 10−1) (seq.) 1 11 / 1523 9 / 2075

PCG-DiD-IF 3 94 / 527 75 / 677
PCG-DiD-II (ε0 = 10−1) 3 11 / 319 9 / 484
GPCG[1]-DiD-II (ε0 = 10−1) 3 9 / 310 8 / 453

Table 1. Iterations/timings [s] of the DR and CT solution using the DiD solvers.

Here, DiD-IF denotes the variant when the subproblem matrices are replaced
by their MIC(0)* incomplete factorizations (see [4] for details) and DiD-II(ε0)
is another variant with approximate solution of the subproblems by an inner
PCG method with relative (low) accuracy ε0 and the same MIC(0)* incomplete
factorization as the preconditioner. Both the standard PCG and the general-
ized GPCG[1] methods were considered. The numbers in Table 1 arise from the
solution of the DR and CT problems (see Section 3) with the relative residual
accuracy ε = 10−4 on a rather outdated Linux cluster (THEA), employing one or
three of its eight computational nodes with AMD Athlon/1400 MHz processors
and Fast Ethernet interconnect.

For both DiD-IF and DiD-II variants, we can observe parallel speedup. But
in the case of a slower network and/or small operational memory (which is the
case of the THEA cluster), the inner-outer iteration technique DiD-II clearly
outperforms DiD-IF, because it reduces the number of outer iterations, where
the matrix-vector multiplications are responsible for the high communication
overhead. Moreover, the parallelization, implying the decomposition to smaller
subproblems, leads to a superlinear speedup here, thanks to the improved tem-
poral and spatial data locality in the inner iterations. Note that GPCG[1] further
decreased the number of iterations and brought some minor performance advan-
tage.



7 Domain decomposition

To achieve more scalability of the parallel computations in GEM, another type
of the SD methods, based on the overlapping domain decomposition (DD) [16],
has been realized.

Let us consider the FE solution of a boundary value problem in a domain
Ω divided into finite elements Th. DD is initialized by the decomposition of Ω

into p non-overlapping subdomains Ω̃k, which are subsequently extended into
overlapping subdomains Ωk, Ω =

⋃p
k=1 Ωk. We assume that each Ω̃k, Ωk can be

represented as a union of some elements from the global division Th. Then the
division of Ω induces a decomposition of the FE space V into the subspaces Vk,

Vk = {v ∈ V : v = 0 in Ω \ Ωk}.

For this DD, the prolongation is represented by very simple coincidence matrices,

Ik = [cij ], 1 ≤ i ≤ n, 1 ≤ j ≤ nk,

where cij = 1 if i and j refer to identical DoF, otherwise cij = 0.
The parallel DD solver of GEM takes up with a simple 1D partition of the

domain Ω into p “horizontal” subdomains (layers) along the Z dimension (i.e.
each subdomain has at most two neighbours) with minimal overlaps and assigns
them to p concurrent processes. Note that 1D partition can be generated also
for nonstructured meshes, e.g. by the algorithm described in [12].

According e.g. [6], [17], the convergence rate of PCG with the DD precon-
ditioner improves with the increasing overlap, but deteriorates with growing
number of subdomains. The dependence on the number of subdomains can be
removed and the overall efficiency can be improved when employing a two-level
decomposition with an additional subspace V0, which can be a FE space corre-
sponding to discretization of the global problem on a coarser mesh TH . If TH

and Th are nested, then the prolongation I0 : V0 → V is simply defined by the
inclusion V0 ⊂ V . If TH and Th are not nested, then we have to use a rather
complicated interpolation I0, see [10], which may be expensive to create.

For this reason, we have another option in GEM: The space V0 constructed
from V by the aggregation, which means that DoF are divided into disjoint groups
(aggregates) and sums of the basis functions corresponding to aggregates create
the basis of V0. Originally, this construction was introduced for the multigrid
methods in [3], its use for the overlapping Schwarz method was analyzed e.g.
in [6] and [11]. Our aggregation on structured grids uses also regular groupings
into 3 × 3 × 3 or similar aggregates (with some exceptions along boundaries).
Again, the aggregation can made use of on unstructured grids, too, e.g. by the
pairwise aggregation algorithm described in [15]. It uses values characterizing
the strength of couplings. For elasticity problems, these coupling characteristics
can be evaluated upon the stiffness of the adjacent finite elements.

In Table 2, the performance of GEM’s DD solver is demonstrated on the
same problems and on the same THEA cluster as in the previous section. The
results of the one-level DD and two-level DD with several aggregations show



DR problem CT problem
One-level Two-level method One-level Two-level method

#Sd method 3×3×3 5×5×5 6×6×6 method 3×3×3 6×6×3 9×9×3

2 104 / 447 45 / 288 51 / 231 56 / 253 76 / 553 41 / 448 47 / 360 51 / 388
3 114 / 337 47 / 264 54 / 168 60 / 186 77 / 409 39 / 390 45 / 254 49 / 273
4 123 / 281 48 / 253 57 / 140 62 / 149 80 / 338 37 / 357 43 / 196 48 / 214
5 129 / 243 51 / 249 60 / 123 65 / 130 82 / 292 37 / 348 43 / 165 46 / 172
6 134 / 221 52 / 252 62 / 112 67 / 117 82 / 258 36 / 343 42 / 147 46 / 154
7 137 / 209 53 / 260 64 / 103 70 / 111 86 / 246 35 / 329 42 / 133 46 / 140

Table 2. Iterations/timings [s] of the DR and CT solution using the DD solver with
different aggregations.

higher efficiency than in the DiD case. Moreover, one can observe fairly good
scalability.3

With the two-level methods, more care has to be devoted to the global com-
munication and load balancing [9]: The choice of the aggregation must match the
size of other subproblems, otherwise the processing of the coarse problem would
become to a bottleneck of the additive scheme, see Table 2. Note that the DD
solution utilized the standard PCG method, the additive SD preconditioner with
the subproblems solved approximately by direct use of incomplete factorizations
and the aggregated problem solved approximately by an inner PCG algorithm
with accuracy ε0 = 10−1.

8 Conclusions and Comments

To summarize, we presented our geo-oriented FEM software based on structured
grids, linear tetrahedral finite elements and parallel solvers, with a novel general
DoF space decomposition view on the preconditioning operation. Both the DiD
and DD parallel solvers described in the paper fit this SD framework. They could
be simply implemented within the already existing sequential FEM package.
We illustrated the efficiency of the solvers by solving two large geomechanical
problems on a small PC cluster.

This article concerned just (geo-)mechanical modelling in GEM. Recent en-
hancement of GEM’s repertoire is connected with another type of underground
constructions, the deep geological repositories of the spent nuclear fuel, which
lead to T-H-M (thermo–hydro–mechanical) problems involving heat transfer,
water flows and mechanical behaviour and their interactions in a long period of
time. In our initial approach we chose the thermal and mechanical phenomena
(thermo-elasticity with a one-directional coupling), nowadays we are considering
also the hydrogeological phenomena. More about this topic in [8].

3 With the DR problem, the speedup (decrease in the solution time) was observed
up to 30 processors on a large SMP machine. This limit is a consequence of the 1D
decomposition of the domain – the layers cannot be thiner.
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