
Algebraic Multilevel Methods with

Aggregations: An overview

Radim Blaheta

Department of Applied Mathematics, Institute of Geonics AS CR
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Abstract. This paper deals with the numerical solution of elliptic bound-
ary value problems by multilevel solvers with coarse levels created by ag-
gregation. Strictly speaking, it deals with the construction of the coarse
levels by aggregation, possible improvement of the simple aggregation
technique and use of aggregations in multigrid, AMLI preconditioners
and two-level Schwarz methods.

1 Introduction

This paper considers multilevel solvers for algebraic systems arising from the fi-
nite element approximation to selfadjoint elliptic problems. It is well known that
nested finite element grids allow to introduce two-level and multilevel methods
for solving the finite element systems. Multigrid methods [13], AMLI precondi-
tioners [1] and Schwarz methods [24] are typical examples of numerical methods
exploiting the grid hierarchy.

Algebraic multilevel methods avoid the necessity of nested triangulation of
the problem domain and allow algebraic construction of coarser spaces by us-
ing mostly only information involved in the matrix of the solved problem. As
multilevel iterative methods reduce the error by two complementary tools like
relaxation on the fine grid and coarse grid correction for multigrid methods, the
algebraic approach also enables to construct the coarse space with approximat-
ing properties that are necessary for efficiency of the complementary tool. In this
way, the algebraic approach enhances the robustness of the multilevel solution
methods.

In this paper, we outline the aggregation techniques that constitute one of
possible approaches to algebraic multilevel methods. The aggregation technique
originally appeared in the context of multigrid methods but can be exploited also
in hierarchical algebraic multilevel preconditioners and the two-level Schwarz
domain decomposition methods.

The paper provides an overview of applications of the aggregation technique,
which undergo an important development during the last decade.



2 AMG with aggregation

Let us consider the solution of linear systems appearing from the finite element
(FE) approximation of elliptic boundary value problems and let Th be a FE
triangulation which arises as a refinement of a coarser triangulation TH of the
problem domain Ω. Then the FE system corresponding to the fine triangulation
Th,

Ahuh = bh, uh, bh ∈ Rnh (1)

can be solved by the following iterative two-grid method. Its one iteration ui+1
h =

TG(Ah, bh, u
i
h) is described as follows

function TG(Ah, bh, u
i
h = ū)

ν1 − times : ū←S(Ah, bh, ū) pre-smoothing
rH = IH

h (bh − Ahū) restriction of the residual
vH = A−1

H rH coarse grid correction
ū = ū+ Ih

HvH prolongation of the correction
ν2 − times : ū←S(Ah, bh, ū) post-smoothing

return (ui+1
h = ū)

Above, the smoothing ū←S(Ah, bh, ū) represents one iteration of an inner iter-
ative (relaxation) procedure like Jacobi, Gauss-Seidel etc. The coarse grid cor-

rection uses matrix AH from FE discretization of the solved problem on the
coarse grid, restriction IH

h to the coarse FE space and prolongation Ih
H induced

by the natural interpolation between the nested grids. The smoothing procedure
should collaborate with the coarse grid correction. Usually S efficiently reduces
oscillating error components and produces smooth error that can be reduced
by the coarse grid correction. Therefore S is called the smoother. Note that the
introduced two-level method can be naturally extended to the multilevel one.

For a broad class of problems, it can be shown that multigrid methods are
highly efficient and even optimal, which means that the system (1) is solved in
O(nh) operation. But application of multigrid methods can also meet two draw-
backs: it can be difficult or impossible to produce a sequence of auxiliary coarser
discretizations of the solved boundary value problems and it can be difficult to
produce coarse discretizations collaborating well with the used smoother in the
case of problems with certain anisotropy, singularity etc.

These difficulties motivate an interest in algebraic multigrid methods (AMG),
which construct the prolongation, restriction and coarse matrices by using only
the information included in the solved system or very little additional geometric
information. In the AMG context, the system at a current level k (k = 1 is the
finest level) is written as

Akuk = bk, uk, bk ∈ Rnk (2)

and the coarser level works with nk+1×nk+1 matrix Ak+1 = Ik+1
k Ak I

k
k+1 defined

with the aid of a prolongation Ik
k+1 and a restriction Ik+1

k . For symmetric positive

definite (SPD) problems, we choose Ik+1
k =

(
Ik
k+1

)T
ensuring that Ak remains



also SPD. Note that in this case
∥∥ek − Ik

k+1vk+1

∥∥
Ak

= min is equivalent to the
coarse correction

(Ik
k+1)

TAkI
k
k+1vk+1 = Ak+1vk+1 = (Ik

k+1)
TAkek.

One iteration ui+1
k = MGµ(Ak , bk, u

i
k) of the multilevel AMG method is

recursively described as follows

function MGµ(Ak, bk, u
i
k = ū)

ν1 − times : ū←S(Ak, bk, ū) pre-smoothing

rk+1 = Ik+1
k (bk −Akū) residual restriction

if k + 1 = coarsest then coarse grid correction
vk+1 = A−1

k+1rk+1

else
vk+1 = 0
µ− times : vk+1 = MGµ(Ak+1, rk+1, vk+1)

end
ū = ū+ Ik

k+1vk+1 correction prolongation
ν2 − times : ū←S(Ak, bk, ū) post-smoothing

return(ui+1
k = ū)

For discrete PDE problems, AMG has the following advantages:

– there is no need for creating nested grids, it is possible to develop black box
solvers,

– instead of seeking of smoothers adapted to the coarse problem, the coarse
grid can be adapted to the smoother,

– the size of the coarse problem can be controlled e.g. for balancing the work
load on many processors in the case of two-level Schwarz method.

AMG methods can be based on different ideas including the aggregation tech-
nique on which we focus our interest. From the other ideas, we can mention AMG
based on an C-F decomposition and interpolation developed by A. Brandt, J.W.
Ruge, K. Stüben and others, see e.g. [23].

2.1 Aggregation of unknowns

We shall restrict our attention to SPD problems, when AMG needs only to define
the interpolation Ik

k+1. The simplest interpolation and restriction are in the form

Ik
k+1 = RT , Ik+1

k = R with nk+1 × nk Boolean matrix R with just one unity in
each column, e.g.

R =




1 1
1 1

1 1
1 1

1 1
1 1



.



Definition of R is equivalent to the division of the set of nk unknowns into
nk+1 disjoint groups (aggregation of unknowns)

{1, . . . , nk} =

nk+1⋃

i=1

Gi, where Gi = {j : Rij = 1} .

For 1D problems, the aggregation of unknowns can be easily defined by clus-
tering of neighbouring nodes. This clustering can be easily generalized to regular
grids in 2D and 3D domains, see e.g. Fig.1. More general aggregation on irregular
grids will be discussed later in Subsection 2.4. For an application of the two-level
and multilevel aggregation methods, it is important that the prolongation, re-
striction and construction of the coarse matrix can be efficiently implemented.

Fig. 1. An aggregation on regular 1D and 2D grids, regular clustering of 2 and 2 × 2
nodes, respectively.

The idea of aggregation in the context of iterative solution methods was
already used in [22]. In the context of multigrid methods for solving elliptic
boundary value problems, the aggregations were used e.g. in [2,3,4] and [9].

2.2 Overcorrection

Let us consider a model 1D or 2D Dirichlet problem for Poisson equation in
an interval or a square (see Fig.1) and the linear finite element discretization
of these problems on uniform meshes with mesh size h providing 3 and 5 point
stencil, respectively. Then the aggregations can be constructed e.g. by regular
clustering of 2 and 2×2 nodes, respectively. In these cases, it is easy to compute
the coarser matrices and see that these matrices differ from matrices arising from
discretization on the coarser uniform grids with mesh size 2h by the factor 2.

We can also consider a 1D Dirichlet problem for the equation −u′′ = f in
〈0, 1〉, aggregation by regular clustering and approximation of a hat shape error
in the energy norm, see Fig.2. The computed approximation from the coarse
space created by aggregation indicates the possible improvement by scaling the
correction by the factor 2.

For the 1D model problem, it is also possible to apply the Fourier analysis
[2,4] to show that the smooth error components are only partly reduced by
the correction from the aggregated space and that the efficiency of multi-level
aggregation method can be substantially improved by the overcorrection,

x̄ = x̄+ ω Ik
k+1vk+1 with the scaling factor ω > 1.



Fig. 2. Correction by aggregation (solid line) computed to a hat shape error (dashed
line) for a 1D model problem.

The use of overcorrection was introduced in [3,4] and [9]. For more general prob-
lems, a variational computation of ω was suggested in [3,4] by using the following
algorithm

vk+1 = A−1
k+1rk+1 corse grid correction

v̄k = Ik
k+1vk+1 prolongate the correction

η − times : v̄k ← S(Ak, rk, v̄k) smooth the correction
ω = 〈v̄k, rk〉 / 〈v̄k, Akv̄k〉 compute the scaling factor

= argmin
∥∥A−1

k bk − (x̄+ ωv̄k)
∥∥

Ak

x̄ = x̄+ ω Ik
k+1vk+1 or x̄ = x̄+ ωv̄k perform the overcorrection

2.3 Smoothing

Above, we mentioned that the matrix created by aggregation is too stiff. This
matrix is a Galerkin type matrix defined with the aid of basis functions in aggre-
gation space, which are sums of basis functions in the original fine FE space or
in a previous aggregation space. A difficulty is in a high energy of these aggrega-
tion basis functions. The improvement can be find in smoothing the aggregation
basis functions, which produces new ones with a lower energy, see e.g. [25,26,27].

Fig. 3. 1D model problem, aggregation basis functions before and after smoothing.

For a 1D model problem in Fig. 3, the smoothing of the aggregation basis
function φa by S = I− 2

3A produces new basis function Sφa having a larger sup-



port but a lower energy. For this model problem, the new smoothed aggregations
are even piecewise linear. But it is not true in more general cases.

The process of smoothing can be formalized as follows. Firstly, we define a
prolongation Ik

k+1defined by aggregation (tentative prolongation). Then, a more
efficient prolongation operator is constructed in the form

Ik
k+1 = SkIk

k+1 with Sk = I − ωΛ−1
k Āk.

In [26], the prolongation smoother S has the components ω = 2
3 , Λk =

diag(Ak) and Āk = (āij) arises from Ak = (aij) by filtering,

āij =

{
aij if |aij | ≥ ε

√
aii
√
ajj

0 otherwise

}

for i 6= j, āii = aii −
∑

i6=j(aij − āij). A heuristic choice of the parameter ε is

ε = 0.08 ( 1
2 )k−1.

In [27], ω = 4
3λk

, Λk = (P 1
k )TP 1

k , where P 1
k = I1

2 · · · Ik−1
k and λk ≥

ρ(Λ−1Ak), Āk = Ak. A possible choice is λk = 9k−1ρ, where ρ ≥ ρ(A1). For
this choice, the convergence factor qMG−L of L level multigrid can be estimated
as follows,

qMG−L ≤ 1− 1
C(L) ,

where C(L) is a polynomial in L, see [27] for the proof.

2.4 Construction of aggregations

The construction of aggregations on general meshes with paying the attention
to strong couplings between unknowns (smooth error character) can be node or
element oriented. A standard node oriented algorithm for creating the aggregates
is the following one:

preliminary phase: separate isolated points as individual aggregates,
phase I: repeat until all unaggregated nodes are adjacent to an aggregate:

a) pick the root node not adjacent to any existing aggregate,
b) define new aggregate as the root node plus all its neighbours,

phase II: sweep unaggregated nodes into existing aggregates (to which they
are connected) or use them to form new aggregates.

Such algorithm can be found e.g. in [26] and has many variants. At first, some
measures can be done for not leaving too many nodes for the phase II. Secondly,
the connection and neighbourhood can be defined in a strong sense to create
the coarse problem suitable for handling those error components, which can
not be removed by the smoother. A typical strong coupling between the nodes
(unknowns) i and j means that

|aij | ≥ ε
√
aii
√
ajj .



For elasticity problems, the aggregation of unknowns is restricted to aggregation
of unknowns corresponding to the displacements in the same coordinate direc-
tion. Alternatively, we can still start with aggregation of the nodes and assign
more degrees of freedom (DOF) to each aggregate (see also next subsection).
The strength of coupling can be defined by means of blocks corresponding to
nodal DOFs, see [16].

A further information about the character of the smooth error can be ob-
tained from an auxiliary iterative solution of the homogeneous variant Ak = 0
of the solved problem (2). This information can be used for an improved con-
struction of aggregations, see e.g. [11].

From the other algorithms for the construction of aggregations, we can men-
tion subsequent pairing [9,19]. The algorithm can be described as follows

step I: repeat until all unaggregated nodes are classified as aggregated pair or
singleton:

* pick up a node i and find the node j with the strongest coupling to i.
If this coupling is not strength enough classify i as singleton otherwise
create a pair {i, j}.

* aggregate the matrix

step II: apply the previous algorithm to aggregated nodes and aggregated ma-
trix to create generalized quaternion aggregations, etc.

This algorithm creates aggregations similar to aggregations on a regular grid.

The aggregations can be also created by agglomeration of adjacent finite
elements. Such approach is described e.g. in [15,12].

2.5 Enriched aggregations

For scalar boundary value problems, the aggregation of unknowns is equal to
aggregation of nodes, i.e. one DOF is assigned to each aggregate of nodes. For
elasticity problems or systems of equations, it is natural to aggregate separately
displacements in different directions or unknowns corresponding to different phe-
nomena. In other terminology, more DOFs are assigned to the aggregates. For
elasticity, these DOFs can be two or three displacements per aggregate but an
additional enhancement is also possible, e.g by adding the rotations [14]. For 2D
elasticity, it gives 3 unknowns: the displacements u, v and rotation angle α per
aggregate. If (xT , yT ) is the barycentre of the aggregate, then the prolongation
assign the displacement (u−α(y− yT ), v+α(x−xT )) to any node (x, y) of the
aggregate.

In the case of aggregation by agglomeration of finite elements, a further
enrichment can be done by using low energy eigenvectors corressponding to the
agglomeration matrices, see [15,12].



3 AMLI preconditioners with aggregation

Aggregation based AMG methods can be also used as preconditioners, a pio-
neering work in this respect is [9].

Beside multigrid preconditioners, there is also a class of hierarchical AMLI
preconditioners, which use a space decomposition and work separately on the
coarse space and its complement. These preconditioners can be also constructed
with the aid of aggregation, see [18,19].

In the case of scalar boundary value problem and the system Au = b, u, b ∈
Rn, we start with creating the aggregations {Gi : i = 1, . . . ,m} and selecting
one node in each aggregation as a C-node. All remaining nodes are considered
to be F-nodes. The F-C decomposition induces a decomposition of the matrix
A,

A =

[
A11 A12

A21 A22

]
=

[
I
A21A

−1
11 I

] [
A11

SA

][
I A−1

11 A12

0 I

]

and a preconditioner

B =

[
I
A21P

−1
11 I

][
P11

S

] [
I P−1

11 A12

0 I

]

where S ∼ SA and P11 ∼ A11. In [19], S is given by a scaled aggregation and
P11 is realized by dynamically constructed MILU factorization. The dynamic
feature means that F-nodes, which are problematic for the MILU factorization,
are shifted among C-nodes. Multilevel preconditioners then arise by solution of
the second pivot block by inner iterations (CG) with the same type of hierarchical
preconditioner.

Alternatively, we can create a hierarchical basis (HB) with basis functions

φHB
i =

∑

k∈Gi

Jik φ
h
i if i ∈ C and φHB

i = φh
i if i ∈ F,

where C and F denote the sets of C-nodes and F-nodes, respectively. The trans-
formation between the standard and hierarchical bases is given by the matrix J ,
which can be written as follows,

J = (Jij) =

[
I1 0
I21 I2

]
F
C

where I21 is a Boolean matrix with one unity per column, I1 and I2 are identity
matrices of proper dimensions.

The matrix A can be transformed to the hierarchical form AHB and both
matrices A and AHB can be written in F-C, F-C ordering as follows

A =

[
A11 A12

A21 A22

]
, AHB = J AJT =

[
H11 H12

H21 H22

]
,



where A11 = H11 and H22 is the matrix arising from aggregation of A. This
decomposition enables to define both additive and multiplicative preconditioners

BA = J−1

[
H̃11

H̃22

]
J−T , B−1

A = JT

[
H̃11

H̃22

]−1

J,

BM =

[
I

A21H̃
−1
11 I

] [
H̃11

H̃22

] [
I H̃−1

11 A12

I

]
,

where H̃11 ∼ H11 and H̃22 ∼ H22. Some analysis and comparisons with standard
AMLI can be done on the basis of the strengthened CBS inequalities, see [7].

4 Schwarz methods with aggregation

The algebraic coarse space created by aggregation can be also used in the frame-
work of the two-level additive and hybrid Schwarz preconditioners. General form
of these preconditioners is as follows

BA = B0 +B1L, B1L =
m∑

1

Bk , Bk = RT
kA

−1
k Rk (3)

where Ak (k = 1, . . . ,m) are FE matrices of local subproblems and A0 is a coarse
matrix created by aggregation. More details will be provided later. We shall also
consider nonsymmetric hybrid preconditioner defined by

BH = B0 +B1L(I −AB0) (4)

and its symmetrized version

BSH = B0 + (I −B1LA)B0(I −AB1L), (5)

More details about the Schwarz preconditioners can be found e.g. in [24].
Now, let us solve the system (1) arising from a finite element discretization

of an elliptic boundary value problem in Ω. Let Th be a FE triangulation of the
domain Ω and Vh be a corressponding FE space. The triangulation Th can be
divided into m parts in two steps: firstly Th is divided into nonoverlapping sets
T 0

k , which are consequently extended to overlapping sets T δ
k . We shall denote

Ω0
k = ∪{E : E ∈ T 0

k }, Ωδ
k = ∪{E : E ∈ T δ

k }.

Now, we can define the local FE spaces Vk ⊂ Vh of admissible functions on
Ω which vanish outside Ωk, matrices Ak and restrictions Rk. Let Aδ

k be the FE
matrix arising from assembling the element matrices AE for E ∈ T δ

h . Then Ak

will be the matrix arising from Aδ
k by incorporating homogeneous Dirichlet type

boundary conditions on the inner boundary ∂Ωδ
k \∂Ω. The boundary conditions

on the outer boundary ∂Ωδ
k ∩ ∂Ω are given from the solved boundary value

problem.



The decomposition Vh = V1 + . . . + Vm can be enriched by a coarse space
V0 created algebraically by aggregation, which ensures the numerical scalability
with respect to the number of the subdomains. If G1, . . . , GN be the aggregations
and Vh = span{φh

1 , . . . , φ
h
n}, where φh

i are basis functions, then it is possible to
define aggregated basis functions ψk and the space V0 ⊂ V as follows,

ψk =
∑

i∈Gk

φh
i , V0 = span{ψ1, . . . , ψN} .

We shall assume that the aggregations are regular, i.e. there is a constant β̄ such
that each suppψk contains a ball with diameter β̄H , where

H ∼ max
k

diam(suppψk).

Such construction gives again a stable decomposition V = V0 + V1 + . . . + Vm

resulting in numerically scalable preconditioners BA and BSH . For more details
see [10,17,6,21].

We shall conclude this section with some numerical examples. The efficiency
of various preconditioners arising from implementation of the described ideas
can be compared by solving two boundary value problems in Ω = 〈0, 2〉 × 〈0, 3〉
with pure homogeneous Dirichlet boundary conditions (∂ΩD = ∂Ω). The first
problem is for the Poisson equation, the second one is a model elasticity (plane
deformation) problem with the elasticity modulus E = 1 and Poisson ratio
ν = 0.3. The right hand side is a linear function in both cases.

The problems are discretized by linear triangular FE on a uniform grid with
the mesh size h = 1/30. The local problems are given on subdomains Ωk =
〈0, 2〉×〈xk, xk+1〉 with overlap δ = 2h. The subproblems are solved exactly.

The required numbers of iterations for the accuracy ε = 10−3 and various
additive (AP) and hybrid (HP) Schwarz preconditioners can be seen in Tables
1 and 2. The hybrid preconditioners are used in nonsymmetric form in com-
bination with a generalized conjugate gradient method GPCG[1], see [5]. The
coarse problem uses either the nested coarse triangular grid with the mesh size
H = 2h or the aggregations with clustering 2×2 square macroelements (3 × 3
nodes). The smoothing was done by S = I− 2

3diag(A)−1Ā where Ā was equal to
A in both cases. For the elasticity, we test also sparser Ā given by the separate
displacement component part of A but both choices give the same results.

5 Conclusions

In this paper, we provide an overview of possible applications of the aggregation
technique in multilevel methods. Additionally, we can mention application of
the aggregation technique in a nonoverlapping Schwarz method with interfaces
on the coarse grid, see [6], or a specific aggregations for construction of AMLI
preconditioners for nonconforming Crouzeix-Raviart finite elements [8].

Acknowledgement: The support given by the grant 1ET400300415 of the
Academy of Sciences of the Czech Republic is greatly acknowledged.



Overlap 2h, #subdomains: 4 16 24

c-grid H=3h, AP 7 7 8

c-grid H=3h, HP 6 6 6

aggreg. 2h, AP 13 17 17

aggreg. 2h, HP 10 11 11

smooth. aggreg. 2h, AP 10 11 11

smooth. aggreg. 2h, HP 7 7 8

Table 1. Poisson equation problem. Numbers of iterations for ε = 10−3. AP=additive
preconditioner, HP=hybrid preconditioner + GPCG[1].

Overlap 2h, #subdomains: 4 16 24

c-grid H=3h, AP 8 8 9

c-grid H=3h, HP 6 7 8

aggreg. 2h, AP 17 20 20

aggreg. 2h, HP 12 13 14

aggreg. 2h-rotat, AP 16 18 19

aggreg. 2h-rotat, HP 11 12 12

smooth. aggreg. 2h, AP 12 14 14

smooth. aggreg. 2h, HP 9 10 10

Table 2. Elasticity problem. Numbers of iterations for ε = 10−3. AP=additive pre-
conditioner, HP=hybrid preconditioner + GPCG[1].
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