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Abstract. A successive refinement of a finite element grid provides a
sequence of nested grids and hierarchy of nested finite element spaces
as well as a natural hierarchical decomposition of these spaces. In the
case of numerical solution of elliptic boundary value problems by the
conforming FEM, this sequence can be used for building both multilevel
preconditioners and error estimates. For a nonconforming FEM, multi-
level preconditioners and error estimates can be introduced by means of
a hierarchy, which is constructed algebraically starting from the finest
discretization.

1 Introduction

Let us consider a model elliptic boundary value problem in Ω ⊂ R2,

find u ∈ V : a(u, v) = b(v) ∀v ∈ V, (1)

where V = H1
0 (Ω), b(v) =

∫

Ω

fvdx for f ∈ L2(Ω) and

a(u, v) =
∫

Ω

2∑

ij

kij
∂u

∂xi

∂v

∂xj
dx . (2)

Above K = (kij) is a symmetric and uniformly bounded positive definite matrix.
This type of boundary value problems are most frequently solved by the finite

element method (FEM). A successive refinement of a finite element grid provides
a sequence of nested grids and hierarchy of nested finite element spaces as well
as a natural hierarchical decomposition of these spaces. This sequence can be
used for building both multilevel preconditioners and error estimates. In Section
2, we describe such hierarchy for conforming Courant type finite elements. We
also mention the strengthened Cauchy-Bunyakowski-Schwarz (CBS) inequality,
which is important for characterization of the hierarchical decomposition. In
Section 3, we show that the hierarchical decomposition allows to construct pre-
conditioners and error estimates. Section 4 is devoted to hierarchical decompo-
sitions constructed algebraically for nonconforming Crouzeix-Raviart FEM. We
show that this decomposition allows again to introduce both preconditioners and
error estimates.
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Fig. 1. A regular decomposition of a triangle

2 Hierarchical Decomposition for Conforming FEM

Let us consider a coarse triangular finite element grid TH in Ω and a fine grid
Th, which arises by a refinement of the coarse elements, see Fig. 1 for the most
typical example. We assume that Ω =

⋃
{E : E ∈ TH}.

By N H and N h, we denote the sets of nodes corresponding to TH and Th,
respectively. Further, NH = {x ∈ N H , x /∈ ∂Ω}, Nh = {x ∈ N h, x /∈ ∂Ω}.
Naturally, Nh = NH ∪ N+

H , where N+
H is the complement of NH in Nh.

Now, we can introduce the finite element spaces VH and Vh (VH ⊂ Vh) of
functions which are continuous and linear on the elements of the triangulation
TH and Th, respectively.

The space Vh allows a natural hierarchical decomposition. Let {φH
i } and {φh

i }
be the standard nodal finite element bases of VH and Vh, i.e. φH

i (xj) = δij for
all xj ∈ NH , φh

i (xj) = δij for all xj ∈ Nh . Then Vh can be also equipped with
a hierarchical basis {φ̄h

i }, where

φ̄h
i =

{
φh

i if xi ∈ N+
H ,

φH
i if xi ∈ NH .

It gives a natural hierarchical decomposition of the space Vh,

Vh = VH ⊕ V +
H , V +

H = span {φh
i , xi ∈ N+

H }. (3)

The decomposition (3) is characterized by the strengthened CBS inequality
with the constant γ = cos(VH , V +

H ), which is defined as follows:

γ = cos(VH , V +
H )

= sup
{

| a(u, v) |
‖u‖a ‖v‖a

: u ∈ VH , u �= 0, v ∈ V +
H , v �= 0

}

. (4)

Above ‖u‖a =
√

a(u, u) is the energy norm. If Th arises from TH by a regular
division of the coarse grid triangles into 4 congruent triangles (see Fig. 1) and
if the coefficients K = (kij) are constant on the coarse grid elements then
γ <

√
3/4 for general anisotropic coefficients and arbitrary shape of the coarse

grid elements. For more details, see [1] and the references therein.
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3 Hierarchical Preconditioners and Error Estimates

The decomposition (3) can be used for construction of preconditioners for the
FE matrices Ah and Āh,

〈Ahu, v〉 = 〈Āhū, v̄〉 = a(u, v) (5)

for u =
∑

uiφ
h
i =

∑
ūiφ̄

h
i and v =

∑
viφ

h
i =

∑
v̄iφ̄

h
i . Both nodal and hi-

erarchical basis FE matrices Ah and Āh then have a hierarchic decomposition

Ah =
[
A11 A12
A21 A22

]
N+

H

NH
and Āh =

[
Ā11 Ā12
Ā21 Ā22

]
N+

H

NH
. (6)

Note that the diagonal blocks A11, A22 of Ah carry only the local information.
On the opposite, the diagonal blocks Ā11 = A11 and Ā22 = AH of Āh carry both
local and global information on the discretized problem.

Note also that the relation between Ah and Āh implies the identity between
the Schur complements,

Sh = S̄h, Sh = A22 − A21A
−1
11 A12, S̄h = Ā22 − Ā21Ā

−1
11 Ā12 .

The standard hierarchic multiplicative preconditioner then follows from an
approximate factorization of Ah with Schur complement Sh replaced by Ā22,

Bh =
[

I 0
A21A

−1
11 I

] [
A11

Ā22

] [
I A−1

11 A12
0 I

]

. (7)

Note that getting efficient preconditioners assumes that

– A11 is approximated for a cheaper computation. The simplest approximation
is the diagonal of A11, see [2], more accurate approximation can use incom-
plete factorization or a locally tridiagonal element-by-element approximation
of A11, see [3],

– Ā22 = AH is also approximated. A natural way how to do it is to use
hierarchical decomposition recursively and to solve the system with Ā22 by a
few inner iterations with a proper hierarchical preconditioner. In a multilevel
setting, we can get an optimal preconditioner, see [4,5,6].

Another application of the hierarchical decomposition is in error estimation,
see [7,10] and the references therein. If u ∈ V is the exact solution, uH ∈ VH

and uh ∈ Vh are the finite element solutions of the problem (1) in VH and Vh,
respectively, and if there is a constant β < 1 such that

‖ u − uh ‖a ≤ β ‖ u − uH ‖a , (8)

(saturation condition) then the Galerkin orthogonality allows to show that

‖ wh ‖a ≤‖ u − uH ‖a ≤ 1
1 − β2 ‖ wh ‖a , (9)
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where wh = uh − uH , see [7]. Thus η =‖ wh ‖a can serve as an efficient and
reliable error estimator.

A cheaper error estimator η̄ can be computed via the hierarchical decompo-
sition (3). Let η̄ =‖ w̄h ‖a, where

w̄h ∈ V +
H : a(w̄h, vh) = b(vh) − a(uh, vh) ∀vh ∈ V +

H (10)

then

‖ w̄h ‖a ≤‖ u − uH ‖a ≤ 1
(1 − β2)(1 − γ2)

‖ w̄h ‖a (11)

where γ is the CBS constant from (4).
Algebraically,

η̄ = 〈A11w1, w1〉1/2, (12)

where

w1 : A11w1 = b1 − Ā12w2, (13)
w2 : Ā22w2 = b2. (14)

A still cheaper estimators can be computed by using the approximations of A11.
In this respect, the locally tridiagonal approximation introduced by Axelsson
and Padiy [3], which is robust with respect to anisotropy and element shape,
is a good candidate for obtaining a cheap reliable and efficient hierarchic error
estimator. The multiplicative preconditioner of A11 has more than two times
better κ.

4 Nonconforming Finite Elements

Let Th be a triangulation of Ω, Mh be the set of midpoints of the sides of
triangles from Th, M0

h and M1
h consist of those midpoints from Mh, which lie

inside Ω and on the boundary ∂Ω. Then the Crouzeix-Raviart finite element
space Vh is defined as follows

Vh = {v ∈ Uh : v(x) = 0 ∀x ∈ M1
h}, (15)

Uh = {v ∈ L2(Ω) : v |e∈ P1 ∀e ∈ Th, [v](x) = 0 ∀x ∈ M0
h}, (16)

where [v](x) denotes the jump in x ∈ M0
h.

The finite element solution uh ∈ Vh of (1) is now defined as

uh ∈ Vh : ah(uh, vh) = b(vh) ∀vh ∈ Vh (17)

where ah is the broken bilinear form,

ah(uh, vh) =
∑

T∈Th

∫

T

∑

ij

kij
∂uh

∂xi

∂vh

∂xj
dx . (18)
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Fig. 2. A macroelement E with 9 midpoint nodes mi

If TH and Th are two nested triangulations and VH and Vh are the corresponding
Crouzeix-Raviart spaces then VH � Vh and it is impossible to repeat the con-
structions of Section 2. But still there is a possibility to introduce a hierarchical
basis in Vh algebraically, one such possibility, the DA splitting, is described in
[8]. The construction is associated with the coarse triangles E ∈ TH considered
as macroelements composed from four congruent triangles T ∈ Th, see Fig. 2.

Let φh
1 , . . . , φh

9 be the nodal basis functions of the macroelement E, i.e.
φh

i (mj) = δij . Then a hierarchical basis on E can be created from the following
basis functions,

φ̄h
l = φh

i for li = 11, 22, 33
φ̄h

l = φh
i − φh

j for lij = 445, 567, 689 (19)

φ̄h
l = φh

i + φh
j + φh

k for lijk = 7145, 8267, 9389

The last triple will be called aggregated basis functions.
The hierarchical basis on a macroelement can be extended to a hierarchical

basis in the whole space Vh. Using this hierarchical basis, the space Vh can be
decomposed as follows

Vh = VA ⊕ V +
A ,

where VA is spanned on the aggregated basis functions and V +
A is spanned on the

remaining basis functions. For this decomposition, γ = cos(VA, V +
A ) =

√
3/4, see

[8].

In [8,9], it is shown that the decomposition can be used for defining optimal
order hierarchical preconditioners.

Now, we shall investigate the use of the DA hierarchical decomposition for
the hierarchical error estimation in the case of nonconforming Crouzeix-Raviart
FEM.

Let uH , uh be the nonconforming finite element solutions of (1) in VH and
Vh, respectively, and let us define

uA ∈ VA : ah(uA, vh) = b(vh) ∀vh ∈ VA, (20)
wA ∈ V +

A : ah(wA, vh) = b(vh) − a(uA, vh) ∀vh ∈ V +
A . (21)
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Algebraically, let Āhuh = b̄h be the algebraic version of (17) in the introduced
hierarchical basis and the hierarchical decomposition of this system gives the
following block form,

[
Ā11 Ā12
Ā21 Ā22

] [
u1
u2

]

=
[
b1
b2

]

(22)

with the first and second block corresponding to V +
A and VA, respectively. Then

uA ∼ w2 = Ā−1
22 b2, (23)

wA ∼ w1 = Ā−1
11 (b1 − Ā12w2). (24)

We shall also consider the algebraic system

AHuH = bH (25)

corresponding to VH and the broken energy norms

‖ vH ‖H=
√

aH(vH , vH), ‖ vh ‖h=
√

ah(vh, vh)

for vH ∈ VH and vh ∈ Vh, respectively.

Now, our aim is to investigate if

η =‖ wA ‖h=
√

〈Ā11w1,w1〉 (26)

is again a possible error estimator. We shal do it in three steps.

1. First, under the assumption that the saturation condition is valid, i.e. there
is a β < 1,

‖ u − uh ‖h ≤ β ‖ u − uH ‖H ,

it is possible to use ‖ uh − uH ‖h as an error estimator for ‖ u − uH ‖H , because

1
1 + β

‖ uh − uH ‖h ≤‖ u − uH ‖H ≤ 1
1 − β

‖ uh − uH ‖h . (27)

Note that (27) follows from the triangle inequality. It is not possible to use the
Galerkin orthogonality as it was done for (9).

2. Second, we shall investigate a relation between ‖ uh−uH ‖h and ‖ uh−uA ‖h .
For example, if f is constant on the elements E ∈ TH , then the vector b2 from
(23) and bH from (25) are equal. From [8], we have Ā22 = 4AH , thus w2 = 1

4uH .
Then

‖ uh − uA ‖2
h = ‖ uh ‖2

h − ‖ uA ‖2
h=‖ uh ‖2

h −1
4

‖ uH ‖2
h

‖ uh − uH ‖2
h = ‖ uh ‖2

h − ‖ uH ‖2
h +ch

where ch is the consistency term, ch = b(uH)−ah(uh, uH). It can be proved [11]
that ch → 0 for h → 0. Thus, for h sufficiently small

‖ uh − uH ‖h ≤‖ uh − uA ‖h (but not ‖ uh − uH ‖h ∼‖ uh − uA ‖h ).



84 R. Blaheta

3. Third, the norm ‖ uh − uA ‖h can be estimated by ‖ wA ‖h . It holds, that

‖ wA ‖2
h ≤ ‖ uh − uA ‖2

h ≤ (1 − γ2)−1 ‖ wA ‖2
h ,

where γ =
√

3/4 is the strengthened CBS constant for the DA splitting.
The proof is simple. First,

‖ wA ‖2
h = ah(uh − uA, wA) ≤ ‖ uh − uA ‖h‖ wA ‖h .

Next, let uh = ûA + ŵA, ûA ∈ VA, ŵA ∈ V +
A . Then

‖ uh − uA ‖2
h = ah(uh − uA, uh − uA) = ah(uh − uA, ûA − uA + ŵA)

= ah(uh − uA, ŵA) = ah(wA, ŵA) ≤‖ wA ‖h‖ ŵA ‖h

‖ uh − uA ‖2
h = ‖ ûA − uA + ŵA ‖2

h

≥ ‖ ûA − uA ‖2
h + ‖ ŵA ‖2

h −2 | ah(ûA − uA, ŵA) |
≥ (1 − γ2) ‖ ŵA ‖2

h

Consequently,

(1 − γ2) ‖ ŵA ‖2
h ≤ ‖ uh − uA ‖2

h= ah (wA, ŵA) ≤‖ wA ‖h‖ ŵA ‖h

i.e.
(
1 − γ2) ‖ ŵA ‖h ≤ ‖ wA ‖h

and
‖ uh − uA ‖2

h ≤ (1 − γ2)−1 ‖ wA ‖2
h .

5 Conclusions

The first aim of the paper is to show that the progress in construction and
analysis of the hierarchical multilevel preconditioners, as e.g. the mentioned lo-
cally tridiagonal approximation [3] to the pivot block can be exploited also for
development of hierarchical error estimates.

The second aim is to extend the hierarchical error estimate concept to non-
conforming finite elements with the aid of an auxiliary algebraic subspace VA,
VH ∼ VA, VA ⊂ Vh. This extension could provide an evaluation of the error and
its distribution on an early stage of multilevel iterations and gives a chance to
improve the discretization in the case of insufficient accuracy.

We have shown that a crucial point for this extension will be the approxima-
tion property of the algebraic space VA. For the DA construction, the approxi-
mation property is not sufficient and we can get error estimator which is reliable
but not efficient. A possible remedy could be in the use of the generalized DA
decompositions, see [12,13]. In this respect, a further investigation is required.
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