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Abstract. Efficient algorithms for the solution of elliptic boundary variational inequal-
ities are presented. A model variational inequality is first reduced to minimization of the
energy functional defined on the boundary subject to inequality constraints. The problem is
then discretized by the Galerkin method using the well known results on representation of
the Steklov-Poincaré operator. Using the duality theory, we finally get well a conditioned,
strictly convex quadratic programming problem with either bound or bound and equality
constraints. The resulting problem is then solved by new efficient algorithms with the rate
of convergence in the spectral condition number of the Hessian. Both theoretical results and
numerical experiments indicate efficiency of the algorithms presented.
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1.1 Introduction

We shall be concerned with the elliptic boundary variational inequalities such as those describing
the equilibrium of a system of elastic bodies in mutual contact. Such problems are difficult to
solve because their boundary conditions involve the inequalities which make them strongly non-
linear. Moreover, the classical Dirichlet and Neumann boundary conditions are known only after
the solution has been found, so that the analysis should not rely on the ellipticity of the related
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quadratic forms. Translated into the language of mechanics, it follows that any effective solver
of such problems must be able not only to identify an a priori unknown contact interface, but
also to deal with singular matrices describing the response of “floating” bodies to given traction.

The discretization of contact problems may be based both on the finite element discretization
[2] or on the boundary element discretization [6, 3], each approach having its own merits. For
example, our development of boundary element based method has been motivated by possible
applications in shape optimization, where the finite element method requires remeshing of the
interior of the body with adverse effect on the precision of shape gradients [5]. Using appropri-
ate discretization methods, it is possible to achieve that the discretized problems have similar
structure, so that they may be solved by the same algorithms.

In this paper, we describe application of the quadratic programming algorithms [4, 1] that
were used to develop scalable methods (e.g. [2, 1]) for variational inequalities. A model varia-
tional inequality is first reduced to minimization of the energy functional defined on the boundary
subject to inequality constraints. The problem is then discretized by the Galerkin method using
the well known results on representation of the Steklov-Poincaré operator. Using the duality
theory, we finally reduce the problem to rather well conditioned, strictly convex quadratic pro-
gramming problem with either bound constraints or bound and equality constraints so that our
efficient algorithms [4, 1] may be applied. The unique feature of these algorithms is the rate of
convergence in terms of the spectral condition number of the Hessian of the related quadratic
form. Both theoretical results and numerical experiments indicate that there are problems which
may be solved efficiently by the algorithms presented.

1.2 A model problem.

To simplify our exposition, we shall restrict our presentation to a simple model problem. Let
Ω ⊂ R2 denote a bounded domain with the Lipschitz boundary Γ which consists of three mutually
disjoint parts Γu,Γf and Γc, where we admit Γu = ∅, but always assume that Γc has nonzero
measure. Let f ∈ L2 (Ω), where L2 (Ω) denote the space of the square integrable functions on
Ω in the sense of Lebesgue, and let g ∈ L2 (Γc). We shall consider the problem to find u which
satisfies the classical Poisson equation and boundary conditions

−4u = f ∈ Ω, u = 0 on Γu and
du

dn
= 0 on Γf , (1.1)

where n denotes the outer unit normal vector defined on Γ, and the Signorini conditions

u ≥ g,
du

dn
≥ 0 and

du

dn
(u− g) = 0. (1.2)

The solution u may be interpreted as a vertical displacement of a membrane which is placed
over the boundary obstacle Γc, fixed on Γu and pressed down by the traction f .

To give the weak formulation of the problem (1.1) - (1.2), let

H1
0 (Ω,Γu) =

{
v ∈ H1 (Ω) : Tv = 0 on Γu

}
and K =

{
v ∈ H1

0 (Ω,Γu) : Tv ≥ g on Γc

}
denote the closed subspace of the Sobolev space H1 (Ω) and the closed convex subset of H1

0 (Ω,Γu),
respectively, where Tv ∈ L2 (Γ) denotes the trace of a function v, and let us define a continuous
symmetric bilinear form a and a continuous linear functional ` by

a :
(
H1

0 (Ω,Γu)
)2 7→ R, a(u, v) =

∫
Ω
∇u ·∇v dx ` : H1

0 (Ω,Γu) 7→ R, `(v) =
∫

Ω
f · v dx.

Then we call the function u ∈ K satisfying

a(u, v − u) ≥ `(v − u) for all v ∈ K (1.3)
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a weak solution of the problem (1.1) - (1.2). If a is H1
0 (Ω,Γu)-elliptic, then there is the unique

solution u ∈ K of (1.3) which is also the unique minimizer of the energy functional

J : H1
0 (Ω,Γu) 7→ R, J(v) =

1
2
a(v, v)− `(v)

on K. It can be shown that J is coercive if either Γu has a positive measure or
∫
Ω f dx < 0.

In what follows, we assume that J is coercive so that (1.1) - (1.2) has the unique solution.

1.3 Reduction to the boundary and discretization

The fundamental solution of the Laplace operator in 2D is given by

v : R2 × R2 7→ R, v(x, y) = − 1
2π

log ‖x− y‖ .

If both the solution u of the partial differential equation (1.1) and its normal derivative du
dn are

known on the whole boudary Γ, then we can compute the solution u in any interior point x ∈ Ω
by the Green representation formula

u(x) =
∫

Γ

(
du

dn
(y)v(x, y)− u(y)

dv

dny
(x, y)

)
dsy +

∫
Ω

f(y)v(x, y) dy. (1.4)

Let us now introduce the operators V,K,K ′, D and the Newton potentials N0, N1 by

V : H−1/2 (Γ) 7→ H1/2 (Γ) , V

(
du

dn

)
(x) =

∫
Γ

du

dn
(y)v(x, y) dsy,

K : H1/2 (Γ) 7→ H1/2 (Γ) , K (u) (x) =
∫

Γ
u(y)

dv

dny
(x, y) dsy,

K ′ : H−1/2 (Γ) 7→ H−1/2 (Γ) , K ′
(

du

dn

)
(x) =

∫
Γ

du

dn
(y)

dv

dnx
(x, y) dsy,

D : H1/2 (Γ) 7→ H−1/2 (Γ) , D (u) (x) = − d
dnx

∫
Γ

u(y)
dv

dny
(x, y) dsy,

N0f(x) =
∫

Ω
f(y)v(x, y) dy, N1f(x) =

∫
Ω

f(y)
dv

dnx
(x, y) dy.

Here H1/2 (Γ) and H−1/2 (Γ) denote the trace space of H1 (Ω) with the norm

‖u‖H1/2(Γ) = inf
v∈H1(Ω): Tv=u

‖v‖H1(Ω)

and its dual space, respectively. We call V a single layer operator, K a double layer operator,
K ′ an adjoint to K and D a hypersingular operator. It is known (see [11]) that the operators
V, K, K ′ and D are linear and continuous. Moreover, V is also symmetric, and if diam (Ω) is
sufficiently small, then it is also H−1/2 (Γ)-elliptic. Finally, operator D is symmetric, H1/2 (Γ)-
semielliptic and if Γu has a positive measure, then it is also H

1/2
0 (Γ,Γu)-elliptic, where

H
1/2
0 (Γ,Γu) =

{
v ∈ H1/2 (Γ) : v = 0 on Γu

}
.

Letting x̃ ∈ Ω pass to x ∈ Γ, we can derive from (1.4) the system of integral equations

1
2
u = V

(
du

dn

)
−K (u) + N0f, (1.5)

1
2

du

dn
= K ′

(
du

dn

)
+ D (u) + N1f (1.6)
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for u and du
dn on Γ. Using simple manipulations with (1.5) and (1.6), we get

du

dn
(x) = S(u)(x)−N(f)(x) for x ∈ Γ, (1.7)

where S denotes the Steklov-Poincaré operator

S : H1/2 (Γ) 7→ H−1/2 (Γ) , S(u) =
[(

1
2
I + K ′

)
V −1

(
1
2
I + K

)
+ D

]
(u)

and N : L2 (Ω) 7→ H−1/2 (Γ) is defined by N(f) = V −1N0f .
The Steklov-Poincaré operator S is known to be linear, continuous, symmetric and H1/2 (Γ)-

semielliptic. Again, if Γu has a positive measure, then S is H
1/2
0 (Γ,Γu)-elliptic. Using the

Green’s formula and (1.7), we get that the problem of finding the weak solution of the model
problem (1.1) - (1.2) is equivalent to the problem to

find u ∈ K such that
∫

Γ
S(u) · (v − u) ds ≥

∫
Γ

N(f) · (v − u) ds for all v ∈ K. (1.8)

Using suitable grid points zi ∈ Γ and test functions ϕi, ϕi(zi) = δij , i, j = 1, . . . , n0, we can
use the Galerkin method to obtain the discretized formulation of (1.8). The boundary element
matrices Vh, Kh and Dh can be evaluated using analytical integration in combination with
numerical integration schemes. For evaluation of the vector N0h

, it is necessary to compute the
Newton potential N0f . This can be done by an indirect computation approach using FEM (see
[10]). We can exploit the symmetry of the matrices Vh and Dh and equations

1
2

n0∑
j=1

Mh (i, j) = −
n0∑

j=1

Kh (i, j) and
n0∑

j=1

Dh (i, j) = 0 for i = 1, . . . , n0, (1.9)

which follow from (1.5) and (1.6). Assuming a suitable numbering of nodes and eliminating vi

that correspond to zi ∈ Γu, we shall get the discrete energy functional

J(v) =
1
2
vTS̃hv − R̃T

h v for v ∈ Rn1 (1.10)

and the approximation Kh = {v ∈ Rn1 : vi ≤ g(zi) for i = q, . . . , n}, so that the discretized
formulation of (1.8) may be give in the form

J(v) −→ min subject to Bv ≤ c, (1.11)

where B = [−I, O] ∈ Rn×n1 , n is the number of the nodes on Γc, and ci = −g(zi). Since we
assume that the Dirichlet conditions are enhanced in J , the matrix S̃h is positive definite if there
is zi ∈ Γu. Otherwise S̃h is only positive semidefinite.

Our final step is elimination of primal variables by duality in order to improve conditioning
of our problem. This step would reduce more general constraints, such as those arising in
multibody problems, to the bound constraints. We first assume that the problem is coercive, so
that the stiffness matrix S̃h is positive definite. We get that the problem (1.11) is equivalent to

Θ(λ) −→ min subject to λ ≥ 0, (1.12)

Θ : Rn 7→ R, Θ(λ) =
1
2
λTFλ− λTb, F = BS̃−1

h BT, b =
(
BS̃−1

h R̃h − c
)

.

The solution u ∈ Rn on the boundary is then determined by the unique solution λ of (1.12):

u = S̃−1
h

(
R̃h −BTλ

)
.
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Now we shall assume that Γu = ∅ so that the matrix S̃h is positive semidefinite, but we shall
assume that the energy functional (1.10) is coercive due to the linear term. Let us denote by
S̃+

h any matrix that satisfies S̃+
h = S̃hS̃+

h S̃h and by R any matrix whose columns span the null
space of S̃h. Then (see [3]) the problem (1.11) is equivalent to the problem:

Θ(λ) −→ min subject to λ ≥ 0 and Gλ = e, (1.13)

Θ(λ) =
1
2
λTFλ− λTb, F = BS̃+

h BT, b =
(
BS̃+

h R̃h − c
)

, G = RT BT , e = RTR̃h.

Again, the discrete boundary solution u ∈ Rn may be recovered from the solution λ of (1.13) by

u = S̃+
h

(
R̃h −BTλ

)
+ R

(
RTB̃TB̃R

)−1
RTB̃T

(
c̃− B̃S̃+

h

(
R̃h −BTλ

))
,

where (B̃, c̃) is formed by the rows of (B, c) that correspond to the positive entries of λ. It may
be useful to homogenize the equality constraints in (1.13) by using any λ̃ which satisfies Gλ̃ = e
and substituting λ = λ̃ + µ into (1.13). The details and tanalysis of the effect may be found in
the reference [1].

1.4 Algorithms

To simplify the description of our working set based algorithm [4] for the solution of (1.12), let
N = {1, . . . , n} and let g = g(λ) = ∇Θ(λ) denote the gradient of Θ at λ ∈ Rn. The unique
solution λ of (1.12) is fully determined by the Karush-Kuhn-Tucker (KKT) optimality conditions

λi = 0 implies gi ≥ 0, and λi > 0 implies gi = 0. (1.14)

The set of all indexes i ∈ N for which λi = 0 is called an active set of λ. We denote it by
A(λ) = {i ∈ N : λi = 0}. The complement F(λ) = N \A(λ) of A(λ) will be called a free set of
λ. To enable an alternative reference to the KKT conditions (1.14), let ϕ(λ) be the free gradient
of λ and let β(λ) be the chopped gradient of λ defined by

ϕi(λ) =
{

gi(λ), for i ∈ F(λ)
0, for i ∈ A(λ)

and βi(λ) =
{

0, for i ∈ F(λ)
g−i (λ), for i ∈ A(λ)

Thus the KKT conditions (1.14) are satisfied if and only if the projected gradient gP (λ) =
ϕ(λ) + β(λ) is equal to zero. We call λ feasible if λi ≥ 0 for i ∈ N . The projection P+ to the
set of feasible vectors is defined for any n-vector λ by P+(λ)i = max{λi, 0}. Our algorithm [4]
for the solution of (1.12) uses a test to decide about leaving the face and three types of steps to
generate a sequence of iterates {λk} that approximate the solution of (1.12).

The expansion step is defined by

λk+1 = P+

(
λk − αϕ(λk)

)
(1.15)

with the steplength α ∈ (0, ‖F‖−1], F denoting the Hessian of Θc. This step may expand the
current active set. We may describe it without P+ by introducing the reduced free gradient ϕ̃(λ)
with the entries ϕ̃i = ϕ̃i(λ) = min{λi/α, ϕi} for i ∈ N , so that P+ (λ− αϕ(λ)) = λ − αϕ̃(λ).
If the inequality

||β(λk)||2 ≤ Γ2ϕ̃(λk)>ϕ(λk) (1.16)

holds, then we call the iterate λk strictly proportional. The test (1.16) is used to decide which
component of the projected gradient ν(λk) will be reduced in the next step.
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The proportioning step is defined by

λk+1 = λk − αcgβ(λk).

The steplength αcg is chosen to minimize f(λk −αβ(λk)) with respect to α. The purpose of the
proportioning step is to remove indexes from the active set.

The conjugate gradient step is defined by

λk+1 = λk − αcgp
k (1.17)

where pk is the conjugate gradient direction which is constructed recurrently. The conjugate
gradient steps are used to carry out the minimization in the face WI = {λ : λi = 0 for i ∈ I}
given by I = A(λs) efficiently. The algorithm that we use may now be described as follows.

Algorithm MPRGP for bound constrained problems
Step 0. {Initialization of parameters}
Let λ0 be a feasible n-vector, α ∈ (0, ‖F‖−1], and Γ > 0 be given. For k ≥ 0 and λk known,
choose λk+1 by the following rules:
Step 1. {Test.}
If ‖gP (λk)‖ is small, then λk+1 = λk.
Step 2. {Proportional iteration}
If λk is strictly proportional and gP (λk) 6= 0, try to generate λk+1 by the conjugate gradient
step. If λk+1

i ≥ 0 for i ∈ N , then accept it, else generate λk+1 by the expansion step.
Step 3. {Proportioning}
If λk is not strictly proportional, define λk+1 by proportioning.

More details about the implementation of Algorithm MPRGP may be found in [4]. This al-
gorithm was proved to converge for any set of initial parameters that satisfy the prescribed
inequalities. Its unique feature is the R-linear rate of convergence of both ‖λk‖ and ‖gP (λk)‖ in
terms of the condition number of the Hessian of Θc [4].

To exploit MPRGP for the solution of (1.13), we shall introduce Lagrange multipliers µ for
the equality constraints so that the augmented Lagrangian for (1.13) and its gradient read

L(λ, µ, ρ) =
1
2
λT (PFP + ρQ)λ − λT Pd + µT Gλ, g(λ, µ, ρ) = PFPλ−Pd + GT (µ + ρGλ).

Algorithm SMALBE for bound and equality constrained problems.
Step 0. {Initialization of parameters}
Given η > 0, β > 1, M > 0, ρ0 > 0 and µ0, set k = 0.
Step 1. {Inner iteration with adaptive precision control.}
Find λk such that ||gP (λk, µk, ρk)|| ≤ min{M‖Gλk‖, η}.
Step 2. {Stopping criterion.}
If ||gP (λk, µk, ρk)|| and ||Gλk|| are sufficiently small, then λk is the solution.
Step 3. {Update of the Lagrange multipliers.}
µk+1 = µk + ρkGλk

Step 4. {Update the penalty parameter.}
If k > 0 and L(λk, µk, ρk) < L(λk−1, µk−1, ρk−1) + ρk‖Cλk‖2/2
then ρk+1 = βρk

else ρk+1 = ρk

end if.
Step 5. Increase k and return to Step 1.



The implementation of Step 1 is carried out by the minimization of the augmented La-
grangian L subject to λ ≥ 0 by means of the MPRGP algorithm. The SMALBE algorithm
was proved to converge for any set of parameters that satisfy the relations prescribed in [1].
Moreover, it was shown that the number of iterations necessary to achieve the prescribed rela-
tive feasibility error may be bounded independently of the conditioning of the constraints. The
results are true even for dependent constraints [1].

1.5 Numerical experiments

In this section, we illustrate the performance of our algorithm on problems defined by

Ω = {(x, y) ∈ R2 : x2 + y2 < 1}, f(x, y) = −1 for (x, y) ∈ Ω,

Γc = {(x, y) ∈ Γ : |x| ≤
√

2
2

and y < 0}, g(x, y) =
√

1/2− x2 −
√

2/2− 0.6.

We used the the stopping criterion
∥∥gP (λk)

∥∥ ≤ 10−5, Γ = 1 and α = 0.5‖F‖−1. We started
from λ0 equal to the vector of ones. For solving (1.13), we used for feasibility the criterion
‖Gλk‖ < 10−5, the parameters η = 10−5, β = 102, M = 1 and initiations ρ0 = 102 and µ0 = 0.
The solutions of the coercive (1.12) and semicoercive (1.13) problems discretized by 128 nodes
we obtained after 9 and 45 conjugate gradient iterations, respectively. The solutions are in Fig.
(1.5).

Figure 1.1: Solution of the coercive (1.12) (left) and semicoercive (1.13) (right) problems.

1.6 Comments and conclusions

The boundary element discretization of elliptic boundary variational inequality has been de-
scribed which complies with recently proposed algorithms for bound (and equality) constrained
quadratic programming. If applied to a multidomain problem, our algorithms may also be clas-
sified as a duality based domain decomposition method closely related to FETI [2]. Moreover,
using the technique developed in domain decomposition methods, it is even possible to prove
a kind of optimality results, namely that a system of similar bodies may be solved to a given
relative precision in a number of iterations which is independent of the number of subdomains.
The algorithms may be useful also for the solution of problems that are discretized partly by the
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finite element method and partly by the boundary element method. The algorithm may also be
modified to comply with the BETI methods [8].
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