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Abstract

A variant of the recently proposed Total BETI (TBETI) domain decomposition algo-
rithm for the solution of elliptic multidomain variational inequalities is presented. After
simplified presentation of the BETI method with a natural decomposition for variational
inequalities, we describe the algorithms for the solution of the discretized problem that
combine our semimonotonic augmented Lagrangian method (SMALBE) that can treat ef-
ficiently small number domains with a modification of our MPRGP active set based algo-
rithm that is closely related to the semismooth Newton method. Both theoretical results and
numerical experiments indicate efficiency of the algorithms presented. The algorithm is a
variant of the total BETI (TBETI) algorithm which has been recently proved to be optimal.
Keywords Boundary elements, variational inequality, domain decomposition, quadratic
programming, rate of convergence.

1 Introduction
We are concerned with elliptic boundary variational inequalities such as those describing the
equilibrium of a system of elastic bodies in mutual contact. Such problems are difficult to
solve because their boundary conditions involve the inequalities which make them strongly
non-linear. Since the classical Dirichlet and Neumann boundary conditions are known only
after the solution has been found, the analysis should not rely on the ellipticity of the related
quadratic forms. Translated into the language of mechanics, it follows that any effective solver
of such problems should be able not only to identify an a priori unknown contact interface, but
also to deal with the singular matrices describing the response of “floating” bodies to a given
traction.

The first step in the numerical solution of variational inequalities is their discretization,
which can be based either on the finite element discretization [18] or on the boundary element
discretization [21, 17], each approach having its own merits. For example, our development
of boundary element based methods has been motivated by possible applications in shape opti-
mization, where the finite element method requires remeshing of the interior of the body with
adverse effect on the precision of shape gradients [20].

In this paper we describe application of a variant of the recently proposed TBETI (Total
Boundary Element Tearing and Interconnecting Method) domain decomposition method us-
ing only a natural decomposition which assigns each body to one subdomain. It is easy to
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implement; its specific feature is implementation of the Dirichlet boundary conditions by the
Lagrange multipliers, so that all the stiffness matrices are singular and their kernels can be eas-
ily found. The method was introduced for linear problems independently by Dostál, Horák, and
Kučera [16] as Total FETI (TFETI) method for the problems discretized by the FETI method
and by Of [27] as all floating BETI (AF BETI) method for the problems discretized by the BETI
method. Though the method turned out to be efficient for the linear problems, it seems that it
should be even more efficient for the variational inequalities as it treats the coercive and semico-
ercive problems in the same way and reduces the quadratic programming problems with linear
inequality constraints to those with the bound constraints. The resulting quadratic programming
problem is then solved by a variant of the special quadratic programming algorithms [19, 9] that
were recently used to develop scalable methods for variational inequalities discretized by both
boundary [4] and finite elements [18, 9]. When the dimension of the null space of the dis-
cretized Poncar-́-Steklov operator is small, it turns out that different variants of algorithms and
the choice of parameters are appropriate.

The paper is organized as follows. After describing a model problem, the related varia-
tional inequality is reduced to minimization of the energy functional defined on the boundary
subject to the inequality constraints. The problem is then discretized by the Galerkin method us-
ing the well-known results on representation of the Steklov–Poincaré operator. Using the dual-
ity theory, we finally reduce the problem to a rather well-conditioned, strictly convex quadratic
programming problem with bound and equality constraints, so that our efficient algorithms
[19, 9, 11] may be applied. The unique feature of these algorithms is the rate of convergence
in terms of the spectral condition number of the Hessian of the related quadratic form. Both
theoretical results and numerical experiments indicate that there are problems which may be
solved efficiently by the algorithms presented.

The application of the boundary element methods to boundary variational inequalities
have been studied earlier, e.g., by Spann [31], Dostál, Friedlander, Santos, and Malı́k [17],
and Eck, Steinbach, and Wendland [21], but it seems that no results concerning the rate of
convergence in matrix–vector multiplication have been reported so far.

2 A model problem
To simplify our exposition, we shall reduce our presentation to a simple model boundary vari-
ational inequality defined on two domains, but our analysis remains valid also for related mul-
tidomain problems. After a little modification, our analysis may also be adapted to the solution
of more general multidomain variational inequalities such as those describing an equilibrium of
a system of ellastic bodies in mutual contact.

Let us consider the domains Ω1 =
(
0, 1

2

)×(
0, 1

2

)
and Ω2 =

(1
2 ,1

)×(
0, 1

2

)
with boundaries

Γ1 and Γ2, respectively. Each boundary Γm is further decomposed into three parts Γm
u , Γm

f , and
Γm

c . We distinguish two cases, depending on whether Γ2
u is an empty set or not; see Figure 1a

and Figure 1b. Our goal is to find a sufficiently smooth (u1,u2) satisfying

−4um = f in Ωm, um = 0 on Γm
u ,

∂um

∂n
= 0 on Γm

f , m = 1,2, (1)
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together with the conditions given on Γc = Γ1
c = Γ2

c :

u2−u1 ≥ 0,
∂u2

∂n
≥ 0,

∂u2

∂n
(u2−u1) = 0,

∂u1

∂n
+

∂u2

∂n
= 0. (2)

The function f is defined by

f (x) =





−1 for x ∈ (
0, 1

2

)× [3
8 , 1

2

)
,

−3 for x ∈ (1
2 ,1

)× (
0, 1

8

]
,

0 elsewhere in Ω1∪Ω2

and

f (x) =





−3 for x ∈ (
0, 1

2

)× [3
8 , 1

2

)
,

−1 for x ∈ (1
2 ,1

)× (
0, 1

8

]
,

0 elsewhere in Ω1∪Ω2

for coercive and semicoercive problem, respectively.

Fig. 1a: Coercive model problem. Fig. 1b: Semicoercive model problem.

The solution (u1,u2) of our model problem may be interpreted as a vertical displacement
of two membranes stretched by normalized horizontal forces and pressed down by forces with
the density f . The left membrane Ω1 is fixed on the left edge. In the coercive case the right
membrane Ω2 is fixed on the right edge whereas in the semicoercive case it floats. The left edge
of Ω2 is not allowed to penetrate below the right edge of Ω1. By default, we shall deal with the
coercive and semicoercive case together in what follows.

3 Reduction to the boundary
Let us introduce the standard boundary integral operators, in particular the single layer potential
operator V m, the double layer potential operator Km, the adjoint double layer potential operator
K′m, and the hypersingular integral operator Dm defined for x ∈ Γm by

(V mλm)(x) =
∫

Γm

U(x,y)λm(y) dsy, V m : H−1/2(Γm) 7→ H1/2(Γm),
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(Kmum)(x) =
∫

Γm

∂
∂ny

U(x,y)um(y) dsy, Km : H1/2(Γm) 7→ H1/2(Γm),

(K′mλm)(x) =
∫

Γm

∂
∂nx

U(x,y)λm(y) dsy, K′m : H−1/2(Γm) 7→ H−1/2(Γm),

(Dmum)(x) =− ∂
∂nx

∫

Γm

∂
∂ny

U(x,y)um(y) dsy, Dm : H1/2(Γm) 7→ H−1/2(Γm).

The function U is the so-called fundamental solution of the Laplace equation in R2 given by

U(x,y) =− 1
2π

log‖x− y‖ for x, y ∈ R2.

The fact that
diam Ωm < 1

ensures that the operator V m is H−1/2(Γm)-elliptic, and therefore its inversion is well-defined.
It follows that for x ∈ Γm we can define the Steklov–Poincaré operator Sm by

(Smum)(x) =
[

Dm +
(

1
2

I +K′m
)

(V m)−1
(

1
2

I +Km
)]

um(x), Sm : H1/2(Γm) 7→H−1/2(Γm),

and the Newton potential Nm f by

(Nm f )(x) = (V m)−1 (Nm
0 f )(x),

where
(Nm

0 f )(x) =
∫

Ωm

U(x,y) f (y) dy.

It can be shown that the Steklov–Poincaré operator Sm is bounded and symmetric on H1/2(Γm)
and H1/2(Γm)-semielliptic. Moreover, if the measure of Γm

u is positive, then the operator Sm is
H1/2

0 (Γm,Γm
u )-elliptic. Here,

H1/2
0 (Γm,Γm

u ) =
{

v ∈ H1/2(Γm) : v = 0 on Γm
u

}
.

More details concerning these properties of the Steklov–Poincaré operator may be found, e.g.,
in [33].

Now we can introduce the boundary weak formulation of our model problem (1) and (2):
find (u1,u2) ∈K such that

2

∑
m=1

∫

Γm

(Smum)(x)(vm−um)(x) dsx ≥
2

∑
m=1

∫

Γm

(Nm f )(x)(vm−um)(x) dsx (3)
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for all (v1,v2) ∈K , where

K =
{

(v1,v2) ∈ H1/2
0 (Γ1,Γ1

u)×H1/2
0 (Γ2,Γ2

u) : v2− v1 ≥ 0 on Γc

}
.

It is well-known that problem (3) is equivalent to the following minimization problem

min
(v1,v2)∈K

2

∑
m=1


1

2

∫

Γm

(Smvm)(x)vm(x) dsx−
∫

Γm

(Nm f )(x)vm(x) dsx


 . (4)

In the coercive case, the coercivity of the quadratic functional is ensured by the H1/2
0 (Γ1,Γ1

u)-
ellipticity of S1 and by the H1/2

0 (Γ2,Γ2
u)-ellipticity of S2. In the semicoercive case the problem

is coercive due to ∫

Ω2

f (x) dx < 0.

These observations imply, see, e.g., [25], that our model problem (4) is uniquely solvable in
both the coercive and semicoercive case.

4 Approximation of the Steklov–Poincaré operator and New-
ton potential

Since the Steklov–Poincaré operators Sm and Newton potentials Nm f are given only implicitly,
for the practical computations we have to choose suitable approximations S̃m and Ñm f , e.g., as
introduced in [33]. For vm ∈ H1/2(Γm) we have

(Smvm)(x) = (Dmvm)(x)+(
1
2

I +K′m)wm(x) for x ∈ Γm,

where wm ∈ H−1/2(Γm) is the unique solution of the problem

〈V mwm,τm〉L2(Γm) =
〈

(
1
2

I +Km)vm,τm
〉

L2(Γm)
for all τm ∈ H−1/2(Γm). (5)

Let
Zm

h = span{ψm
k }Nm

k=1 ⊂ H−1/2(Γm)

be a finite-dimensional space of trial functions. Then the Galerkin formulation of (5) reads: find
wm

h ∈ Zm
h such that

〈V mwm
h ,τm

h 〉L2(Γm) =
〈

(
1
2

I +Km)vm,τm
h

〉

L2(Γm)
for all τm

h ∈ Zm
h .

Now we define an approximation of Sm by

(S̃mvm)(x) = (Dmvm)(x)+(
1
2

I +K′m)wm
h (x) for x ∈ Γm.
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Analogously we can derive an approximation of Nm f defined by

(Ñm f )(x) = λm
h (x) for x ∈ Γm,

where λm
h ∈ Zm

h solves uniquely the Galerkin variational problem

〈V mλm
h ,τm

h 〉L2(Γm) = 〈N0 f ,τm
h 〉L2(Γm) for all τm

h ∈ Zm
h .

Thus, instead of (4), we shall consider the problem to find

min
(v1,v2)∈K

2

∑
m=1


1

2

∫

Γm

(S̃mvm)(x)vm(x) dsx−
∫

Γm

(Ñm f )(x)vm(x) dsx


 . (6)

5 Discretized variational inequality
Let

W m
h = span{ϕm

k }Mm

k=1 ⊂ H1/2
0 (Γm,Γm

u )

be a finite-dimensional trial space on the boundary Γm. We shall assume that the corresponding
grids on Γ1 and Γ2 match across Γc. Then the Ritz formulation of (6) reads:

min
(v1

h,v
2
h)∈K h

2

∑
m=1


1

2

∫

Γm

(S̃mvm
h )(x)vm

h (x) dsx−
∫

Γm

(Ñm f )(x)vm
h (x) dsx


 , (7)

where

K h =
{
(v1

h,v
2
h) ∈W 1

h ×W 2
h : v2

h(z
2
j)− v1

h(z
1
i )≥ 0 for all matching nodes z1

i ,z
2
j across Γc

}
.

Problem (7) is further equivalent to

min
(v1,v2)∈K

2

∑
m=1

[
1
2

(
S̃m

h vm,vm)− (
R̃m

h ,vm)]
, (8)

where

K =
{

(v1,v2) ∈ RM1 ×RM2
: v2[ j]− v1[i]≥ 0 for all indices i, j corresponding

to the matching nodes z1
i ,z

2
j across Γc

}
.

Here, S̃m
h ∈ RMm×Mm

is the discrete approximate Steklov–Poincaré operator

S̃m
h = Dm

h +
(

1
2

Mm
h +Km

h

)T

(V m
h )−1

(
1
2

Mm
h +Km

h

)
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and R̃m
h ∈ RMm

is the discrete approximate Newton potential

R̃m
h = (Mm

h )T (V m
h )−1 Nm

0,h.

The boundary element matrices and vector Nm
0,h are given by

V m
h [k, l] =

〈
V mψm

l ,ψm
k

〉
L2(Γm) , V m

h ∈ RNm×Nm
,

Mm
h [l,n] =

〈
ϕm

n ,ψm
l

〉
L2(Γm) , Mm

h ∈ RNm×Mm
,

Km
h [l,n] =

〈
Kmϕm

n ,ψm
l

〉
L2(Γm) , Km

h ∈ RNm×Mm
,

Dm
h [q,n] =

〈
Dmϕm

n ,ϕm
q
〉

L2(Γm) , Dm
h ∈ RMm×Mm

,

Nm
0,h[l] =

〈
Nm

0 f ,ψm
l

〉
L2(Γm) , Nm

0,h ∈ RNm
.

The stiffness matrices V m
h , Km

h , and Dm
h can be evaluated using analytical integration in combi-

nation with numerical integration schemes. All these matrices are dense. In computations we
can exploit the symmetry of V m

h and Dm
h and equations

1
2

Mm

∑
n=1

Mm
h [l,n] =−

Mm

∑
n=1

Km
h [l,n] and

Mm

∑
n=1

Dm
h [q,n] = 0

for l = 1, . . . ,Nm, q = 1, . . . ,Mm.
For evaluation of the vector Nm

0,h it is necessary to compute the Newton potential Nm
0 f .

This can be done, e.g., by an indirect approach using the finite element method, as introduced
in [32, 33].

Now let us denote

v =
[

v1

v2

]
,

and let us describe the non-interpenetration condition across the interface Γc by the inequality
constraints

BIv≤ 0.

Each row of the matrix BI is associated with a pair of matching nodes on Γc; it has 1 and −1 in
the appropriate positions and zeros elsewhere. Following the recently proposed TFETI domain
decomposition method [16, 27], we can enforce also the homogeneous Dirichlet conditions on
Γ1

u and Γ2
u by the equality constraints

BEv = 0.

This approach is motivated here by an effort to treat all the subdomains in the same way and to
enrich the kernel of the stiffness matrix which we shall use in construction of our preconditioner.
As a result, we shall consider also the trial functions ϕm

k that are nonzero on Γm
u . The rows of

the matrix BE are associated with the nodes on Γ1
u∪Γ2

u; their entries are equal to zero except the
unique 1 in the position corresponding to the node with prescribed zero displacement.

Now we can reformulate problem (8) as

min
v∈RM1+M2

[
1
2

vTS̃v− R̃Tv
]

subject to BIv≤ 0 and BEv = 0, (9)
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where
S̃ = diag

(
S̃1

h, S̃
2
h
)

is the the block diagonal matrix and

R̃ =

[
R̃1

h

R̃2
h

]
.

6 Dual formulation
Now we shall eliminate the primal variables using the duality theory in order to improve the
conditioning and simplify the structure of our problem. In particular, this step shall replace the
general inequality constraints in the primal formulation (9) by the bound constraints in the dual
formulation. First, the matrices S̃m

h are positive semidefinite due to the lack of the Dirichlet
boundary conditions, and therefore they are singular. Let us denote by S̃m,+ any symmetric
matrix that satisfies

S̃m
h = S̃m

h S̃m,+S̃m
h ,

so that the matrix S̃+ = diag(S̃1,+, S̃2,+) satisfies

S̃ = S̃S̃+S̃.

Let us also denote by R a matrix whose columns span the null space of S̃. Matrix R may be
formed so that it has two columns; each domain being associated with a column of R with ones
in the positions corresponding to the indices of the nodes belonging to the domain and zeros
elsewhere. By introducing the Lagrange multipliers λI and λE associated with the inequalities
and equalities, respectively, and denoting

λ =
[

λI
λE

]
and B =

[
BI
BE

]
,

we may equivalently replace problem (9) by

min
[

1
2

λTFλ−λTd̃
]

subject to λI ≥ 0 and G̃λ = ẽ (10)

with
F = BS̃+BT, d̃ = BS̃+R̃, G̃ = RTBT, ẽ = RTR̃.

Once the solution λ of (10) is known, the solution v of (9) may be evaluated by

v = S̃+(R̃−BTλ)+Rα

and the formula
α =−(RTB̃TB̃R)−1RTB̃TB̃S̃+(R̃−BTλ),

where B̃ =
[
B̃T

I , BT
E
]T, and the matrix B̃I is formed by the rows of BI corresponding to the

positive entries of λI . The procedure is similar to that described in [18].
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7 Natural coarse grid
Even though problem (10) is much more suitable for computations than (9), further improve-
ment may be achieved. As we shall give only a sketch here, we note that the details may be
found, e.g., in [14].
Let us introduce a regular matrix T defining orthonormalization of the rows of G̃ so that the
matrix

G = T G̃

has orthonormal rows. After denoting
e = T ẽ,

problem (10) reads

min
[

1
2

λTFλ−λTd̃
]

subject to λI ≥ 0 and Gλ = e. (11)

Our next step is to look for the solution of (11) in the form λ = µ+ λ̃, where Gλ̃ = e. Since

1
2

λTFλ−λTd̃ =
1
2

µTFµ−µT(d̃−F λ̃)+
1
2

λ̃TF λ̃− λ̃Td̃,

problem (11) is, after returning to the old notation, equivalent to

min
[

1
2

λTFλ−λTd
]

subject to λI ≥−λ̃I and Gλ = 0 (12)

with d = d̃−F λ̃.
We can further observe that problem (12) is equivalent to the problem

min
[

1
2

λTPFPλ−λTPd
]

subject to λI ≥−λ̃I and Gλ = 0, (13)

where
P = I−Q and Q = GTG

denote the orthogonal projectors on the kernel of G and on the image space of GT, respectively.
The projectors P and Q define the so-called natural coarse grid.
Finally, we introduce an augmented Lagrangian associated with problem (13)

L(λ,µ,ρ) =
1
2

λT(PFP+ρQ)λ−λTPd +µTGλ. (14)

Let us note that if [a,b] is an interval containing nonzero elements of the spectrum σ{PFP} of
PFP, 0 < a, then σ{PFP+ρQ} ⊆ [a,b]∪{ρ}, so that PFP + ρQ is nonsingular, and the rate
of convergence of the conjugate gradient method applied to the linear problem with the matrix
PFP+ρQ is independent of the penalization [8].
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8 Algorithms
We shall now briefly review our algorithms for the solution of the bound and equality con-
strained problem (13). They combine our semimonotonic augmented Lagrangian method [9]
which generates approximations for the Lagrange multipliers for the equality constraints in the
outer loop with the working set algorithm for the bound constrained auxiliary problems in the
inner loop [19]. The gradient of the augmented Lagrangian (14) is given by

g(λ,µ,ρ) = PFPλ−Pd +GT (µ+ρGλ) .

Let I denote the set of the indices of the bound constrained entries of λ. The projected gradient
gP = gP(λ,µ,ρ) of L at λ is then given componentwise by

gP
i =

{
gi for λi >−λ̃i or i /∈ I ,

g−i for λi =−λ̃i and i ∈ I ,

where g−i = min{gi,0}. Our algorithm is a variant of that proposed by Conn, Gould, and Toint
[5] for identifying stationary points of more general problems. Its modification by Dostál,
Friedlander and Santos [13] was used by Dostál and Horák to develop a scalable FETI based
algorithm, as shown experimentally in [14]. All the necessary parameters are listed in Step 0,
and typical values of these parameters for our model problem are given in brackets.

Algorithm 1. Semi-monotonic augmented Lagrangian method for bound and equality con-
strained problems (SMALBE).
Step 0. {Initialization of parameters}

Given η > 0 [η = ‖Pd‖], β > 1 [β = 10], M > 0 [M = 1],
ρ0 > 0 [ρ0 = 100], and µ0 [µ0 = 0], set k = 0.

Step 1. {Inner iteration with adaptive precision control.}
Find λk such that λk

I ≥−λ̃I and∥∥gP(λk,µk,ρk)
∥∥≤min{M

∥∥Gλk
∥∥ ,η}.

Step 2. {Stopping criterion.}
If

∥∥gP(λk,µk,ρk)
∥∥ and

∥∥Gλk
∥∥ are sufficiently small, then

λk is the solution.
Step 3. {Update of the Lagrange multipliers.}

µk+1 = µk +ρkGλk

Step 4. {Update the penalty parameter.}
If k > 0 and L(λk,µk,ρk) < L(λk−1,µk−1,ρk−1)+ ρk

2

∥∥Gλk
∥∥2, then

ρk+1 = βρk,
else

ρk+1 = ρk.
Step 5. Increase k and return to Step 1.
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Step 1 may be implemented by any algorithm for minimization of the augmented Lagrangian L
with respect to λ subject to λI ≥−λ̃I which guarantees convergence of the projected gradient to
zero. More about the properties and implementation of the SMALBE algorithm may be found
in [9].

The unique feature of the SMALBE algorithm is its capability to find an approximate
solution of problem (13) in a number of steps which is bounded in terms of bounds on the
spectrum of PFP + ρ0Q [9]. To get a bound on the number of matrix multiplication, it is
necessary to have algorithm which can solve the problem

min L(λ,µ,ρ) subject to λI ≥−λ̃I (15)

with the rate of convergence in terms of the bounds on the spectrum of the Hessian matrix of L.
When the dimension of the null space of S̃ is small (it is one in our model problem), then it is
possible to use larger regularization parameter ρ0 as this causes only small increase in the rate
of convergence of the conjugate gradient iterations [8].

To describe such algorithm, let us recall that the unique solution λ = λ(µ,ρ) of (15) satis-
fies the Karush-Kuhn-Tucker (KKT) conditions

λi =−λ̃i and i ∈ I implies gi(λ)≥ 0

and
λi >−λ̃i or i /∈ I implies gi(λ) = 0.

Let A(λ) and F (λ) denote the active set and free set of indices of λ, respectively, i.e.,

A(λ) = {i ∈ I : λi =−λ̃i} and F (λ) = {i : λi >−λ̃i or i /∈ I}.
To enable an alternative reference to the KKT conditions [2], let us define the free gradient ϕ(λ)
and the chopped gradient β(λ) by

ϕi(λ) =
{

gi(λ) for i ∈ F (λ),
0 for i ∈ A(λ), and βi(λ) =

{
0 for i ∈ F (λ),
g−i (λ) for i ∈ A(λ),

so that the KKT conditions are satisfied if and only if the projected gradient gP(λ) = ϕ(λ)+
β(λ) is equal to zero. We call λ feasible if λi ≥ −λ̃i for i ∈ I . The projector P to the set of
feasible vectors is defined for any λ by

P(λ)i = max{λi,−λ̃i} for i ∈ I , P(λ)i = λi for i /∈ I .

Let A denote the Hessian of L with respect to λ. The expansion step is defined by

λk+1 = P
(

λk−αϕ(λk)
)

with the steplength α ∈ (0,‖A‖−1]. This step may expand the current active set. To describe it
without P, let ϕ̃(λ) be the reduced free gradient for any feasible λ, with entries

ϕ̃i = ϕ̃i(λ) = min

{
λi + λ̃i

α
,ϕi

}
for i ∈ I , ϕ̃i = ϕi for i /∈ I
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such that
P(λ−αϕ(λ)) = λ−αϕ̃(λ).

If the inequality ∥∥∥β(λk)
∥∥∥

2
≤ Γ2ϕ̃(λk)Tϕ(λk) (16)

holds, then we call the iterate λk strictly proportional. The test (16) is used to decide which
component of the projected gradient gP(λk) will be reduced in the next step.

The proportioning step is defined by

λk+1 = λk−αcgβ(λk).

The steplength αcg is chosen to minimize L(λk−αβ(λk),µk,ρk) with respect to α, i.e.,

αcg =
β(λk)Tg(λk)

β(λk)TAβ(λk)
.

The purpose of the proportioning step is to remove indices from the active set.
The conjugate gradient step is defined by

λk+1 = λk−αcg pk,

where pk is the conjugate gradient direction [1] which is constructed recurrently. The recur-
rence starts (or restarts) with ps = ϕ(λs) whenever λs is generated by the expansion step or the
proportioning step. If pk is known, then pk+1 is given by the formulae [1]

pk+1 = ϕ(λk+1)− γpk, γ =
ϕ(λk+1)TApk

(pk)TApk .

The conjugate gradient steps are used to carry out the minimization in the face WJ = {λ : λi =
−λ̃i for i ∈ J } given by J = A(λs) efficiently. The algorithm that we use may now be described
as follows.

Algorithm 2. Modified proportioning with reduced gradient projections (MPRGP).
Let λ0 be a vector such that λ0

i ≥−λ̃i for i ∈ I , α ∈ (0,2‖A‖−1], and Γ > 0 be given. For k≥ 0
and λk known, choose λk+1 by the following rules:
Step 1. If gP(λk) = 0, then set λk+1 = λk.
Step 2. If λk is strictly proportional and gP(λk) 6= 0, then try to generate λk+1 by the conjugate
gradient step. If λk+1

i ≥−λ̃i for i ∈ I , then accept it, else generate λk+1 by the expansion step.
Step 3. If λk is not strictly proportional, define λk+1 by proportioning.

The MPRGP algorithm has an R-linear rate of convergence in terms of the spectral condition
number of the Hessian A of L [19, 12]. If the inner loop of SMALBE is implemented with
MPRGP, then there it is possible to get an upper bound on the number of iterations that are
necessary to achieve the prescribed relative precision [19, 10]. More about the properties and
implementation of the SMALBE algorithm may be found in [19, 10].
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9 Numerical experiments
In this section we shall present the performance of the above-described SMALBE algorithm
with the inner loop implemented by a modification of MPRGP called Monotonic MPRGP to
the solution of our model problems. If applied to the minimization of L(λ,µ,ρ) with respect to
λ subject to λI ≥ λ̃I , the Monotonic MPRGP differs from the standard MPRGP in the second
step which then reads:

Step 2. If P(λk) is strictly proportional and gP
(
P(λk)

) 6= 0, then try to generate λk+1 by the
conjugate gradient step. If L

(
P(λk+1),µ,ρ

)≤ L
(
P(λk),µ,ρ

)
, then accept it, else generate λk+1

by the expansion step.

Our modification of MPRGP is closely related to the semismooth Newton methods [24]. See
also Dostál [11, 7]. If the number of consecutive unfeasible iterations is bounded, then the
algorithm preserves its linear rate of convergence bounded in terms of bounds of the Hessian
matrix of the cost function. We implemented our algorithms in Matlab.

The both domain boundaries Γm were discretized by the same regular grid with the mesh
size h. The spaces W m

h and Zm
h were formed by the piecewise linear and constant trial functions

with respect to the discretization, respectively.
For the SMALBE algorithm we used parameters η = ‖Pd‖, β = 10, and M = 1. The

penalty parameter ρ0 and the Lagrange multipliers µ0 for the equality constraints were set to
‖PFP‖ and 0, respectively. For the MPRGP algorithm we used parameters α = ‖PFP+ρkQ‖−1

and Γ = 1. Our initial approximation λ0 was set to max{−λ̃, 0.5BR̃}. The stopping criterion of
the outer loop was chosen as

∥∥∥gP(λk,µk,ρk)
∥∥∥≤ 10−4 ‖Pd‖ and

∥∥∥Gλk
∥∥∥≤ 10−4 ‖Pd‖ .

We use a variant of MPRGP which continues the conjugate gradient iterations as long as
The numbers of the outer iterations and the conjugate gradient iterations for varying mesh

size h are shown in Table 1a and Table 1b. The solutions for h = 1/256 are shown in Figure 2a
and Figure 2b.

h primal dimension dual dimension outer iterations CG iterations
1/32 256 99 4 25
1/64 512 195 4 35

1/128 1024 387 4 49
1/256 2048 771 4 70

Table 1a: Performance for varying discretization (coercive problem).

h primal dimension dual dimension outer iterations CG iterations
1/32 256 66 2 19
1/64 512 130 3 36

1/128 1024 258 2 32
1/256 2048 514 2 43
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Table 1b: Performance for varying discretization (semicoercive problem).
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Fig. 2a: Solution of coercive problem. Fig. 2b: Solution of semicoercive problem.

In both cases, the number of iterations can be essentially reduced by using the BETI do-
main decomposition method of Langer and Steinbach [26] adapted to the solution of variational
inequalities. We shall discuss this point elsewhere.

10 Comments and conclusions
The boundary element discretization of elliptic boundary variational inequality has been de-
scribed which complies with recently proposed algorithms for bound (and equality) constrained
quadratic programming. If applied to a multidomain problem, our algorithms may also be clas-
sified as a duality based domain decomposition method closely related to FETI [18]. Moreover,
using the technique developed in domain decomposition methods [26, 4], it is even possible to
prove a kind of optimality results, namely that a system of similar bodies may be solved to a
given relative precision in a number of iterations which is independent of the number of sub-
domains. The algorithms may be useful also for the solution of problems that are discretized
partly by the finite element method and partly by the boundary element method. The algorithm
is a variant of our scalable BETI algorithm for the solution of elliptic variational inequalities
[4]. The algorithm treats each domain separately and is suitable for parallel implementation.
Application to the contact problems of elasticity is straightforward. We shall give the details
elsewhere.
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