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Abstract

By combining FETI algorithms of dual-primal type with recent results for bound
constrained quadratic programming problems, we develop an optimal algorithm for the
numerical solution of coercive variational inequalities. The model problem is discretized
using non-penetration conditions of mortar type across the potential contact interface,
and a FETI–DP algorithm is formulated. The resulting quadratic programming prob-
lem with bound constraints is solved by a scalable algorithm with a known rate of
convergence given in terms of the spectral condition number of the quadratic problem.
Numerical experiments for non–matching meshes across the contact interface confirm
the theoretical scalability of the algorithm.
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1 Introduction

Finite Element Tearing and Interconnecting (FETI)–based domain decomposition methods
are efficient tools for the numerical solution of complex engineering problems. The FETI
method was originally proposed by Farhat and Roux [23] as a parallel solver for problems
described by elliptic partial differential equations. Later, Farhat, Mandel, and Roux [22]
modified the basic FETI method by introducing so-called natural coarse grid projections
to obtain a numerically scalable algorithm. The performance of the algorithm was further
enhanced by using preconditioners [28, 37] with improved scaling properties. By projecting
the Lagrange multipliers in each iteration onto an auxiliary space to enforce continuity of the
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primal solutions at the crosspoints, Farhat, Mandel and Tezaur [35] obtained a faster con-
verging FETI method for plate and shell problems. FETI algorithms were also implemented
for, e.g., Helmholtz problems [21, 24], linear elasticity with inexact solvers [27], Maxwell’s
equations [36, 44], and Stokes problems [26, 32, 46].

The key ingredient of the FETI method is the decomposition of the computational do-
main into non-overlapping subdomains that are “glued” by Lagrange multipliers. The primal
variables are eliminated by solving possibly singular local problems. The original problem
reduces to a small, relatively well conditioned, typically equality constrained quadratic pro-
gramming problem that is solved iteratively. If the procedure is applied to the discretized
variational inequality describing the equilibrium of a system of elastic bodies in contact, not
only the dimension of the problem is reduced, but also the original inequality constraints
describing the non-penetration of the bodies reduce to the bound constraints. The resulting
problem can be solved efficiently either by direct iterations [19] or by specialized quadratic
programming methods [7, 8, 9]. Numerical experiments with these algorithms indicated their
numerical scalability. Recently, using new results on the rate of convergence of improved
versions [6, 13] of the active set based proportioning algorithm [5], numerical scalability was
proved for two variants of this algorithm by Dostál and Horák [10, 11, 12].

The Dual-Primal FETI method (FETI–DP) is a variant of the FETI method which
does not require solving singular problems to eliminate the primal variables. The FETI–DP
method was introduced by Farhat et al. [20]; see also [16]. For two dimensional scalar
problems, the continuity of the primal solution at crosspoints is implemented directly into
the formulation of the primal problem so that one degree of freedom is considered at each
crosspoint shared by more than two adjacent subdomains. The continuity of the primal
variables across the rest of the subdomain interfaces is once again enforced by Lagrange
multipliers. After eliminating the primal variables, the problem reduces to a small, un-
constrained, strictly convex quadratic programming problem that is solved iteratively. An
attractive feature of FETI–DP is that the resulting quadratic programming problem is un-
constrained and its conditioning may be further improved by preconditioning [34]. Farhat
et al. [1, 19, 45] introduced a FETI–DP based algorithm, FETI–C, for solving contact prob-
lems arising in structural mechanics. This method is based on Newton type iterations, and
its scalability was established experimentally. The FETI–DP method was recently com-
bined by the present authors [14, 15] with the aforementioned results on the solution of the
bound constrained quadratic programming problems to develop a scalable algorithm for the
solution of both coercive and semicoercive contact problems.

In many practical applications, such as the contact shape optimization and the tran-
sient problems, it is difficult and computationally expensive to generate matching meshes
on the contact interface. A natural way to implement the non–penetration conditions on
potentially non–matching contact interfaces is by using constraints of mortar type. The mor-
tar finite element methods are non-conforming finite elements first introduced by Bernardi,
Maday, and Patera in [3]. Biorthogonal mortar elements with slightly better computational
properties were later developed by Wohlmuth [47, 49]. Mortars are well suited for parallel
computing and have several advantages over conforming finite elements. For example, mesh
generation is more flexible and can be made quite simple on individual subregions and lo-
cal refinement of finite element models using mortar methods is straightforward. A large
number of domain decomposition methods have been extended to mortar discretizations in
order to take advantage of the inherent flexibility of the mortars. For example, it was shown
both numerically and theoretically that the FETI and FETI–DP methods for mortar finite
elements perform similarly to the case of conforming finite elements; cf. [18, 31, 36, 40, 41].

In this paper, we develop a scalable algorithm of FETI–DP type for solving a coercive
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variational inequality obtained by discretizing a model contact problem by using an efficient
implementation of mortar methods. The FETI–DP methodology is first applied to the
discretized elliptic variational inequality to obtain a strictly convex quadratic programming
problem with non-negativity constraints. This problem is then solved efficiently by recently
proposed improvements [6, 13] of the active set based proportioning algorithm [5]. The
rate of convergence of these algorithms can be bounded in terms of the spectral condition
number of the Hessian of the quadratic problem. The scalability of the resulting algorithm
can therefore be established provided that suitable bounds on the condition number of the
Hessian exist. We present such estimates in terms of the decomposition parameter H and
the discretization parameter h. We also obtain a bound on the number of conjugate gradient
iterations required for finding the solution of the discretized variational inequality to a given
precision. If the rows of the discretized constraint matrix is are normalized and if we keep
the ratio H/h fixed, it is proved that this bound is independent of both the decomposition
of the computational domain and the discretization. Let us recall that the normalization
is not required when the non-penetration is implemented by nodal constraints [14]. We
report numerical results that are in agreement with the theory and confirm the numerical
scalability of our algorithm.

We note that the effort to develop scalable solvers for variational inequalities is not
limited to FETI–type methods. For example, multigrid ideas were used early on by Mandel
[33]. Kornhuber, Krause and Wohlmuth [29, 30, 48] introduced an algorithm based on
monotone multigrid with scalable solution of auxiliary linear problems. Combining multigrid
ideas and approximate projections, Schöberl [38, 39] introduced an algorithm for which linear
complexity was established.

The rest of the paper is structured as follows. The model problem introduced in Sec-
tion 2 is discretized using mortars in the subsequent section. A FETI–DP type algorithm
is presented in Section 4 and spectral bounds on the resulting operator are established in
Section 5. The solution to our FETI–DP method is obtained by a modified proportioning
algorithm with reduced gradient projections, as presented in Section 6. Numerical results
confirming the scalability of our algorithm are reported in Section 7.

2 Model problem

The computational domain for our model problem is Ω = Ω1∪Ω2, where Ω1 = (0, 1)× (0, 1)
and Ω2 = (1, 2)× (0, 1), with boundaries Γ1 and Γ2, respectively. We denote by Γi

u, Γi
f , and

Γi
c the fixed, free, and potential contact parts of Γi, i = 1, 2; see Figure 1a. Let Γc = Γ1

c∪Γ2
c .

The Sobolev space of the first order on Ωi is denoted by H1(Ωi) and the space of
Lebesgue square integrable functions is denoted by L2(Ωi). Let V = V 1 × V 2, with

V i =
{
vi ∈ H1(Ωi) : vi = 0 on Γi

u

}
, i = 1, 2.

Let K ⊂ V be a closed convex subset of H = H1(Ω1)×H1(Ω2) defined by

K =
{
(v1, v2) ∈ V : v2 − v1 ≥ 0 on Γc

}
.

We define the symmetric bilinear form a(·, ·) : H×H → R by

a(u, v) =
2∑

i=1

∫

Ωi

(
∂ui

∂x1

∂vi

∂x1
+

∂ui

∂x2

∂vi

∂x2

)
dΩ.
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Let f ∈ L2(Ω) be a given function and f i ∈ L2(Ωi), i = 1, 2, be the restrictions of f to Ωi,
i = 1, 2. We define the linear form l(·) : H → R by

`(v) =
2∑

i=1

∫

Ωi

f ividΩ

and consider the following problem:

Find min
1
2
a(u, u)− `(u) subject to u ∈ K. (1)

0.25
0.25

0.75

0.75

11

−1
−3

Ω

2Ω

1

f

Γ Γ Γ Γ
1 1

fu c f
2

Γ u
2

Figure 1a: Coercive model problem Figure 1b: Decomposition of domains

The solution of the model problem may be interpreted as the displacement of two
membranes under the traction f . The membranes are fixed on the outer edges as in Figure
1a and the left edge of the membrane Ω2 is not allowed to penetrate below the right edge of
the membrane Ω1. Note that Γi

u, the parts of ∂Ωi, i = 1, 2, where Dirichlet conditions are
prescribed, have positive Lebesgue measure. Thus, the quadratic form a(·, ·) is coercive and
the solution of problem (1) exists and is unique; cf. [25].

3 A mortar finite element discretization

Mortar finite elements are nonconforming finite elements that allow for a nonconforming
decomposition of the computational domain into subdomains with nonmatching grids across
the partition interface, and, at the same time, for the optimal coupling of different variational
approximations in different subregions. Here, by optimality we mean that the global error is
bounded by the sum of the local approximation errors on each subregion. The most general
such partition for our model problem would consist of introducing mortar spaces on both Ω1

and Ω2, by partitioning these domains into nonoverlapping rectangular subdomains. For the
FETI–DP type algorithms considered here, the partitions would need to be geometrically
conforming, i.e, the intersection between the closures of any two rectangular subdomains
should be either empty, or consist of a vertex or of an entire edge, and the mortars would
need to be of the first type, i.e., continuous at the corner nodes; see [17, 18, 42]. Weak
continuity would be enforced by way of orthogonality of the jump of the mortar functions
across the interfaces of the mortar partitions within Ω1 and Ω2, respectively. This would be
done using so–called mortar conditions. Across the potential contact boundary Γc, the non–
penetration condition would also be replaced by inequalities related to mortar conditions.
More details on mortar conditions follow shortly in this section.

However, for a contact problem like our model problem (1), the most efficient algorithms
only require mortar conditions across the contact interface, while the bodies in contact
may be discretized using continuous finite elements; see [43] for a detailed study of the
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computational complexity and numerical performance of FETI–type algorithms for mortar
methods. We are going to use this type of discretization throughout the paper.

The discrete space W is therefore constructed as follows: Each domain Ωi, i = 1, 2,
is partitioned on a rectangular grid into subdomains of diameter on the order of H. The
restrictions of W to Ω1 and Ω2 are Q1 finite element spaces of comparable mesh sizes of order
h, corresponding to the subdomain grids in Ω1 and Ω2. Note that the subdomain grids do
not necessarily match across the potential contact interface Γc. We call a crosspoint either a
corner that belongs to four subdomains, or a corner that belongs to two subdomains and is
located on ∂Ω1 \Γ1

u or on ∂Ω2 \Γ2
u. The nodes corresponding to the end points of Γc are not

crosspoints; see Figure 1b. An important feature for developing FETI–DP type algorithms
is that a single global degree of freedom is considered at each crosspoint, while two degrees
of freedom are introduced at all the other matching nodes across subdomain edges.

Let v ∈ W . The continuity of v in Ω1 and Ω2 is enforced at every interface node that
is not a crosspoint. For simplicity, we also denote by v the nodal values vector of v ∈ W . In
matrix notation, the continuity conditions can be written as

BEv = 0,

where each row of the matrix BE enforces continuity at one node on the subdomain interface
where multiple degrees of freedom were considered. Thus, each row of BE has only two
nonzero entries, equal to 1 and −1, respectively.

The continuity of v at crosspoints is enforced by using a global vector of degrees of
freedom vg

c and a global-to-local map Lc with one nonzero entry equal to 1 in each row.
Thus, if vc is the vector of crosspoint nodal values of v, we require that vc = Lcv

g
c .

Across the potential contact interface Γc, the meshes on Γ1
c and Γ2

c need not match.
The non–penetration condition [v] = v1−v2 ≤ 0 is replaced by mortar conditions as follows:
We call nonmortar sides all the sides on Γ1

c , while the sides on Γ2
c are called mortar sides.

For each nonmortar side γ, we require the non–penetration conditions
∫

γ

[v] ψ ds ≤ 0, ∀ ψ ∈ Ψ(γ), (2)

where Ψ(γ) is a space of test functions having the same dimension as the number of interior
nodes on γ. For details on the special choice of discontinuous test functions corresponding
to the biorthogonal mortars used in the numerical experiments from Section 7, we refer the
reader to [49]. From a theoretical point of view, the nonmortar sides could have been chosen
on Γ2

c as well, which would have rendered the sides on Γ1
c mortar sides. The effect of different

choices of nonmortar sides on the numerical performance of our method is investigated in
Section 7.

For algorithmic purposes, we derive a matrix formulation for the non–penetration mor-
tar conditions (2). Let v1

γ be the vector of the nodal values of v on γ ⊂ Γ1
c and let v2

γ be the
vector of those nodal values of v on Γ2

c that are opposite γ. The matrix formulation of (2) is

Mγv1
γ − Nγv2

γ ≤ 0. (3)

Let B#
γ = [0 Mγ 0 −Nγ ]. Since the mortar conditions (2) are only related to interior

nodes on the nonmortar edges, two extra conditions are necessary to enforce non–penetration
at nodes corresponding to the endpoints of Γc. All these inequality constraints can be written
in matrix formulation as

B#
I v ≤ 0, (4)
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where B#
I has one horizontal block B#

γ corresponding to (2) for each nonmortar side γ, and
two more rows for the non–penetration conditions at the endpoints of Γc. Note that the
norm of each row in B#

γ is on the order of the mesh size on γ, hγ ≈ h, while every row of
BE has norm of order 1.

Let Bγ be obtained from B#
γ by normalizing every row of B#

γ . Also, let BI be the
matrix having one block Bγ for each nonmortar γ, together with the two extra rows as
before. By construction, the matrix formulation (4) of the non–penetration conditions is
equivalent to

BIv ≤ 0. (5)

We show theoretically in Section 5 and experimentally in Section 7 that the FETI–DP
algorithm proposed here is scalable, if normalized non-penetration conditions of the form
(5) are used, and is not scalable, if non-normalized conditions of the form (4) are enforced.

The discretized version of problem (1) with the auxiliary domain decomposition has the
form

min
1
2
vT Kv − vT f subject to BIv ≤ 0 and BEv = 0, (6)

where K is the positive definite stiffness matrix corresponding to the model problem and f
represents the discrete analog of the linear form `(·).

4 A FETI–DP method with mortar non–penetration
conditions

To solve (6), we propose a variant of the algorithm introduced in [14]. The main difference is
the use of mortar non–penetration conditions. Also, global degrees of freedom are considered
for the corner nodes on Γc.

We partition the nodal values of v ∈ W into crosspoint nodal values, denoted by vc, and
remainder nodal values, denoted by vr. Recall that the continuity conditions at crosspoints,
i.e., at subdomain corners, are enforced by using a global vector of degrees of freedom vg

c

such that vc = Lcv
g
c . Therefore,

v =
[

vr

vc

]
=

[
vr

Lcv
g
c

]
.

Problem (6) can be written as a constrained minimization problem as follows:

min
1
2
vT Kv − vT f subject to BIv ≤ 0, BEv = 0, and vc = Lcv

g
c . (7)

Let fc and fr be the parts of the right hand side f corresponding to crosspoints and remainder
nodes, respectively. The Lagrangian associated with problem (7) can be expressed using
Lagrange multipliers λE and λI to enforce the inequality and redundancy constraints as
follows:

L(vr, v
g
c , λE , λI) =

1
2

[vT
r (Lcv

g
c )T ] K

[
vr

Lcv
g
c

]
− [vT

r (Lcv
g
c )T ]

[
fr

fc

]

+ vT BT
EλE + vT BT

I λI . (8)

Let BI,r and BI,c be the matrices made of the columns of BI corresponding to vr and vc,
respectively; define BE,r and BE,c similarly. Then BI = [BI,r BI,c] and BE = [BE,r BE,c].
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We can also group the parts of the Lagrange multiplier matrices BI and BE together with
respect to the corner and remainder nodes as follows:

Br =
[

BI,r

BE,r

]
and Bc =

[
BI,c

BE,c

]
.

The corner nodes on Γ1
c (with the exception for the end points of Γc) belong to two subdo-

mains. We associate one global degree of freedom to each such corner. A similar procedure
is applied to the corner nodes on Γ2

c . This represents a natural departure from the algorithm
suggested in [14]. As a result, BI,c becomes a nonzero matrix. Since the equality constraints
are not related to crosspoints, BE,c = 0, as in the conforming finite element case. Let

λ =
[

λI

λE

]
.

Note that [
BI

BE

]
=

[
BI,r BI,c

BE,r BE,c

]
= [Br Bc] .

Then
vT BT

EλE + vT BT
I λI = vT

r BT
r λ + (vg

c )T LT
c BT

c λ.

Let Krr, Krc, and Kcc be the blocks of K corresponding to the decomposition of v into
vr and vc. To minimize L(vr, v

g
c , λE , λI) over vr, we rewrite (8) as

L(vr, v
g
c , λE , λI) =

1
2

(
vT

r Krrvr + 2vT
r KrcLcv

g
c + (vg

c )T LT
c KccLcv

g
c

)

− vT
r fr − (vg

c )T LT
c fc + vT

r BT
r λ + (vg

c )T LT
c BT

c λ

and obtain that vr is a solution of

Krrvr + KrcLcv
g
c − fr + BT

r λ = 0.

Note that Krr is a positive definite submatrix of K since each subdomain has at least one
corner node. We end up with the following Lagrangian to minimize over vg

c :

Lc(vg
c , λE , λI) =

1
2
(vg

c )T LT
c KccLcv

g
c − (vg

c )T LT
c fc + (vg

c )T LT
c BT

c λ

− 1
2

(
fr −KrcLcv

g
c −BT

r λ
)T

K−1
rr

(
fr −KrcLcv

g
c −BT

r λ
)

=
1
2
(vg

c )T K∗
ccv

g
c − (vg

c )T
(
F̃T

Irc
λ + f∗c

)

− 1
2

(
fr −BT

r λ
)T

K−1
rr

(
fr −BT

r λ
)
,

where we used the following notations related to those from [20]:

FIrr = BrK
−1
rr BT

r ;

F̃Irc = BrK
−1
rr KrcLc − BcLc;

K∗
cc = LT

c (Kcc −KT
rcK

−1
rr Krc)Lc;

f∗c = LT
c (fc −KT

rcK
−1
rr fr).

The solution to the minimization of Lc(vg
c , λE , λI) over vg

c must satisfy

K∗
ccv

g
c − F̃T

Irc
λ − f∗c = 0.
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This problem is solvable since, for a coercive problem, K∗
cc is a positive definite matrix. The

corresponding minimal value of Lc(vg
c , λE , λI) is

Lλ(λE , λI) =
1
2

(
f∗c + F̃T

Irc
λ
)T

(K∗
cc)

−1
(
f∗c + F̃T

Irc
λ
)
− 1

2
(
fr −BT

r λ
)T

K−1
rr

(
fr −BT

r λ
)
.

Thus, maximizing Lλ over λI ≥ 0 is equivalent to finding

min
λI≥0

Θ(λ), (9)

where
Θ(λ) =

1
2
λT Fλ− λT b (10)

with

F = FIrr + F̃Irc(K
∗
cc)

−1F̃T
Irc

; (11)

b = F̃Irc
(K∗

cc)
−1f∗c −BrK

−1
rr fr.

5 Bounds on the spectrum of F

In this section, we derive bounds on the spectrum of F that will be used in the following
section for the convergence analysis of the modified proportioning algorithm required to
solve the bound constrained quadratic problem (9).

Let B = [Br 0] and let K be the stiffness matrix corresponding to the model problem
on a finite element discretization where continuity is required at the corners but no other
continuity is required across the subdomain edges. From inverse inequalities and Poincaré’s
inequality, it follows that

C

H2
||w||2L2(Ω) ≤ 〈Kw, w〉 ≤ C

h2
||w||2L2(Ω), ∀w ∈ W, (12)

where 〈·, ·〉 is the notation for the Euclidean inner product. Here and throughout the paper,
C is a generic constant independent of h, H, and the number of subdomains in the partitions
of Ω1 and Ω2.

Note that F = B K
−1

B
T

and therefore we find as in Lemma 4.3 of [34] that

〈Fλ, λ〉 = sup
w∈W

〈BT
λ,w〉2

〈Kw,w〉 . (13)

Let ||w||l2 and ||λ||l2 be the Euclidean norms of the primal and dual variables w and λ,
respectively. Since w is a finite element function,

||w||2L2(Ω) ≈ h2||w||2l2 . (14)

For w = B
T
λ in (14),

||BT
λ||2L2(Ω) ≈ h2||BT

λ||2l2 . (15)

From (12), (13), and (14), we find that

〈Fλ, λ〉 ≤ CH2 sup
w∈W

〈BT
λ,w〉2

||w||2L2(Ω)

≤ CH2||BT
λ||2l2 sup

w∈W

||w||2l2
||w||2L2(Ω)

≤ C

(
H

h

)2

||BT
λ||2l2 .

8



Let w0 = B
T
λ. From (12) and (13), and using (15), it follows that

〈Fλ, λ〉 ≥ Ch2 sup
w∈W

〈BT
λ,w〉2

||w||2L2(Ω)

≥ Ch2 〈B
T
λ, w0〉2

||w0||2L2(Ω)

= Ch2 ||BT
λ||4l2

||BT
λ||2L2(Ω)

≈ C||BT
λ||2l2 .

From (16) and (16), we conclude that

C||BT
λ||2l2 ≤ 〈Fλ, λ〉 ≤ C

(
H

h

)2

||BT
λ||2l2 . (16)

Recall that

B = [Br 0] =
[

BI,r 0
BE,r 0

]
.

We want to analyze the importance of the normalization of the mortar non-penetration
conditions for the performance of our algorithm. To this end, let us denote by B

#
the

matrix similar to B without normalizing the rows of BI , i.e., using B#
I instead of BI :

B
#

=
[

B#
I,r 0

BE,r 0

]
.

The major difference between B and B
#

is contained in the following lemma:

Lemma 1. If the mortar non-penetration conditions are normalized, then

||BT
λ||2l2 ≈ ||λ||2l2 . (17)

Else, for non-normalized inequality conditions,

Ch2||λ||2l2 ≤ ||(B#
)T λ||2l2 ≤ C||λ||2l2 . (18)

As soon as Lemma 1 is established (see proof below), we can show the following result
which will be used in the convergence estimates for the modified proportioning algorithm
suggested in the next section:

Theorem 1. The following bounds on the spectrum, norm, and condition number of the
operator F given by (11) hold:

C ≤ λmin(F ) ≤ λmax(F ) ≤ C

(
H

h

)2

; (19)

κ(F ) ≤ C

(
H

h

)2

; ||F || ≤ C

(
H

h

)2

. (20)

Let F# = B
#

K
−1

(B
#

)T , the operator corresponding to F if the non–normalized
mortar inequality matrix B#

I is used in the algorithm instead of BI . The condition number
estimate for F# deteriorates as follows:

Ch2 ≤ λmin(F#) ≤ λmax(F#) ≤ C

(
H

h

)2

; (21)

κ(F#) ≤ C

h2

(
H

h

)2

; ||F#|| ≤ C

(
H

h

)2

. (22)
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Proof. From (16) we find that

C
||BT

λ||2l2
||λ||2l2

≤ λmin(F ) ≤ λmax(F ) ≤ C

(
H

h

)2 ||BT
λ||2l2

||λ||2l2
. (23)

Then (19) follows from the estimate (17) of Lemma 1. A similar inequality to (23) also holds
for F#, and (21) follows as before from the inequality (18) of Lemma 1.

Since F and F# are symmetric, (20) and (22) follow immediately from (19) and (21).

Proof of Lemma 1 It is easy to see that

B
T
λ =

[
BT

I,rλI

0

]
+

[
BT

E,rλE

0

]
.

All the nonzero primal variables corresponding to BT
I,rλI are located on Γc, while the primal

variables corresponding to BT
E,rλE are all on the interface of the partitions of Ω1 and Ω2.

Then,
||BT

λ||2l2 = ||BT
I,rλI + BT

E,rλE ||2l2 = ||BT
I,rλI ||2l2 + ||BT

E,rλE ||2l2 . (24)

The entries in each row of BT
E,r are 0, except for two entries which are either 1 or −1.

Therefore, ||BT
E,rλE ||2l2 = 2||λE ||2l2 and

||BT
λ||2l2 ≈ ||BT

I,rλI ||2l2 + ||λE ||2l2 . (25)

Let γ(j), j = 1 : Nnm, be the nonmortar sides on Γc, where Nnm denotes the number of
nonmortar sides. Let Bγ(j) be the matrix of the normalized mortar conditions corresponding
to γ(j), and let λI,j be the Lagrange multipliers corresponding to γ(j). We denote by Bγ(j),r

the part of Bγ(j) corresponding to the remainder nodes. Then

BI,r =




Bγ(1),r

...
Bγ(Nnm),r


 and BT

I,r λI =
Nnm∑

i=1

BT
γ(j),r λI,j . (26)

For every node on Γc, there are at most two vectors with nonzero entries at that node from
among the vectors {BT

γ(j),r λI,j}i=1:Nnm . Therefore,

||BT
I,r λI ||2l2 ≤ 2

Nnm∑

i=1

||BT
γ(j),r λI,j ||2l2 . (27)

Recall, from Section 3, that Bγ(j) is obtained from B#
γ(j) = [0 Mγ(j) 0 −Nγ(j)] by nor-

malizing the rows of B#
γ(j). Thus, for biorthogonal mortars, the part of Bγ(j) corresponding

to the remainder nodes can be expressed as

Bγ(j),r = [0 IdI,j 0 − Pγ(j)],

where IdI,j is the identity matrix of size equal to the number of Lagrange multipliers cor-
responding to γ(j), i.e., the length of λI,j ; and Pγ(j) is the mortar projection matrix corre-
sponding to γ(j); see, e.g., [47]. Thus,

BT
γ(j),r λI,j =




0
λI,j

0
−PT

γ(j) λI,j


 (28)
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and therefore
||BT

γ(j),r λI,j ||2l2 = ||λI,j ||2l2 + ||PT
γ(j) λI,j ||2l2 . (29)

From (26), (28), and (29) we find that

||BT
I,r λI ||2l2 ≥

Nnm∑

i=1

||λI,j ||2l2 = ||λI ||2l2 . (30)

To estimate the norm of PT
γ(j) λI,j , we use the L2–stability of the mortar projection. It

is easy to see that

||PT
γ(j) λI,j ||2l2 = sup

ψ 6=0

〈PT
γ(j) λI,j , ψ〉2
||ψ||2l2

= sup
ψ 6=0

〈λI,j , Pγ(j) ψ〉2
||ψ||2l2

≤ ||λI,j ||2l2 sup
ψ 6=0

||Pγ(j) ψ||2l2
||ψ||2l2

. (31)

Let ζ(j) be the union of mortar sides from Γ2
c opposite γ(j). Then ψ corresponds to

a vector of nodal values on ζ(j) and Pγ(j)ψ is the vector of nodal values of the mortar
projection of ψ on γ(j). From the stability of the mortar projection we find that

||Pγ(j) ψ||2L2(γ(j)) ≤ C||ψ||2L2(ζ(j)). (32)

Let hγ(j) and hζ(j) be the mesh sizes on γ(j) and on ζ(j), respectively. We recall that the
meshes across any nonmortar side were assumed to be of order h. Therefore, hζ(j)/hγ(j) is
uniformly bounded. Using the fact that ψ and Pγ(j) ψ are vectors of nodal values of first
order finite element functions, we find from (32) that

||Pγ(j) ψ||2l2 ≈ C

hγ(j)
||Pγ(j) ψ||2L2(γ(j)) ≤ C

hγ(j)
||ψ||2L2(ζ(j)) ≤ C

hζ(j)

hγ(j)
||ψ||2l2 ≤ C||ψ||2l2 .

Therefore, from (31), it follows that

||PT
γ(j) λI,j ||2l2 ≤ C||λI,j ||2l2 .

Using (29), we find that

||λI,j ||2l2 ≤ ||BT
γ(j),r λI,j ||2l2 ≤ C||λI,j ||2l2 .

A bound for the norm of BT
I,rλI can now be established using (27), (30), and the fact that

||λI ||2l2 =
∑Nnm

i=1 ||λI,j ||2l2 satisfies the following inequality:

||λI ||2l2 ≤ ||BT
I,r λI ||2l2 ≤ C||λI ||2l2 . (33)

Using (25) and (33), we can establish (17):

||BT
λ||2l2 ≈ ||BT

I,rλI ||2l2 + ||λE ||2l2 ≈ ||λI ||2l2 + ||λE ||2l2 = ||λ||2l2 .
For the case when non–normalized mortar conditions are used across the contact in-

terface, i.e., when B#
I and B

#
are used instead of BI and B, the only difference is in the

scaling of the rows of B#
I by h. In other words, we obtain, instead of (33), that

Ch2||λI ||2l2 ≤ ||(B#
I,r)

T λI ||2l2 ≤ Ch2||λI ||2l2 .
Since (25) also holds for this case, i.e.,

||(B#
)T λ||2l2 ≈ ||(B#

I,r)
T λI ||2l2 + ||λE ||2l2 ,

we conclude that (18) is established. ¤
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6 Solution of bound constrained quadratic programming
problems and numerical scalability

In this section, we introduce and analyze an algorithm for solving the bound constrained
quadratic programming problem (9), i.e., find

min
λI≥0

Θ(λ), (34)

where Θ(λ) = 1
2λT Fλ − λT b. It is well known that a solution of the problem (34) always

exists, and is necessarily unique; see, e.g., [4]. Let us briefly review some results on applying
an active set strategy to solving bound constrained quadratic programming problems.

To simplify our notations, let us denote the dimension of the argument λ of Θ(λ) by n,
and let g be the gradient of Θ(λ) at λ, i.e.,

g = g(λ) = Fλ− b. (35)

The unique solution λ of (34) is fully determined by the Karush-Kuhn-Tucker (KKT) op-
timality conditions; cf. [4]. To describe the KKT conditions in more detail, let N =
{1, 2, . . . , n}, let I denote the set of indexes of the constrained variables from problem (34),
and let E = N \ I denote the set of indexes of the unconstrained variables. Thus,

λi = 0 and i ∈ I implies gi ≥ 0, and λi > 0 or i ∈ E implies gi = 0. (36)

The set A(λ) of all indexes i ∈ I for which λi = 0 is called the active set of λ, i.e.,

A(λ) = {i ∈ I : λi = 0}.
The complement F (λ) = N \A(λ) of A(λ) is called the free set of λ.

To enable an alternative reference to the KKT conditions (36), we introduce the free
gradient ϕ(λ) and the chopped gradient β(λ) of λ, defined by

ϕi(λ) =
{

gi(λ), for i ∈ F (λ)
0, for i ∈ A(λ) and βi(λ) =

{
0, for i ∈ F (λ)
g−i (λ), for i ∈ A(λ)

where g−i = min{gi, 0}. The KKT conditions (36) are satisfied if and only if the projected
gradient ν(λ) = ϕ(λ) + β(λ) is equal to zero, i.e., ν(λ) = 0.

We call λ a feasible vector if λi ≥ 0 for i ∈ I. The projection P+ to the set of feasible
vectors is defined for any n-vector λ by

P+(λ)i =
{

max{λi, 0}, for i ∈ I
λi, for i ∈ E

Let us briefly describe the algorithm [13] for the solution of problem (34) that combines
the proportioning algorithm [5] with gradient projections [38]. We use a given constant
Γ > 0, a test to decide about leaving the face, and three types of steps to generate a
sequence of iterates {λk} that approximate the solution of (34).

The expansion step is defined by

λk+1 = P+

(
λk − αϕ(λk)

)
,

with a fixed steplength of size α ∈ (0, ||F ||−1]. This step may expand the current active set.
To describe it without any reference to P+, we introduce, for any feasible λ, the reduced free
gradient ϕ̃(λ) defined by

ϕ̃i = ϕ̃i(λ) = =
{

min{λi/α, ϕi}, for i ∈ I
ϕi, for i ∈ E

12



Note that
P+ (λ− αϕ(λ)) = λ− αϕ̃(λ).

We call the iterate λk strictly proportional if the following inequality holds:

||β(λk)||2 ≤ Γ2ϕ̃(λk)>ϕ(λk) (37)

The test (37) is used to decide which component of the projected gradient ν(λk) will be
reduced in the next step.

The proportioning step is defined by

λk+1 = λk − αcgβ(λk).

The steplength αcg is chosen to minimize f(λk − αβ(λk)) with respect to α, i.e.,

αcg =
β(λk)T g(λk)

β(λk)T Fβ(λk)
.

The purpose of the proportioning step is to remove indexes from the active set.
The conjugate gradient step is defined by

λk+1 = λk − αcgp
k

where pk is the conjugate gradient direction [2] which is constructed recurrently. The recur-
rence starts (or restarts) with ps = ϕ(λs) whenever λs is generated by the expansion step
or the proportioning step. If pk is known, then pk+1 is given by the formulae [2]

pk+1 = ϕ(λk)− γpk, with γ =
ϕ(λk)>Fpk

(pk)>Fpk
.

The conjugate gradient steps are used to carry out efficiently the minimization in the face
WJ = {λ : λi = 0 for i ∈ J } given by J = A(λs).

The algorithm that we use may now be described as follows:

Algorithm 1 Modified proportioning with reduced gradient projections (MPRGP).
Let λ0 be an n-vector such that λ0

i ≥ 0, for i ∈ I, let α ∈ (0, ‖F‖−1], and let Γ > 0 be given.
For k ≥ 0 and λk known, choose λk+1 as follows:
(i) If ν(λk) = 0, set λk+1 = λk.
(ii) If λk is strictly proportional and ν(λk) 6= 0, try to generate λk+1 by the conjugate gra-
dient step. If λk+1

i ≥ 0 for i ∈ I, then accept it, else generate λk+1 by the expansion step.
(iii) If λk is not strictly proportional, define λk+1 by proportioning.

For details about the implementation of the algorithm, we refer the reader to [13]. The
basic properties of the algorithm are summed up in the following theorem:

Theorem 2. Let Γ > 0 be a given constant and let Γ̂ = max{Γ, Γ−1}. Let α1 = λmin(F ), let
λ be the unique solution of (34), and denote by {λk} the sequence generated by Algorithm
1 with α ∈ (0, ‖F‖−1]. The following statements hold:
(i) The rate of convergence in the energy norm defined by ||λ||2F = λT Fλ is given by

||λk − λ||2F ≤ 2ηk
(
Θ(λ0)−Θ(λ)

)
, (38)

where
η = 1− αα1

2 + 2Γ̂2
≥ 1− 1

κ(F )(2 + 2Γ̂2)
≥ 1− 1

4κ(F )
. (39)
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(ii) If the solution λ satisfies the strict complementarity conditions, i.e., if λi = 0 implies
gi(λ) 6= 0, then there exists k ≥ 0 such that λk = λ.
(iii) If Γ and the spectral condition number κ(F ) of F satisfy

Γ ≥ 2
(√

κ(F ) + 1
)

,

then there exists k ≥ 0 such that λk = λ.

Proof. See [13].

Theorem 3. Let C1 and Γ denote given positive numbers, let C be a constant that satisfies
(19), i.e., C ≤ λmin(F ), and let α ∈ (0, C−1C−2

1 ].
We denote by {λi

H,h} the iterates generated by Algorithm 1 with the initial approxima-
tion λ0 = λ0

H,h = 0 for the solution λH,h of problem (34)
Then there exists η < 1 independent of h and H such that H/h ≤ C1 implies

‖λk
H,h − λH,h‖ ≤ ηk

C2
‖b‖2. (40)

Proof. Under the assumptions of the theorem,

Θ(λH,h) = min{Θ(λ) : λI ≥ 0} ≥ Θ(F−1b) = − 1
2
bT F−1b ≥ − 1

2C
‖b‖2,

since C ≤ λmin(F ). Recall that {λi
H,h} denotes the iterates generated by Algorithm 1 with

initial approximation λ0 = λ0
H,h = 0. From Theorem 2, we obtain that

‖λk
H,h − λH,h‖2F ≤ 2ηk

(
Θ(λ0

H,h)−Θ(λH,h)
) ≤ ηk

C
‖b‖2, (41)

where η is defined by (39). From (19), α1 = λmin(F ) ≥ C, and we find that

η = 1− αα1

2 + 2Γ̂2
≤ 1− αC

2 + 2Γ̂2
= η < 1. (42)

Since C ≤ λmin(F ),
C‖λk

H,h − λH,h‖2 ≤ ‖λk
H,h − λH,h‖2F . (43)

Then (40) follows from (41–43).

7 Numerical experiments

In this section, we report results for the numerical solution of the model coercive contact
problem to illustrate the performance of our FETI–DP algorithm implemented in MATLAB.
The goals of our experiments were as follows:

• to establish numerical evidence for the scalability of the algorithm;

• to compare the performance of the method for the cases when the subdomain partitions
of Ω1 and Ω2 match, or do not match, across Γc, the potential contact interface;

• to investigate how does the convergence of the algorithm depend on the choice of
nonmortar sides either on Γ1

c or on Γ2
c .
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We used the traction function f specified by

f(x1, x2) =




−3 for (x1, x2) ∈ (0, 1)× [0.75, 1)
0 for (x1, x2) ∈ (0, 1)× [0, 0.75) and (x1, x2) ∈ (1, 2)× [0.25, 1)
−1 for (x1, x2) ∈ (1, 2)× [0, 0.25)



 .

The solutions of our benchmarks with different decomposition and discretizations are
in Figure 2.
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Figure 2a: Solution corresponding to a Figure 2b: Solution corresponding to a
4–subdomain partition on Ω1 and a 7–subdomain partition on Ω1 and a

7–subdomain partition on Ω2 4–subdomain partition on Ω2

For matching subdomain partitions across Γc, we partitioned Ω1 and Ω2 into 1 × 1,
2× 2, and 4× 4 squares each, corresponding to H1 = H2 ∈ {1, 1/2, 1/4}. To avoid perfectly
matching meshes, the number of nodes on each side of the square subdomains was chosen to
be H1/h1 ∈ {4, 8, 16}, in Ω1, corresponding to H2/h2 ∈ {7, 13, 25}, respectively, in Ω2. In
Table 1, we report the iteration count, i.e., the number of the conjugate gradient iterations
required for the convergence of the solution of the problem to the given precision, as well as
the size of the primal problem, of the dual problem, and the number of global corner degrees
of freedom, i.e., the size of the coarse problem corresponding to solving a linear system for
K∗

cc, for each partition described above.

Table 1: Convergence results: Matching subdomain partitions across Γc

Nonmortars on Γ1
c Nonmortars on Γ2

c

N1 N2
H1
h1

H2
h2

Iter primal dual corners Iter primal dual corners

1× 1 1× 1 4 7 6 89 5 0 13 89 8 0
8 13 11 277 9 0 19 277 14 0

16 25 16 965 17 0 25 965 26 0
2× 2 2× 2 4 7 20 356 44 9 30 256 50 9

8 13 26 1108 92 9 36 1108 102 9
16 25 31 3860 188 9 51 3860 206 9

4× 4 4× 4 4 7 28 1424 230 39 42 1424 242 39
8 13 46 4432 486 39 63 4432 506 39

16 25 60 15440 998 39 74 15440 1034 39

The algorithm converged after a small number of iterations for all partitions considered.
For a fixed number of nodes per subdomain edge, i.e., for H1/h1 and H2/h2 simultane-
ously fixed, the number of iterations increased moderately when the number of subdomains
quadrupled. Thus, numerical scalability of our method was observed for practical applica-
tions, and we inferred that the unspecified constants in Theorem 3 were not large.
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The scalability of the method was observed regardless of whether the nonmortars were
chosen on Γ1

c or on Γ2
c . The difference between the two methods is given by the number of

mortar conditions, and therefore by the number of Lagrange multipliers λI and by the size
of the dual problem. There are more mortar conditions when the nonmortars are chosen
on the edges with finer local mesh, i.e., on Γ2

c . The number of iterations in this case was
larger by about fifty percent than in the case when the nonmortars were chosen on the
coarser local mesh, i.e., on Γ1

c ; see Table 1. This was due in part to the fact that the
mortar non–penetration conditions had more of a local nature in the case of a finer local
mesh. Therefore, little was gained by having more such conditions. This holds true with,
possibly, the exception of a too coarse mesh on the nonmortar sides, i.e., H1 = H2 = 1 with
H1/h1 = 2 or H1/h1 = 3. As a matter of fact, in this case, penetration may even occur at
points on the contact interface due to the relative lack of non-penetration conditions.

For the case when the subdomain partitions across Γc do not match, Ω1 was partitioned
into 1×2, 2×4, and 4×8 rectangles, corresponding to partitions of Ω2 into 1×3, 2×5, and
4× 11 rectangles, respectively. The number of nodes on each side of the square subdomains
was chosen to be, alternatively, in the set {(4, 7), (8, 13), (16, 25)}; see Table 2 for more
details. The iteration counts, the sizes of the primal and dual problems, and the sizes of the
coarse problem are reported in Table 2.

Table 2: Convergence results: Non-matching subdomain partitions across Γc

Nonmortars on Γ1
c Nonmortars on Γ2

c

N1 N2
H1
h1

H2
h2

Iter primal dual corners Iter primal dual corners

1× 2 1× 3 4 7 15 242 23 5 41 242 35 5
7 4 28 203 26 5 23 203 23 5
8 13 29 750 47 5 48 750 69 5

13 8 37 635 52 5 36 635 49 5
16 25 33 2606 95 5 60 2606 137 5
25 16 41 2219 104 5 41 2219 101 5

2× 4 2× 5 4 7 34 840 122 22 52 840 140 22
7 4 43 762 125 22 38 762 116 22
8 13 49 2608 256 22 68 2608 288 22

13 8 58 2378 261 22 51 2378 248 22
16 25 57 9072 524 22 87 9072 584 22
25 16 67 8298 533 22 63 8298 512 22

4× 8 4× 11 4 7 49 3616 620 90 65 3616 662 90
7 4 56 3148 581 90 50 3148 566 90
8 13 59 11216 1298 90 88 11216 1374 90

13 8 71 9836 1233 90 65 9836 1214 90
16 25 78 38992 2654 90 125 38992 2798 90
25 16 94 34348 2537 90 90 34348 2510 90

As before, for fixed number of nodes per subdomain edge, i.e., for H1/h1 and H2/h2

simultaneously fixed, the number of iterations increased moderately when the number of
subdomains roughly quadrupled. Thus, numerical scalability of our method was once again
observed, independent of whether the nonmortar sides were chosen on Γ1

c , and on Γ2
c . The

number of iterations was larger when more non–penetration conditions were required, i.e.,
when the number of nodes on the nonmortars was larger. This was due to the fact that,
for a mesh that is fine enough, some of the mortar non-penetration conditions become less
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relevant.
In the experiments presented above, the rows of the matrix BI were normalized as

discussed in Section 5. We conclude this section by presenting numerical evidence that the
performance of our FETI–DP method deteriorates unless the rows have norms of similar
order; see Theorems 1 and 2 for an explanation of this phenomenon. In Table 3, we present
the convergence results for matching subdomain partitions across Γc for the case when BI is
not normalized, i.e., when B#

I is used instead of BI in our algorithm. The nonmortar sides
were chosen to be on Γ1

c . To make the comparison easy, we also included the convergence
results from Table 1 for the algorithm using the normalized matrix BI .

Table 3: Convergence results: Normalized BI vs. Non–normalized B#
I

Normalized BI Non–normalized B#
I

N1 N2
H1
h1

H2
h2

Iter primal dual corners Iter primal dual corners

1× 1 1× 1 4 7 6 89 5 0 8 89 5 0
8 13 11 277 9 0 14 277 9 0
16 25 16 965 17 0 25 965 17 0

2× 2 2× 2 4 7 20 356 44 9 48 256 44 9
8 13 26 1108 92 9 118 1108 92 9
16 25 31 3860 188 9 268 3860 188 9

4× 4 4× 4 4 7 28 1424 230 39 106 1424 230 39
8 13 46 4432 486 39 263 4432 486 39
16 25 60 15440 998 39 743 15440 998 39

It is easy to see that the performance of the algorithm with non–normalized inequality
constraints was much poorer and that this algorithm did not seem to be scalable. These
numerical results are consistent with the theoretical condition number estimate from Theo-
rem 1.
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[8] Zdeněk Dostál, Francisco A. M. Gomes, and Sandra A. Santos. Solution of contact
problems by FETI domain decomposition with natural coarse space projection. Comput.
Meth. Appl. Mech. Eng., 190:1611–1627, 2000.
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[25] I. Hlaváček, J. Haslinger, J. Nečas, and J. Lov́ı̌sek. Solution of Variational Inequalities
in Mechanics. Springer Verlag, Berlin, 1988.

[26] Hyea-Hyun Kim and Chang-Ock Lee. A FETI-DP formulation for two-dimensional
stokes problem on nonmatching grids. In R. Kornhuber, R.H.W. Hoppe, D.E. Keyes,
J. Périaux, O. Pironneau, and J. Xu, editors, Proceedings of the 15th International
Conference on Domain Decomposition Methods, pages 353–360, Berlin, 2004. Springer-
Verlag. Lectures Notes in Computational Science and Engineering.

[27] Axel Klawonn and Olof B. Widlund. A domain decomposition method with Lagrange
multipliers for linear elasticity. SIAM J. Sci. Comput., 22:1199–1219, 2000.

[28] Axel Klawonn and Olof B. Widlund. FETI and Neumann–Neumann iterative substruc-
turing methods: Connections and new results. Comm. Pure Appl. Math., 54(1):57–90,
2001.

[29] Ralf Kornhuber. Adaptive Monotone Multigrid Methods for Nonlinear Variational Prob-
lems. Teubner, Stuttgart, 1997.

[30] Ralf Kornhuber and Rolf Krause. Adaptive multilevel methods for Signorini’s problem
in linear elasticity. Comp. Visual. Sci., 4:9–20, 2001.

[31] Catherine Lacour and Yvon Maday. Two different approaches for matching noncon-
forming grids: the mortar element method and the FETI method. BIT, 37:720–738,
1997.

[32] Jing Li. A Dual-Primal FETI method for incompressible Stokes equations. Technical
Report 816, Courant Institute of Mathematical Sciences, Department of Computer
Sciences, 2001.
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