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Summary. We first review our recent results concerning optimal algorithms for
the solution of bound and/or equality constrained quadratic programming prob-
lems. The unique feature of these algorithms is the rate of convergence in terms of
bounds on the spectrum of the Hessian of the cost function. Then we combine these
estimates with some results on the FETI method (FETI-DP, FETI and Total FETI)
to get the convergence bounds that guarantee the scalability of the algorithms. i.e.
asymptotically linear complexity and the time of solution inverse proportional to
the number of processors. The results are confirmed by numerical experiments.

1 Introduction

One of the most impressive results in numerical analysis of the twentieth
century was discovery that the systems of linear equations arising from the
discretization of an elliptic partial differential equation may be solved by the
multigrid or domain decomposition methods with asymptotically linear com-
plexity. In this paper, we show how to extend these results to get scalable
algorithms for variational inequalities. Our basic tool is the FETI method,
which was proposed by Farhat and Roux [28] for parallel solution of problems
described by elliptic partial differential equations. Its key ingredient is the de-
composition of the spatial domain into non-overlapping subdomains that are
”glued” by Lagrange multipliers, so that, after eliminating the primal vari-
ables, the original problem is reduced to a small, relatively well conditioned,
typically equality constrained quadratic programming problem that is solved
iteratively. Observing that the equality constraints may be used to define so
called ”natural coarse grid”, Farhat, Mandel and Roux [27] modified the basic
FETI algorithm so that they were able to prove its numerical scalability. A
similar results were achieved by the Dual-Primal FETI method (FETI–DP)
introduced by Farhat et al. [26]; see also [32].

If the FETI procedure is applied to the contact problems, the resulting
quadratic programming problem has not only the equality constraints, but
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also the non-negativity constraints. Even though the latter is a considerable
complication as compared with the linear problem, the resulting problem is
still easier to solve than the contact problem in displacements as it is smaller,
better conditioned having constraints with simpler structure. Promising ex-
perimental results by Dureisseix and Farhat [24] support this claim and even
indicate numerical scalability of their metod. Similar results were achieved
also with the FETI–DP method by Avery, Rebel, Lesoinne and Farhat [1]. A
different approach based on the augmented Lagrangian method was used by
Dostál, Friedlander, Gomes and Santos [12, 13].

In this paper we review our recent improvements that resulted in develop-
ment of theoretically supported scalable algorithms for variational inequalities
that combine various FETI based domain decomposition methods with our
optimal quadratic programming algorithms [6, 23, 7]. We present optimal al-
gorithms based on scalable variant of FETI [27] or on its easier implementable
variant called TFETI [19], on FETI–DP [26] and on optimal dual penalty [17].
Let us point out that the effort to develop scalable solvers for variational in-
equalities was not restricted to FETI. For example, developing ideas of Mandel
[35], Kornhuber, Krause and Wohlmuth [33, 34, 40] gave an experimental ev-
idence of numerical scalability of the algorithm based on monotone multigrid.
Nice results concerning development of scalable algorithms were proved by
Schöberl [37].

We start our exposition by presenting our MPRGP (Modified Propor-
tioning with Reduced Gradient Projection) and SMALBE (Semimonotonic
Augmented Lagrangians for Bound and Equality constrained problems) algo-
rithms with in a sense optimal rates of convergence. Then we present a simple
model problem and the FETI methodology [12] that turns the variational in-
equality into the quadratic programming problem with bound and possibly
equality constraints. Combining these ingredients, we shall get new algorithms
for numerical solution of boundary elliptic variational inequalities. A unique
feature of these algorithms is theoretically guaranteed numerical scalability.
We report results of numerical experiments that are in agreement with the
theory and indicate high parallel and numerical scalability of the algorithm
presented.

2 Bound Constrained Problems

Let us consider the problem

minimize q(x) subject to x ∈ ΩB (1)

with q(x) = 1
2x

T Ax−bT x, A a symmetric positive definite matrix, b ∈ IRn,
ΩB = {x : x ≥ `} and ` ∈ IRn. The unique solution x of (1) is fully determined
by the Karush-Kuhn-Tucker optimality conditions [3] so that for i = 1, . . . , n,

xi = `i implies gi ≥ 0 and xi > `i implies gi = 0, (2)
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where g = g(x) denotes the gradient of q defined by

g = g(x) = Ax− b. (3)

The conditions (2) can be described alternatively by the free gradient ϕ and
the chopped gradient β that are defined by

ϕi(x) = gi(x) for xi > `i, ϕi(x) = 0 for xi = `i,

βi(x) = 0 for xi > `i, βi(x) = g−i (x) for xi = `i,

where we have used the notation g−i = min{gi, 0}. Thus the conditions (2) are
satisfied iff the projected gradient gP (x) = ϕ(x) + β(x) is equal to the zero.
The algorithm for the solution of (1) that we describe here exploits a given
constant Γ > 0, a test to decide about leaving the face and three types of steps
to generate a sequence of the iterates {xk} that approximate the solution of
(1). The expansion step may expand the current active set and is defined by

xk+1 = xk − αϕ̃(xk) (4)

with the fixed steplength α ∈ (0, ‖A‖−1] and the reduced free gradient ϕ̃(x)
with the entries ϕ̃i = ϕ̃i(x) = min{(xi − `i)/α, ϕi}. If the inequality

||β(xk)||2 ≤ Γ 2ϕ̃(xk)>ϕ(xk) (5)

holds then we call the iterate xk strictly proportional. The test (5) is used to
decide which component of the projected gradient gP (xk) will be reduced in
the next step. The proportioning step may remove indices from the active set
and is defined by

xk+1 = xk − αcgβ(xk) (6)

with the steplength αcg that minimizes q
(
xk − αβ(xk)

)
. It is easy to check

[3] that αcg that minimizes q(x− αd) for a given d and x may be evaluated
by the formula

αcg = αcg(d) =
d>g(x)
d>Ad

. (7)

The conjugate gradient step is defined by

xk+1 = xk − αcgpk (8)

where pk is the conjugate gradient direction [3] which is constructed recur-
rently. The recurrence starts (or restarts) from ps = ϕ(xs) whenever xs is
generated by the expansion or proportioning step. If pk is known, then pk+1

is given [3] by

pk+1 = ϕ(xk+1)− γpk, γ =
ϕ(xk+1)>Apk

(pk)>Apk
. (9)
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Algorithm 1. Modified proportioning with reduced gradient projec-
tions (MPRGP).
Let x0 ∈ Ω, α ∈ (0, ‖A‖−1], and Γ > 0 be given. For k ≥ 0 and xk known,
choose xk+1 by the following rules:
Step 1. If gP (xk) = o, set xk+1 = xk.
Step 2. If xk is strictly proportional and gP (xk) 6= o, try to generate xk+1 by
the conjugate gradient step. If xk+1 ∈ Ω, then accept it, else use the expan-
sion step.
Step 3. If xk is not strictly proportional, define xk+1 by proportioning.

Algorithm 1 has been proved to enjoy the R-linear rate of convergence in
terms of the spectral condition number [23].

To formulate the optimality results, let T denote any set of indices and
assume that for any t ∈ T there is defined the problem

minimize qt(x) s.t. x ∈ Ωt
B (10)

with Ωt
B = {x ∈ IRnt : x ≥ `}, qt(x) = 1

2x
>Atx − b>t x, At ∈ IRnt×nt sym-

metric positive definite, and bt,x, `t ∈ IRnt . Our optimality result then reads
as follows.

Theorem 1. Let the Hessian matrices At = ∇2qt of (10) satisfy

0 < amin ≤ λmin(At) ≤ λmax(At) ≤ amax,

let {xk
t } be generated by Algorithm 1 for (10) with a given x0

t ∈ Ωt
B, α ∈

(0, a−1
max], and let Γ > 0. Let there be a constant ab such that ‖x0

t‖ ≤ ab‖bt‖
for any t ∈ T .
(i) If ε > 0 is given, then the approximate solution xt of (10) which satisfies

‖xk
t − xt‖ ≤ ε‖bt‖

may be obtained at O(1) matrix-vector multiplications by At.
(ii) If ε > 0 is given, then the approximate solution xk

t of (10) which satisfies

‖gP
t (xk

t )‖ ≤ ε‖bt‖
may be obtained at O(1) matrix-vector multiplications by At.

Proof. See [23].

Numerical experiments and implementation details may be found in [23].

3 Bound and Equality Constrained Problems

We shall now be concerned with the problem of finding the minimizer of
the strictly convex quadratic function q(x) subject to the bound and linear
equality constraints, that is
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minimize q(x) subject to x ∈ ΩBE (11)

with ΩBE = {x ∈ IRn : x ≥ ` and Cx = o} and C ∈ IRm×n. We do not
require that C is a full row rank matrix, but we shall assume that ΩBE is not
empty. Let us point out that confining ourselves to the homogeneous equality
constraints does not mean any loss of generality, as we can use a simple trans-
form to reduce any non-homogeneous equality constraints to our case. The
algorithm that we describe here combines in a natural way the augmented
Lagrangians and MPRGP described above. It is related to the earlier work
of Friedlander and Santos with the present author [11]. Let us recall that the
basic scheme that we use was proposed by Conn, Gould and Toint [4] who
adapted the augmented Lagrangian method to the solution of the problems
with a general cost function subject to general equality constraints and simple
bounds.

Algorithm 2. (Semi-monotonic augmented Lagrangians for bound
and equality constraints (SMALBE)
Given η > 0, β > 1, M > 0, ρ0 > 0, and µ0 ∈ IRm , set k = 0.
Step 1. {Inner iteration with adaptive precision control.}

Find xk such that

‖gP (xk,µk, ρk)‖ ≤ min{M‖Cxk‖, η}. (12)

Step 2. {Update µ.}
µk+1 = µk + ρkCxk. (13)

Step 3. {Update ρ provided the increase of the Lagrangian is not sufficient.}
If k > 0 and

L(xk, µk, ρk) < L(xk−1,µk−1, ρk−1) +
ρk

2
‖Cxk‖2 (14)

then
ρk+1 = βρk, (15)

else
ρk+1 = ρk. (16)

Step 4. Set k = k + 1 and return to Step 1.

In (14), we use the augmented Lagrangian defined by

L(x,µ, ρ) = q(x) + µ>Cx +
ρk

2
‖Cx‖2. (17)

Algorithm 2 has been shown to be well defined [11], that is, any convergent
algorithm for the solution of the auxiliary problem required in Step 1 which
guarantees convergence of the projected gradient to zero will generate either
xk that satisfies (12) in a finite number of steps or a sequence of approxima-
tions that converges to the solution of (11). To present explicitly the optimality



6 Zdeněk Dostál, David Horák and Dan Stefanica

of Algorithm 2 with Step 1 implemented by Algorithm 1, let T denote any
set of indices and let for any t ∈ T be defined the problem

minimize qt(x) s.t. x ∈ Ωt
BE (18)

with Ωt
BE = {x ∈ IRnt : Ctx = o and x ≥ `t}, qt(x) = 1

2x
>Atx − b>t x,

At ∈ IRnt×nt symmetric positive definite, Ct ∈ IRmt×nt , and bt, `t ∈ IRnt .
Our optimality result reads as follows.

Theorem 2. Let {xk
t }, {µk

t } and {ρt,k} be generated by Algorithm 2 for (18)
with ‖bt‖ ≥ ηt > 0, β > 1, M > 0, ρt,0 = ρ0 > 0, µ0

t = o. Let Step
1 of Algorithm 2 be implemented by Algorithm 1 (MPRGP) which generates
the iterates xk,0

t ,xk,1
t , . . . ,xk,l

t = xk
t for the solution of (18) starting from

xk,0
t = xk−1

t with x−1
t = o, where l = lkt

is the first index satisfying

‖gP (xk,l
t , µk

t , ρk)‖ ≤ M‖Ctx
k,l
t ‖ (19)

or
‖gP (xk,l

t , µk
t , ρk)‖ ≤ ε‖bt‖min{1,M−1}. (20)

Let 0 < amin < amax and 0 < cmax be given and let the class of problems (18)
satisfy

amin ≤ λmin(At) ≤ λmax(At) ≤ amax and ‖Ct‖ ≤ cmax. (21)

Then Algorithm 2 generates an approximate solution xkt
t of any problem (18)

which satisfies

‖gP (xkt
t , µkt

t , ρt,kt)‖ ≤ ε‖bt‖ and ‖Ctxkt
t ‖ ≤ ε‖bt‖ (22)

at O(1) matrix-vector multiplications by the Hessian of the augmented La-
grangian Lt.

Proof. See [7, 8].

4 Model Problem

To simplify our exposition, we restrict our attention to a simple scalar
variational inequality. The computational domain is Ω = Ω1 ∪ Ω2, where
Ω1 = (0, 1) × (0, 1) and Ω2 = (1, 2) × (0, 1), with boundaries Γ 1 and Γ 2, re-
spectively. We denote by Γ i

u, Γ i
f , and Γ i

c the fixed, free, and potential contact
parts of Γ i, i = 1, 2. We assume that Γ 1

u has non-zero measure, i.e., Γ 1
u 6= ∅.

For a coercive model problem, Γ 2
u 6= ∅, while for a semicoercive model prob-

lem, Γ 2
u = ∅; see Figure 1. Let H1(Ωi), i = 1, 2 denote the Sobolev space

of the first order in the space L2(Ωi) of functions on Ωi whose squares are
integrable in the Lebesgue sense. Let
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V i =
{
vi ∈ H1(Ωi) : vi = 0 on Γ i

u

}

denote the closed subspaces of H1(Ωi), i = 1, 2, and let

V = V 1 × V 2 and K =
{
(v1, v2) ∈ V : v2 − v1 ≥ 0 on Γc

}

denote the closed subspace and the closed convex subset of H = H1(Ω1) ×
H1(Ω2), respectively. The relations on the boundaries are in terms of traces.
On H we shall define a symmetric bilinear form

a(u, v) =
2∑

i=1

∫

Ωi

(
∂ui

∂x

∂vi

∂x
+

∂ui

∂y

∂vi

∂y

)
dΩ

and a linear form

`(v) =
2∑

i=1

∫

Ωi

f ividΩ,

where f i ∈ L2(Ωi), i = 1, 2 are the restrictions of

f(x, y) =




−1| − 3 for (x, y) ∈ (0, 1)× [0.75, 1),

0| 0 for (x, y) ∈ (0, 1)× [0, 0.75) and (x, y) ∈ (1, 2)× [0.25, 1),
−3| − 1 for (x, y) ∈ (1, 2)× [0, 0.25),

for coercive | semicoercive model problem. Thus we can define a problem to
find

min q(u) =
1
2
a(u, u)− `(u) subject to u ∈ K. (23)

The solution of the model problem may be interpreted as the displacement of

0.25
0.25

0.75

0.75
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−1
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2Ω
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Γ Γ Γ Γ
1 1

fu c f
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11

-3
-1

Ω
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Γ Γ Γ Γ
1 1

fu c f
2

Fig. 1. The coercive (left) and semicoercive (right) model problem

two membranes under the traction f . The membranes are fixed as in Fig. 1 and
the left edge of the right membrane is not allowed to penetrate below the right
edge of the left membrane. In the first case, when the Dirichlet conditions are
prescribed on the parts Γ i

u, i = 1, 2 of the boundaries with a positive measure,
the quadratic form a is coercive which guarantees the existence and uniqueness
of the solution [31]. In the second case, only the left membrane is fixed on the
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outer edge and the right membrane has no prescribed displacement as in Fig.
1 (right), so that

Γ 1
u = {(0, y) ∈ IR2 : y ∈ [0, 1]}, Γ 2

u = ∅.

Even though a is in this case only semidefinite, the form q is still coercive due
to the choice of f so that it has again the unique solution [31].

5 FETI and Total FETI Domain Decomposition

To enable efficient application of the domain decomposition methods, we can
optionally decompose each Ωi into square subdomains Ωi1, . . . , Ωip, p = s2 >
1, i = 1, 2. The outer subdomains Ωij can either inherit the Dirichlet boundary
conditions from Γ i

u as in the original FETI [28], or they can be treated as
floating with the Dirichlet conditions enforced by the Lagrange multipliers.
The latter approach was coined Total FETI (TFETI) [19]. The continuity in
Ω1 and Ω2 of the global solution assembled from the local solutions uij will be
enforced by the ”gluing” conditions uij(x) = uik(x) that should be satisfied
for any x in the interface Γ ij,ik of Ωij and Ωik. After modifying appropriately
the definition of problem (23), introducing regular grids in the subdomains
Ωij that match across the interfaces Γ ij,kl, indexing contiguously the nodes
and entries of corresponding vectors in the subdomains, and using the finite
element discretization, we get the discretized version of problem (23) with the
auxiliary domain decomposition that reads

min
1
2
u>Ku− f>u s.t. BIu ≤ o and BEu = o. (24)

In (24), K = diag[K1, . . . , K2p] denotes a positive semidefinite stiffness matrix,
the full rank matrices BI and BE describe the discretized inequality and gluing
conditions, respectively, and f represents the discrete analog of the linear term
`(u). Denoting

λ =
[

λI

λE

]
and B =

[
BI

BE

]
,

we can write the Lagrangian associated with problem (30) briefly as

L(u,λ) =
1
2
u>Ku− f>u + λ>Bu.

It is well known that (24) is equivalent to the saddle point problem

Find (u,λ) s.t. L(u, λ) = sup
λI≥o

inf
u

L(u, λ). (25)

After eliminating the primal variables u from (25), we shall get the minimiza-
tion problem
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min Θ(λ) s.t. λI ≥ o and R>(f − B>λ) = o, (26)

where
Θ(λ) =

1
2
λ>BK†B>λ− λ>BK†f , (27)

K† denotes a generalized inverse that satisfies KK†K = K, and R denotes
the full rank matrix whose columns span the kernel of K. We shall choose
R so that its entries belong to {0, 1} and each column corresponds to some
floating auxiliary subdomain Ωij with the nonzero entries in the positions
corresponding to the indices of nodes belonging to Ωij . The action of K† =
diag[K†1, . . . , K

†
2p] can be evaluated in parallel at the cost comparable with the

action of the inverse of the regular matrix with the same sparsity pattern [25].
When TFETI method is used, the implementation is easy as the kernels of
Ki are known a priori. Even though problem (26) is much more suitable for
computations than (24), further improvement may be achieved by adapting
some simple observations and the results of Farhat, Mandel and Roux [27].
Let us denote

F = BK†B>, G̃ = R>B>, ẽ = R>f , d̃ = BK†f ,

and let λ̃ solve G̃λ̃ = ẽ, so that we can transform the problem (26) to mini-
mization on the subset of the vector space by looking for the solution in the
form λ = µ + λ̃. Since

1
2
λ>Fλ− λ>d̃ =

1
2
µ>Fµ− µ>(d̃− Fλ̃) +

1
2
λ̃
>

Fλ̃− λ̃
>
d̃,

problem (26) is, after returning to the old notation, equivalent to

min
1
2
λ>Fλ− λ>d s.t Gλ = o and λI ≥ −λ̃

I
, (28)

where d = d̃−Fλ̃ and G denotes a matrix arising from the orthonormalization
of the rows of G̃. Our final step is based on observation that the problem (28)
is equivalent to

min
1
2
λ>PFPλ− λ>Pd s.t Gλ = o and λI ≥ −λ̃

I
(29)

where
Q = G>G and P = I− Q

denote the orthogonal projectors on the image space of G> and on the kernel
of G.

Theorem 3. If F and P denote the matrices of the problem (29) (generated
either by FETI or TFETI), then the following spectral bounds hold:

λmax(PFP) ≤ ||F|| ≤ C
H

h
; λmin(PFP|ImP) ≥ C.

Proof. See [27, 9].
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6 FETI–DP Domain Decomposition and Discretization

We shall now assume that the subdomains are not completely separated, but
joined in the joint corners that we shall call crosspoints. We call a crosspoint
either a corner that belongs to four subdomains, or a corner that belongs to
two subdomains and is located on ∂Ω1 \ Γ 1

u or on ∂Ω2 \ Γ 2
u . An important

feature for developing FETI–DP type algorithms is that a single degree of
freedom is considered at each crosspoint, while two degrees of freedom are
introduced at all the other matching nodes across subdomain edges as in
FETI or TFETI. Using the finite element discretization, we get again the
discretized version of problem (23) with the auxiliary domain decomposition

min
1
2
u>Ku− f>u s.t. BIu ≤ o and BEu = o, (30)

where the full rank matrices BI and BE describe the non-penetration (in-
equality) conditions and the gluing (equality) conditions, respectively, and f
represents the discrete analog of the linear form `(·). In (30), using suitable
numbering, K = diag(K1, K2) is the block diagonal stiffness matrix with the
nonzero blocks

Ki =




Ki
11 Ki

1,p+1

. . .
...

Ki
p,p Ki

p,p+1

Ki
p+1,1 . . . Ki

p+1,p Ki
p+1,p+1


 .

The block K1 corresponding to Ω1 is nonsingular due to the Dirichlet bound-
ary conditions on Γ 1

u . The block K2 corresponding to Ω2 is nonsingular for
a coercive problem, and is singular, with the kernel made of a vector e with
all the entries equal to 1, for a semicoercive problem. In the latter case, the
kernel of K is spanned by the matrix R =

[
o>, e>

]>
. Using the duality

theory [3], we can again transform (30) to the dual problem. For a coercive
problem, K is nonsingular and we obtain the problem of finding

min
1
2
λ>Fλ− λ>d s.t. λI ≥ o, (31)

with F = B K−1B> and d = B K−1f . For an efficient implementation of F,
it is important to exploit the structure of K; see [21] for more details. For a
semicoercive problem, we obtain the problem of finding

min
1
2
λ>Fλ− d>λ s.t Gλ = o and λI ≥ −λ̃

I
, (32)

with d = d̃− Fλ̃ and G and λ̃ defined similarly as in FETI. Our final step is
again based on the observation that the Hessian of the augmented Lagrangian
for problem (32) may be decomposed by the orthogonal projectors

Q = G>G and P = I− Q
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on the image space of G> and on the kernel of G, respectively. Since Pλ = λ
for any feasible λ, problem (32) is equivalent to

min
1
2
λ>PFPλ− λ>Pd s.t Gλ = o and λI ≥ −λ̃

I
. (33)

The optimality follows from the following theorem.

Theorem 4. If F denotes the matrix of the problem (32) generated by FETI–
DP for the coercive problem, then the following spectral bounds hold:

λmax(F) = ‖F‖ ≤ C

(
H

h

)2

; λmin(F) ≥ C.

If F and P denote the matrices of the problem (33) generated by FETI–DP
for the semicoercive problem, then the following spectral bounds hold:

λmax(PFP|ImP) ≤ ‖F‖ ≤ C

(
H

h

)2

; λmin(PFP|ImP) ≥ C.

Proof. See [21, 22].

7 Numerical Scalability

To show that Algorithm 2 with the inner loop implemented by Algorithm 1
is optimal for the solution of our model problems (or a class of problems)
discretized by means of FETI, TFETI and FETI–DP, we shall use

T = {(H, h) ∈ IR2 : H ≤ 1, 2h ≤ H and H/h ∈ IN}

as the set of indices. Given a constant C ≥ 2, we shall define a subset TC of
T by

TC = {(H, h) ∈ IR2 : H ≤ 1, 2h ≤ H, H/h ∈ IN and H/h ≤ C}.

For any t ∈ T , and a given ρ > 0, we shall define

At = PFP + ρQ, bt = Pd

Ct = G, `I
t = −λ̃

I
and `E

t = −∞

with the vectors and matrices generated with the discretization and decompo-
sition parameters H and h, respectively, so that the problem (29) is equivalent
to the problem

minimize Θt(λt) s.t. Ctλt = 0 and λt ≥ `t (34)

with Θt(λ) = 1
2λ>Atλ−b>t λ. Using these definitions and GG> = I, we obtain
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‖Ct‖ ≤ 1 and ‖`+
t ‖ = 0, (35)

where for any vector v with the entries vi, v+ denotes the vector with the
entries v+

i = max{vi, 0}. Moreover, it follows by Theorem 4 that for any C ≥ 2
there are constants aC

max > aC
min > 0 such that

aC
min ≤ αmin(At) ≤ αmax(At) ≤ aC

max (36)

for any t ∈ TC . Moreover, there are positive constants C1 and C2 such that
aC
min ≥ C1 and aC

max ≤ C2C. In particular, it follows that the assumptions of
Theorem 5 (i.e. the inequalities (35) and (36)) of [8] are satisfied for any set
of indices TC , C ≥ 2, and we have the following result:

Theorem 5. Let C ≥ 2 denote a given constant, let {λk
t }, {µk

t } and {ρt,k}
be generated by Algorithm 2 (SMALBE) for (34) with ‖bt‖ ≥ ηt > 0, β > 1,
M > 0, ρt,0 = ρ0 > 0, and µ0

t = o. Let s ≥ 0 denote the smallest integer such
that βsρ0 ≥ M2/amin and assume that Step 1 of Algorithm 2 is implemented by
means of Algorithm 1 (MPRGP) with parameters Γ > 0 and α ∈ (0, (amax +
βsρ0)−1], so that it generates the iterates λk,0

t , λk,1
t , . . . , λk,l

t = λk
t for the

solution of (34) starting from λk,0
t = λk−1

t with λ−1
t = o, where l = lt,k is the

first index satisfying

‖gP (λk,l
t , µk

t , ρt,k)‖ ≤ M‖Ctλ
k,l
t ‖ (37)

or
‖gP (λk,l

t , µk
t , ρt,k)‖ ≤ ε‖bt‖min{1,M−1}. (38)

Then for any t ∈ TC and problem (34), Algorithm 2 generates an approximate
solution λkt

t which satisfies

M−1‖gP (λkt
t ,µkt

t , ρt,kt)‖ ≤ ‖Ctλ
kt
t ‖ ≤ ε‖bt‖ (39)

at O(1) matrix-vector multiplications by the Hessian of the augmented La-
grangian Lt for (34) and ρt,k ≤ βsρ0.

Proof. See [9].

8 Numerical Experiments

We have implemented all three domain decomposition methods described
above to the solution of both variants of the model problems of Fig. 1. The
solution of both problems is in Fig. 2. For the solution of the quadratic pro-
gramming problems generated by FETI1 and TFETI, we used the SMALBE
algorithm of Section 3 with the inner loop generated by the MPRGP algo-
rithm of Section 2. We have implemented the solver in C exploiting PETSc
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Fig. 3a: Coercive problem Fig. 3b: Semicoercive problem

Fig. 2. Solution of model problems

Table 1. Numerical scalability of FETI and TFETI for H/h=const and ρ=1e3

primal dim. 2312 9248 36992 133128 532512 2130048

FETI/TFETI dual dim. 167/201 863/931 3839/3975 1287/- 6687/- 29823/-

subdomains 8 32 128 8 32 128

FETI iterations 47 58 64 59 36 47

TFETI iterations 39 54 45 - - -

to solve the semicoercive model problem with varying decomposition and dis-
cretization parameters. The results of computations which were carried out
to the relative precision 1e-4 are in Table 1.

Since the algorithms are closely related to the original FETI method, it
is not surprising that they enjoy good parallel scalability as documented in
Table 2. The experiments with semicoercive problem were run on the Lomond
52-processor Sun Ultra SPARC-III based system with 900 MHz, 52 GB of
shared memory, nominal peak performance 93.6 GFlops, 64 kB level 1 and 8
MB level 2 cache in EPCC Edinburgh, to the relative precision 1e-4.

Table 2. Parallel scalability for semicoer.problem with prim.dim 540800, dual
dim.14975, 2 outer iters, 43 cg iters, 128 subdomains using Lomond, ρ=1e3

processors 1 2 4 8 16 32

time [sec] 879 290 138 50 27 15

We have implemented also the basic FETI-DP algorithms for the so-
lution of both coercive and semicoercive problems in MATLAB. We have
used MPRGP of Section 2 for the solution of the coercive problems and the
SMALBE algorithm of Section 3 with the inner loop generated by the MPRGP
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algorithm to the solution of the semicoercive problem to the relative precision
1e-6. The results are in Table 3.

Table 3. Numerical scalability of the basic FETI-DP for coer. and semi-
coer.problem, ρ=1e3

prim./dual/corner dim. 2312/153/10 9248/785/42 36992/3489/154

subdomains 8 32 128

cg iters for coer.problem 27 48 51

cg iters for semicoer.problem 41 57 63

9 Comments and Conclusions

We have reviewed our recent results related to application of the augmented
Lagrangians with the FETI based domain decomposition method to the so-
lution of variational inequalities using recently developed algorithms for the
solution of special QP problems. In particular, we have shown that the solu-
tion of the discretized problem to a prescribed precision may be found in a
number of iterations bounded independently of the discretization parameter.
Numerical experiments with the model variational inequality are in agree-
ment with the theory and indicate that the algorithms presented are efficient.
The research in progress includes implementation of preconditioners, the mor-
tar discretization and the generalization to the contact problems with friction.
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