
ON SOLVABILITY OF CONVEX NON-COERCIVE QUADRATIC

PROGRAMMING PROBLEMS∗
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Abstract. Using a known result on minimization of convex functionals on polyhedral cones,

the Frank–Wolfe theorem, and basic linear algebra, we give a simple proof that the general convex

quadratic programming problem which satisfies a natural necessary condition has a solution.
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1. Introduction. We are interested in sufficient conditions which guarantee the

solvability of the quadratic programming problem to find

min
x∈Ω

f(x)(1)

with Ω = {x : Bx ≤ c}, f(x) = 1
2xT Ax − xT b, B ∈ Rm×n, c ∈ Rm, b ∈ Rn, and

A ∈ Rn×n symmetric positive semidefinite. The letter asssumption on A implies that

f is convex. Moreover, to avoid trivial cases, we assume that Ω is nonempty.

Let us recall that there is known a number number of conditions which guarantee

solvability of (1). For example, if Ω is bounded, then the existence of a solution follows

by the compactness argument [1], and if f is bounded from below on Ω, the there is

a solution by the classical Frank–Wolfe theorem [4]. See also Eaves [3] or Blum and

Oettli [2].

In many applications, the coercivity of f is one of the most useful assumptions

which guarantee that there is a solution to (1). Let us recall that f is coercive with

respect to Ω if f(x) →∞ for x →∞, x ∈ Ω. For example, it is well known that the

variational inequality which describes the equilibrium of a system of elastic bodies
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with some “floating” bodies in mutual contact has a solution if the energy functional

is semicoercive, i.e. coercive due to the form of the linear term. See, e.g., Hlaváček

et al. [5]. However, it is easy to see that a solution may exist in more general case.

The point of this note is to give a necessary and sufficient condition which guarantees

that a solution to (1) exists. We do not use any reference to coercivity.

Our main tools are some well-known facts about the structure of polyhedral sets

like Ω, i.e. the sets described by linear inequalities, and some simple observations

concerning the recession cone C of Ω which is defined by

C = {d ∈ Rn : Bd ≤ o}.

We shall use the following nontrivial representation of the polyhedral sets like Ω.

Proposition 1.1. A set Ω ⊆ Rn is polyhedral if and only if there is a nonempty

set of n-vectors {x1, . . . , xk} and a polyhedral cone C ⊆ Rn such that

Ω = C + Conv{x1, . . . , xk},

where Conv{x1, . . . , xk} denotes the convex hull of x1, . . . , xk.

Proof. See, e.g., [1, Proposition B.17].

2. Main theorem. We shall go straight to the following formulation of the main

result.

Theorem 2.1. Let the convex quadratic programming problem (1) be defined as

above with Ω 6= ∅. Then (1) has a solution if and only if

dT b ≤ 0 for d ∈ C ∩KerA,(1)

where C is the recession cone of Ω.

Proof. Let x be a global solution of the minimization problem (1), and recall that

f(x + αd)− f(x) = α(Ax− b)T d +
α2

2
dT Ad(2)
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for any d ∈ Rn and α ∈ R. To see that (2) is satisfied, notice that if d ∈ C ∩ KerA,

then (2) reduces to

f(x + αd)− f(x) = −αbT d,

which is nonnegative for any α > 0 if and only if bT d ≤ 0. Thus (1) is satisfied.

Let us now assume that (1) is satisfied and observe that if c = o, then Ω is a

cone, so that a solution is known to exist even in infinite dimension (see Zeidler [6],

pp. 553–556). To prove the general case, we shall use the latter fact to show that f is

bounded from below on C, so that a solution exists by the Frank–Wolfe theorem [4].

If c is arbitrary, then by Proposition 1.1 there are x1, . . . , xk ∈ Ω such that

Ω = C + conv{x1, . . . , xk}, C = {x : Bx ≤ o}.

Observing that d ∈ C if and only if 2d ∈ C, it follows that any x ∈ Ω can be written

in the form

x = 2d + y, d ∈ C, y ∈ Conv{x1, . . . , xk}.

Thus

f(x) = f(2d + y) = dT Ad− 2bT d + dT Ad + 2dT Ay +
1
2
yT Ay − bT y

≥ 2f(d) + (dT Ad + 2dT Ay)− bT y.

We have already seen that f is bounded from below on C. Moreover, using the

Euclidean norm, we get

−bT y ≥ −‖b‖(‖x1‖+ . . . + ‖xk‖
)
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and

dT Ad + 2dT Ay ≥ −(Ay)T A†Ay = −yT Ay ≥ −‖A‖(‖x1‖+ . . . + ‖xk‖
)2

,

where A† denotes the Moore–Penrose generalized inverse to A. Thus f is bounded

from below on Ω and we can use the Frank–Wolfe theorem to finish the proof.

3. Comments and conclusions. We gave a necessary and sufficient condition

for solvability of convex quadratic programming problems. The proof uses a known

result on minimization of the convex functional on a polyhedral cone, Frank–Wolfe

theorem, and basic linear algebra. Our result is useful for analysis of solvability of

convex quadratic programming problems arising from the discretization of variational

inequalities that describe the equilibrium of a system of elastic bodies in mutual

contact.
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