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Abstract
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1 Introduction

We are concerned with the problem to find

min
x∈Ω

f(x) (1.1)

with Ω = {x : x ≥ `}, f(x) = 1
2xT Ax − xT b, ` and b given column n-vectors, and A

an n × n symmetric positive definite matrix. We are interested especially in problems
with n large and A reasonably conditioned or preconditioned [1], so that the application
of the conjugate gradient based methods is suitable. Problems of this type arise, e.g.,
in applications of the duality based domain decomposition methods to the solution of
discretized variational inequalities [18, 23, 42, 43] or in solving auxiliary problems in the
augmented Lagrangian type algorithms for minimization of convex quadratic functions
subject to more general constraints [16, 17].

The most popular algorithms for the solution of (1.1) are based on the active set
strategy or the interior point methods; basic ideas of these methods are described, e.g.,
in the book by Nocedal and Wright [39]. Closely related to the active set method is
the Newton semi-smooth method; see, e.g., Hintermüller, Ito, and Kunisch [33] or Hüeber,
Stadler, and Wohlmuth [34]. Here we restrict our attention to the active set based MPRGP
(modified proportioning with reduced gradient projection) algorithm proposed by Dostál
and Schöberl [26]. The algorithm uses the conjugate gradient method to explore the
face of the feasible region defined by the current iterate and invokes the reduced gradient
projection with the fixed steplength to expand the active set, combining the minimiza-
tion in the face of the Polyak algorithm [40] with the gradient projections pioneered by
Calamai and Moré [6] and Moré and Toraldo [36]. The precision of approximate solu-
tions of the auxiliary unconstrained problems is controlled by the norm of violation of
the Karush–Kuhn–Tucker conditions as in the proportioning based algorithms studied by
Friedlander and Mart́ınez with their collaborators and Dostál [28, 30, 29, 4, 10, 11, 8]. For
the steplength α ∈ (0, ‖A‖−1], Dostál and Schöberl [26] gave the formula for the bound on
the R-linear rate of convergence in terms of the spectral condition number of the Hessian
matrix A and provided the proof of the finite termination property even for the problems
whose solution does not satisfy the strict complementarity condition. Later Dostál [13]
found also a bound on the R-linear rate of convergence of the projected gradient. More
comprehensive discussion of the development of algorithms for the solution of bound con-
strained quadratic programming problems can be found, e.g., in Dostál and Schöberl [26]
or Hager and Zhang [32]. Important ideas for the analysis of the rate of convergence of
the gradient projection method were introduced by Luo and Tseng [35].

The MPRGP algorithm was a key ingredient in the development of scalable algorithms
for numerical solution of variational inequalities [23, 25, 21, 24]. Though the algorithm
turned out to be effective not only in theory, but also in practice, it was observed [38, 27]
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that the best performance was obtained for the values of the steplength slightly less then
2‖A‖−1, near the steplength minimizing the the bound on the Euclidean contraction of
the projected gradient method [3] and beyond the range covered by the theory based on
the analysis by Schöberl [42, 43, 26]. The point of this paper is to apply a recent result
by Dostál [15] to improve the analysis of MPRGP [26, 13] so that it covers application of
the steplength α ∈ (0, 2‖A‖−1].

Our analysis extends also the results of Dostál [13] on the R-linear convergence of the
projected gradient. This result is important when MPRGP is used in the inner loop of some
other algorithm, such as the inexact augmented Lagrangians proposed by Dostál, Fied-
lander, and Santos [17] or SMALBE (semimonotonic augmented Lagrangians for bound
and equality constrained problems) algorithm proposed by Dostál [14]. Recall that the R-
linear convergence of the projected gradient does not follow from the R-linear convergence
of the iterates as the projected gradient is not a continuous function of the iterates.

We extend also the results of Dostál and Schöberl [26] on the finite termination prop-
erty of our algorithm, including the problems with a dual degenerate solution. We believe
that there are at least two reasons why to consider the finite termination results important.
First the algorithm with the finite termination property is less likely to suffer from the
oscillations often attributed to the active set based algorithms as it removes the indices
from the active set only when there is some ground to do it. The second reason is that such
algorithm is more likely to generate longer sequences of the conjugate gradient iterations
and finally switches to the conjugate gradient method, so that it can better exploit its
nice self-acceleration property [44]. It seems very difficult to enhance these characteristics
of the algorithm into the rate of convergence.

The paper is organized as follows. After the introduction, we review relevant results
and give the proof of the rate of convergence of the iterations and of the projected gradient.
Then we extend the results of Dostál and Schöberl on the finite termination property.
Finally we give results of numerical experiments that illustrate the performance of the
algorithm for large steplength of the reduced gradient projection.

2 Notations and preliminaries

It is well known that the solution to the problem (1.1) always exists, and it is necessarily
unique [2]. For arbitrary n-vector x, let us define the gradient g = g(x) of f by

g = g(x) = Ax− b. (2.1)

Then the unique solution x̂ of (1.1) is fully determined by the Karush-Kuhn-Tucker opti-
mality conditions [2] so that for i = 1, . . . , n,

x̂i = `i implies gi ≥ 0 and x̂i > `i implies gi = 0. (2.2)
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Let N denote the set of all indices so that

N = {1, 2, . . . , n}.

The set of all indices for which xi = `i is called an active set of x. We shall denote it by
A(x) so that

A(x) = {i ∈ N : xi = `i}.
Its complement

F(x) = {i ∈ N : xi 6= `i}
and subset

B(x) = {i ∈ N : xi = `i and gi > 0}
are called a free set and a binding set , respectively.

To enable an alternative reference to the Karush–Kuhn–Tucker conditions (2.2), we
shall introduce a notation for the free gradient ϕ and the chopped gradient β that are
defined by

ϕi(x) = gi(x) for i ∈ F(x), ϕi(x) = 0 for i ∈ A(x)

βi(x) = 0 for i ∈ F(x), βi(x) = g−i (x) for i ∈ A(x)

where we have used the notation g−i = min{gi, 0}. Thus the Karush- Kuhn-Tucker condi-
tions (2.2) are satisfied iff the projected gradient gP (x) = ϕ(x) + β(x) is equal to zero.

The Euclidean norm and the A−energy norm of x will be denoted by ‖x‖ and ‖x‖A,
respectively. Thus ‖x‖2 = xT x and ‖x‖2

A = xT Ax. Analogous notation will be used for
the induced matrix norm, so that the spectral condition number κ(A) of the matrix A is
defined by

κ(A) = ‖A‖‖A−1‖.
The projection PΩ to Ω is defined for any n-vector x by

PΩ(x) = ` + (x− `)+

where y+ denotes for any n-vector y the vector with entries y+
i =max {yi, 0}.

If M ∈ IRn×n, v ∈ IRn, and S ⊆ {1, . . . , n}, then AS and vS denote the submatrix of
A and the subvector of v with the row indices i ∈ S.

3 Algorithm with proportioning and gradient projections

The algorithm for the solution of (1.1) that we propose here combines the proportioning
algorithm mentioned above with the gradient projections. To generate a sequence of
iterates {xk} that approximate the solution of (1.1), it exploits a given constant Γ > 0, a
test to decide about leaving the face and three types of steps.
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The expansion step is defined by

xk+1 = PΩ

(
xk − αϕ(xk)

)
(3.1)

with the fixed steplength α ∈ (0, 2‖A‖−1]. This step may expand the current active set.
To describe it without PΩ, let us introduce, for any x ∈ Ω and α > 0, the reduced free
gradient ϕ̃α(x) with the entries

ϕ̃i = ϕ̃i(x) = min{(xi − `i)/α, ϕi},
so that

PΩ (x− αϕ(x)) = x− αϕ̃α(x). (3.2)

Using the new notation, we can write for any x ∈ Ω

PΩ (x− αg(x)) = x− α (ϕ̃α(x) + β(x)) . (3.3)

If the inequality
||β(xk)||2 ≤ Γ2ϕ̃α(xk)T ϕ(xk) (3.4)

holds then we call the iterate xk strictly proportional. The test (3.4) is used to decide which
component of the projected gradient gP (xk) will be reduced in the next step. Notice that
the right-hand side of (3.4) blends the information about the current free gradient and its
part that can be used in the expansion step, while the related relations in [28, 30, 29, 4,
10, 8, 7] consider only the norm of the free gradient.

The proportioning step is defined by

xk+1 = xk − αcgβ(xk) (3.5)

with the steplength αcg that minimizes f
(
xk − αβ(xk)

)
. It is easy to check [1, 31] that

αcg that minimizes f(x− αd) for given d and x may be evaluated by the formula

αcg = αcg(d) =
dT g(x)
dT Ad

. (3.6)

The purpose of the proportioning step is to remove indices from the active set. Note that
if xk ∈ Ω, then xk+1 = xk − αcgβ(xk) ∈ Ω.

The conjugate gradient step is defined by

xk+1 = xk − αcgp
k (3.7)

where pk is the conjugate gradient direction [1, 31] which is constructed recurrently. The
recurrence starts (or restarts) from ps = ϕ(xs) whenever xs is generated by the expansion
step or the proportioning step. If pk is known, then pk+1 is given by the formulae [1, 31]

pk+1 = ϕ(xk)− γpk, γ =
ϕ(xk)T Apk

(pk)T Apk
. (3.8)
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The basic property of the conjugate directions ps, . . . , pk that are generated by the re-
currence (3.8) from the restart ps is their mutual A-orthogonality, i.e. (pi)T Apj = 0 for
i, j ∈ {s, . . . , k}, i 6= j. It follows easily [1, 31] that

f(xk+1) = min{f(xs + y) : y ∈ Span{ps, . . . , pk}} (3.9)

where Span{ps, . . . , pk} denotes the vector space of all linear combinations of the vectors
ps, . . . , pk. The conjugate gradient steps are used to carry out the minimization in the face

WI = {x : xi = `i for i ∈ I } (3.10)

given by I = A(xs) efficiently.
Let us define the algorithm that we propose in the form that is convenient for analysis.

Algorithm 3.1. Modified proportioning with reduced gradient projections
(MPRGP).
Let x0 ∈ Ω, α ∈ (0, 2‖A‖−1], and Γ > 0 be given. For k ≥ 0 and xk known, choose xk+1

by the following rules:
(i) If gP (xk) = 0, set xk+1 = xk.
(ii) If xk is strictly proportional and gP (xk) 6= 0, try to generate xk+1 by the conjugate
gradient step. If xk+1 ∈ Ω, then accept it, else generate xk+1 by the expansion step.
(iii) If xk is not strictly proportional, define xk+1 by proportioning.

More details concerning the implementation of the algorithm (except the bound on
the steplength) may be found in Dostál and Schöberl [26].

4 Auxiliary results

Let us assume that x ∈ Ω is arbitrary but fixed, so that we can define for each α ∈ IR a
quadratic function

Fα(y) = αf(y) +
1
2
(y − x)T (I − αA)(y − x). (4.1)

Then
Fα(x) = αf(x), ∇Fα(x) = α∇f(x), ∇2Fα(x) = I, (4.2)

and for δ ≤ ‖A‖−1

δf(y) ≤ Fδ(y) for any y ∈ IRn. (4.3)

Moreover, if 0 ≤ δ ≤ ‖A‖ = 1, then

δF1(y) ≤ δF1(y) +
1− δ

2
‖y − x‖2 = Fδ(y). (4.4)
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It is easy to check that Fα is separable, i.e. there is a vector c ∈ IRn and di ∈ IR, i−1, . . . , n,
such that

Fα(y) =
n∑

i=1

Fαi(yi), Fαi(yi) =
1
2
y2

i − ciyi + di, y = [yi], (4.5)

We shall use some other relations from [26].

Lemma 4.1 Let x̂ denote a unique solution of (1.1), let λmin denote the smallest
eigenvalue of A, ηf = 1− δλmin, δ ∈ (0, ‖A‖−1], x ∈ Ω, and g = Ax− b. Let Then

f(PΩ (x− δg))− f(x̂) ≤ ηf (f(x)− f(x̂)) (4.6)

and
Fδ(PΩ(x− (2− δ)ϕ(x))) ≤ Fδ(PΩ(x− δϕ(x))). (4.7)

Proof: The inequality (4.6) has been proved by Schöberl; see Theorem 4.1 of [26]. The
inequality (4.7) for n = 1 can be proved by a straightforward analysis of all possibilities;
see [15] for the details.

To prove the general case n ≥ 1, first recall that PΩ is separable and can be defined
componentwise by

Pi(y) = max{y, `i}, i = 1, . . . , n, y ∈ IR.

Denoting F , A, and gi the free set of x, the active set of x, and the components of the
gradient g(x), respectively, we can use the separable representation (4.5) of Fδ to reduce
(4.7) to the case n = 1. Thus we have

Fδ(PΩ(x− (2− δ)ϕ(x))) =
n∑

i=1

Fδi([PΩ(x− (2− δ)ϕ(x))]i)

=
∑

i∈F
Fδi(Pi(xi − (2− δ)gi)) +

∑

i∈A
Fδi(Pi(xi))

≤
∑

i∈F
Fδi(Pi(xi − δgi)) +

∑

i∈A
Fδi(Pi(xi))

= Fδ(PΩ(x− δϕ(x))).

This proves (4.7). ¤

5 Rate of convergence

Now we are ready to prove the R-linear rate of convergence of MPRGP in terms of bounds
on the spectrum of the Hessian A for α ∈ (0, 2‖A‖−1).
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Theorem 5.1. Let {xk} denote the sequence generated by Algorithm 3.1 with α ∈
(0, 2‖A‖−1] and Γ > 0. Then for any k ≥ 0

f(xk+1)− f(x̂) ≤ ηΓ

(
f(xk)− f(x̂)

)
, (5.1)

where x̂ denotes a unique solution of (1.1),

ηΓ = 1− α̂λmin

ϑ + ϑΓ̂2
, Γ̂ = max{Γ, Γ−1}, (5.2)

ϑ = 2 max{α‖A‖, 1}, α̂ = min{α, 2‖A‖−1 − α}, (5.3)

and λmin denotes the smallest eigenvalue of A. The error in the A-norm is bounded by

‖xk − x̂‖2
A ≤ 2ηk

Γ

(
f(x0)− f(x̂)

)
. (5.4)

Proof: Our main tools are the auxiliary results of Sect. 4 and the inequality

f
(
PΩ

(
xk − αg(xk)

))
≥ f(xk)− α(ϕ̃α(xk)T ϕ(xk) + ‖β(xk)‖2), (5.5)

which can be obtained for any α ≥ 0 by the Taylor expansion and (3.3).
Let us first assume that ‖A‖ = 1 and let xk+1 be generated by the expansion step (3.1).

Using in sequence the definition of the dominating function associated with x = xk which
satisfies (4.3), Lemma 4.1, the assumptions ‖A‖ = 1 and α̂ ≤ 1 with (4.4), the Taylor
expansion with (3.2) and (4.2), ‖ϕ̃α̂(xk)‖2 ≤ ϕ̃α̂(xk)T ϕ(xk), and simple manipulations, we
get

α̂f(xk+1) ≤ α̂F1(xk+1) = α̂F1

(
PΩ

(
xk − αϕ(xk)

))

≤ α̂F1

(
PΩ

(
xk − α̂ϕ(xk)

))
≤ Fα̂

(
PΩ

(
xk − α̂ϕ(xk)

))

= Fα̂

(
xk

)
− α̂2ϕ̃α̂(xk)T ϕ(xk) +

α̂2

2
‖ϕ̃α̂(xk)‖2

≤ Fα̂

(
xk

)
− α̂2

2
ϕ̃α̂(xk)T ϕ(xk) = α̂f(xk)− α̂2

2
ϕ̃α̂(xk)T ϕ(xk).

Thus
f(xk+1) ≤ f(xk)− α̂

2
ϕ̃α̂(xk)T ϕ(xk). (5.6)

The expansion step is used only when xk is strictly proportional, i.e.

‖β(xk)‖2 ≤ Γ2ϕ̃α(xk)T ϕ(xk).
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Since α̂ ≤ α by the definition, it follows that

ϕ̃α(xk)T ϕ(xk) ≤ ϕ̃α̂(xk)T ϕ(xk)

and
‖β(xk)‖2 ≤ Γ2ϕ̃α̂(xk)T ϕ(xk). (5.7)

After substituting (5.7) into (5.5) with α = α̂, we get

f(PΩ

(
xk − α̂g(xk)

)
) ≥ f(xk)− α̂(1 + Γ2)ϕ̃α̂(xk)T ϕ(xk). (5.8)

Thus for xk+1 generated by the expansion step, we get by elementary algebra and appli-
cation of (5.6) that

f(xk+1) ≤ f(xk)− α̂

2
ϕ̃α̂(xk)T ϕ(xk)

=
1

2 + 2Γ2

(
f(xk)− α̂(1 + Γ2)ϕ̃α̂(xk)T ϕ(xk) + (1 + 2Γ2)f(xk)

)

≤ 1
2 + 2Γ2

(
f

(
PΩ

(
xk − α̂g(xk)

))
+ (1 + 2Γ2)f(xk)

)
.

Inserting −f(x̂) + f(x̂) into the last term and substituting (4.6) with x = xk and α = α̂
into the resulting expression, we get

f(xk+1) ≤ ηf + 1 + 2Γ2

2 + 2Γ2
f(xk) +

1− ηf

2 + 2Γ2
f(x̂)

=
ηf + 1 + 2Γ2

2 + 2Γ2

(
f(xk)− f(x̂)

)
+ f(x̂). (5.9)

The proof of (5.1) for ‖A‖ = 1 is completed by

ηf + 1 + 2Γ2

2 + 2Γ2
=

ηf − 1 + 2 + 2Γ2

2 + 2Γ2
= 1− 1− ηf

2 + 2Γ2
= 1− α̂λmin

2 + 2Γ2
≤ ηΓ.

To prove the general case, it is enough to apply the theorem to h = ‖A‖−1f .
If xk+1 is generated by the conjugate gradient step (3.7), then by (3.9) and (3.6)

f(xk+1) ≤ f
(
xk − αcgϕ(xk)

)
= f(xk)− 1

2
‖ϕ(xk)‖4

ϕ(xk)T Aϕ(xk)

≤ f(xk)− 1
2
‖A‖−1‖ϕ(xk)‖2.
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Taking into account α̂ ≤ ‖A‖−1 and ϕ̃iϕi ≤ ϕ2
i , i = 1, . . . , n, we get

f(xk+1) ≤ f(xk)− 1
2
‖A‖−1‖ϕ(xk)‖2 ≤ f(xk)− α̂

2
ϕ̃α̂(xk)T ϕ(xk). (5.10)

Since the conjugate gradient step is carried out only if xk is proportional, we can use the
same reasoning as above to prove the same estimate for the conjugate gradient as we have
proved for the expansion step.

Let us finally assume that xk+1 is generated by the proportioning step (3.5), so that

‖β(xk)‖2 > Γ2ϕ̃α(xk)T ϕ(xk) (5.11)

and

f(xk+1) = f
(
xk − αcgβ(xk)

)
= f(xk)− 1

2
‖β(xk)‖4

β(xk)T Aβ(xk)

≤ f(xk)− 1
2
‖A‖−1‖β(xk)‖2.

Taking into account the definition of α and ϑ, we get

α/ϑ ≤ ‖A‖−1/2

and
f(xk+1) ≤ f(xk)− α

ϑ
‖β(xk)‖2, (5.12)

where the right-hand side may be rewritten in the form

f(xk)− α

ϑ
‖β(xk)‖2 =

1
ϑ(1 + Γ−2)

(
f(xk)− α(1 + Γ−2)‖β(xk)‖2

)

+
ϑ + ϑΓ−2 − 1
ϑ(1 + Γ−2)

f(xk). (5.13)

We can also substitute (5.11) into (5.5) to get

f
(
PΩ

(
xk − αg(xk)

))
> f(xk)− α(1 + Γ−2)‖β(xk)‖2. (5.14)

After substituting (5.14) into (5.13), using (5.12), (4.6) with x = xk, and simple manipu-
lations, we get

f(xk+1) <
1

ϑ + ϑΓ−2
f
(
PΩ(xk − αg(xk))

)
+

ϑ + ϑΓ−2 − 1
ϑ + ϑΓ−2

f(xk)

=
1

ϑ + ϑΓ−2

(
f
(
PΩ

(
xk − αg(xk)

))
− f(x̂)

)
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+
1

ϑ + ϑΓ−2
f(x̂) +

ϑ + ϑΓ−2 − 1
ϑ + ϑΓ−2

f(xk)

≤ ηf

ϑ + ϑΓ−2

(
f(xk)− f(x̂)

)
+

1
ϑ + ϑΓ−2

f(x̂) +
ϑ + ϑΓ−2 − 1

ϑ + ϑΓ−2
f(xk)

=
ηf + ϑ + ϑΓ−2 − 1

ϑ + ϑΓ−2

(
f(xk)− f(x̂)

)
+ f(x̂).

Comparing the last inequality with (5.9) and taking into account that by the definition
Γ ≤ Γ̂, Γ−1 ≤ Γ̂, and ϑ ≥ 2, we obtain that the estimate

f(xk+1)− f(x̂) ≤ ηf + ϑ + ϑΓ−2 − 1
ϑ + ϑΓ−2

(
f(xk)− f(x̂)

)

is valid for the all three steps. The proof of (5.1) is completed by

ηΓ =
ηf + ϑ + ϑΓ−2 − 1

ϑ + ϑΓ−2
= 1− 1− ηf

ϑ + ϑΓ−2
= 1− α̂λmin

ϑ + ϑΓ̂2
. ¤

An inspection of the proof reveals that the factor ϑ appears only in the analysis of
the proportioning step, which depends on α only via the proportioning test.

6 Rate of convergence of projected gradient

To use the MPRGP algorithm in the inner loops of other algorithms, it is important to
recognize when we are near the solution. There is a catch – the projected gradient is not
a continuous function of the iterates! The R-linear convergence of the projected gradient
is treated by the following theorem.

Theorem 6.1 Let {xk} be generated by Algorithm 3.1 with x0 ∈ Ω, Γ > 0, and α ∈
(0, 2‖A‖−1]. Let α̂, Γ̂, ϑ, and ηΓ be those of Theorem 5.1. Let x̂ denote the unique solution
of (1.1).

Then for any k ≥ 0

‖gP (xk+1)‖2 ≤ a1η
k
Γ

(
f(x0)− f(x̂)

)
(6.1)

and

a1 =
38

α̂(1− ηΓ)
=

38ϑ(1 + Γ̂2)
α̂2λmin

. (6.2)

Proof: First notice that it is enough to estimate separately β(xk) and ϕ(xk) as

‖gP (xk)‖2 = ‖β(xk)‖2 + ‖ϕ(xk)‖2.
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In particular, since α̂ ≤ ‖A‖−1, we have for any vector d such that dT g(x) ≥ ‖d‖2

f(x)− f(x− α̂d) = α̂dT g(x)− 1
2
α̂2dT Ad ≥ α̂

2
‖d‖2. (6.3)

It follows that we can combine (6.3) with xk − α̂β(xk) ≥ ` to estimate ‖β(xk)‖ by

f(xk)− f(x̂) = (f(xk)− f(xk − α̂β(xk)) +
(
f

(
xk − α̂β(xk)

)
− f(x̂)

)

≥ f(xk)− f(xk − α̂β(xk)) ≥ α̂

2
‖β(xk)‖2. (6.4)

Applying (5.1), we get

‖β(xk)‖2 ≤ 2
α̂

(
f(xk)− f(x̂)

)
≤ 2ηk

Γ

α̂
(f(x0)− f(x̂)). (6.5)

To estimate ‖ϕ(xk)‖, notice that the algorithm “does not know” about the compo-
nents of the constraint vector ` when it generates xk+1 unless their indices belong to
A(xk) or A(xk+1). It follows that xk+1 may be considered also as an iterate generated by
Algorithm 3.1 from xk for the problem

minimize f(x) subject to xi ≥ `i for i ∈ A(xk) ∪ A(xk+1). (6.6)

If we denote

f
k = min{f(x) : xi ≥ `i for i ∈ A(xk) ∪ A(xk+1)} ≤ f(x̂)

and δk = f(x̂)− f
k ≥ 0, we can use (5.1) to get

δk = f(x̂)− f
k ≤ f(xk+1)− f

k ≤ ηΓ

(
f(xk)− f

k
)

= ηΓ

(
f(xk)− f(x̂)

)
+ ηΓδk,

so that

δk ≤ ηΓ

1− ηΓ

(
f(xk)− f(x̂)

)
≤ ηk+1

Γ

1− ηΓ

(
f(x0)− f(x̂)

)
. (6.7)

Now observe that the indices of the unconstrained components of the minimization
problem (6.6) are those belonging to Ik = F(xk) ∩ F(xk+1) as

Ik = F(xk) ∩ F(xk+1) =
(
N \ A(xk)

)
∩

(
N \ A(xk+1)

)

= N \
(
A(xk) ∪ A(xk+1)

)
.
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It follows that if Ik is nonempty, then by the definition of δk and (6.3)

δk ≥ f(x̂)− f(x̂− α̂gIk(x̂)) ≥ α̂

2
‖gIk(x̂)‖2. (6.8)

For convenience, let us define gI(x) = o for any x ∈ IRn and empty set I = ∅. Then (6.8)
remains valid for Ik = ∅, so that we can combine it with (6.7) to get

‖gIk(x̂)‖2 ≤ 2
α̂

δk ≤
2ηk+1

Γ

α̂(1− ηΓ)
(f(x0)− f(x̂)). (6.9)

Since our algorithm is defined so that either Ik = F(xk) ⊆ F(xk+1) or Ik = F(xk+1) ⊆
F(xk), it follows that either

‖gF(xk)(x̂)‖2 = ‖gIk(x̂)‖2 ≤ 2ηk+1
Γ

α̂(1− ηΓ)
(f(x0)− f(x̂))

≤ 2ηk
Γ

α̂(1− ηΓ)
(f(x0)− f(x̂)) (6.10)

or

‖gF(xk+1)(x̂)‖2 = ‖gIk(x̂)‖2 ≤ 2ηk+1
Γ

α̂(1− ηΓ)
(f(x0)− f(x̂)).

Using the same reasoning for xk−1 and xk, we conclude that the estimate (6.10) is valid
for any xk such that

F(xk−1) ⊇ F(xk) or F(xk) ⊆ F(xk+1). (6.11)

Let us now recall that using simple manipulations and (5.1), we get

‖g(xk)− g(x̂)‖2 = ‖A(xk − x̂)‖2 ≤ ‖A‖‖xk − x̂‖2
A ≤

2
α̂

ηk
Γ

(
f(x0)− f(x̂)

)
. (6.12)

Thus for any k satisfying the relations (6.11), we get

‖ϕ(xk)‖ = ‖gF(xk)(x
k)‖ ≤ ‖gF(xk)(x

k)− gF(xk)(x̂)‖+ ‖gF(xk)(x̂)‖

≤
√

2
α̂

ηk
Γ(f(x0)− f(x̂)) +

√
2

α̂(1− ηΓ)
ηk
Γ(f(x0)− f(x̂))

≤ 2

√
2

α̂(1− ηΓ)
ηk
Γ(f(x0)− f(x̂)).

Combining the last inequality with (6.5), we get for any k satisfying the relations (6.11)
that

‖gP (xk)‖2 = ‖β(xk)‖2 + ‖ϕ(xk)‖2 ≤ 10
α̂(1− ηΓ)

ηk
Γ(f(x0)− f(x̂)). (6.13)
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Now notice that the estimate (6.13) is valid for any iterate xk which satisfies F(xk−1) ⊇
F(xk), i.e. when xk is generated by the conjugate gradient step or the expansion step.
Thus it remains to estimate the projected gradient of the iterate xk generated by the
proportioning step. In this case F(xk−1) ⊆ F(xk), so that we can use the estimate (6.13)
to get

‖gP (xk−1)‖ ≤
√

10
α̂(1− ηΓ)

ηk−1
Γ (f(x0)− f(x̂)). (6.14)

Since the proportioning step is defined by xk = xk−1 − αcgβ(xk−1), it follows that

‖gF(xk)(x
k−1)‖ = ‖gP (xk−1)‖.

Moreover, using the basic properties of the norm, we get

‖ϕ(xk)‖ = ‖gF(xk)(x
k)‖ ≤ ‖gF(xk)(x

k)− gF(xk)(x
k−1)‖+ ‖gF(xk)(x

k−1)‖
≤ ‖g(xk)− g(x̂)‖+ ‖g(x̂)− g(xk−1)‖+ ‖gP (xk−1)‖,

and by (6.12) and (6.14)

‖ϕ(xk)‖ ≤
√

2
α̂

ηk
Γ(f(x0)− f(x̂)) +

√
2
α̂

ηk−1
Γ (f(x0)− f(x̂))

+

√
10

α̂(1− ηΓ)
ηk−1
Γ (f(x0)− f(x̂))

≤ (
√

5 + 2)

√
2

α̂(1− ηΓ)
ηk−1
Γ (f(x0)− f(x̂)).

Combining the last inequality with (6.5), we get by simple computation that

‖gP (xk)‖2 = ‖ϕ(xk)‖2 + ‖β(xk)‖2 ≤ 38
α̂(1− ηΓ)

ηk−1
Γ

(
f(x0)− f(x̂)

)
.

Since the last estimate is obviously weaker than (6.13), it follows that (6.1) is valid for all
indices k. ¤

7 Finite termination

We shall start our exposition with the following identification lemma.
Lemma 7.1. Let {xk} denote the sequence generated by Algorithm 3.1 with a given Γ > 0
and α ∈ (0, 2‖A‖−1). Then there is k0 such that for k ≥ k0

F(x̂) ⊆ F(xk), F(x̂) ⊆ F(xk − αϕ̃(xk)), and B(x̂) ⊆ B(xk). (7.1)
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Proof: Since (7.1) is trivially satisfied when there is k = k0 such that xk = x̂, we shall
assume in what follows that xk 6= x̂ for any k ≥ 0.

Let us first assume that F(x̂) 6= ∅ and B(x̂) 6= ∅, so that

ε = min{x̂i − `i : i ∈ F(x̂)} > 0 and δ = min{gi(x̂) : i ∈ B(x̂)} > 0.

Since by Theorem 5.1 {xk} converges to x̂, there is k0 such that for any k ≥ k0

gi(xk) ≤ ε

4α
for i ∈ F(x̂) (7.2)

xk
i ≥ `i +

ε

2
for i ∈ F(x̂) (7.3)

xk
i ≤ `i +

αδ

8
for i ∈ B(x̂) (7.4)

gi(xk) ≥ δ

2
for i ∈ B(x̂). (7.5)

In particular, for k ≥ k0, the first inclusion of (7.1) follows from (7.3), while the second
inclusion follows from (7.2) and (7.3) as for i ∈ F(x̂)

xk
i − αϕi(xk) = xk

i − αgi(xk) ≥ `i +
ε

2
− ε

4
> `i.

Let k ≥ k0 and observe that, by (7.4) and (7.5), for any i ∈ B(x̂)

xk
i − αgi(xk) ≤ `i +

αδ

8
− αδ

2
< `i,

so that if some xk+1, k ≥ k0 is generated by the expansion step and i ∈ B(x̂), then

xk+1
i = `i + (xk

i − αgi(xk))+ = `i

and B(xk+1) ⊇ B(x̂). Moreover, using (7.5) and the definition of Algorithm 3.1, we can
directly verify that if B(xk) ⊇ B(x̂), then also B(xk+1) ⊇ B(x̂).

Let us examine what may happen for k ≥ k0. First observe that if xi > 0 for
some i ∈ B(x̂), then we can never take the full conjugate direction step in the direction
pk = ϕ(xk). The reason is that

αcg(pk) =
ϕ(xk)T g(xk)

ϕ(xk)T Aϕ(xk)
=

‖ϕ(xk)‖2

ϕ(xk)T Aϕ(xk)
≥ ‖A‖−1 ≥ α

2
,

so that for i ∈ F(xk)
⋂B(x̂), by (7.4) and (7.5),

xk
i − αcgp

k
i = xk

i − αcggi(xk) ≤ xk
i −

α

2
gi(xk) ≤ `i +

αδ

8
− αδ

4
< `i. (7.6)
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It follows by definition of Algorithm 3.1 that if xk, k ≥ k0 is generated by the proportioning
step, then the following trial conjugate gradient step is not feasible and xk+1 is necessarily
generated by the expansion step.

To complete the proof, observe that Algorithm 3.1 can generate only a finite sequence
of consecutive iterates by the conjugate gradient steps. In particular, it follows by the
finite termination property of the conjugate gradient method [1] that if there is neither
proportioning step nor the expansion step for k ≥ k0, then there is l ≤ n such that
ϕ(xk0+l) = 0. Thus either xk0+l = x̂ and by the definition of the step (i) of Algorithm 3.1
B(xk) = B(x̂) for k ≥ k0 + l, or xk0+l is not strictly proportional and the next iterate is
generated by the proportioning step followed by the expansion step. This completes the
proof, as the cases F(x̂) = ∅ and B(x̂) = ∅ may be easily proved by the specialization of
the above arguments. ¤

Corollary 7.2. Let {xk} denote the sequence generated by Algorithm 3.1, and let the
solution x̂ satisfies the condition of strict complementarity, i.e. x̂i = `i implies gi(x̂) 6= 0.
Then there is k ≥ 0 such that xk = x̂.
Proof: If x̂ satisfies the condition of strict complementarity, then A(x̂) = B(x̂), and by
assumptions and Lemma 7.1, there is k0 ≥ 0 such that F(xk) = F (x̂) and B(xk) = B(x̂).
Thus all xk, k ≥ k0 that satisfy x̂ 6= xk−1 are generated by the conjugate gradient steps
and by the finite termination property of the conjugate gradient method there is k ≤ k0+n
such that xk = x̂. ¤

Our final goal in this section is to obtain the result on finite termination of Algo-
rithm 3.1 for the solution of (1.1) in case that it does not satisfy the condition of strict
complementarity. We shall base our analysis on our earlier result on proportioning.

Theorem 7.3. Let x ∈ Ω and κ(A)1/2 ≤ Γ. Denote I = A(x), and suppose that

Γ‖ϕ(x)‖ < ‖β(x)‖. (7.7)

Then the vector y = x− ‖A‖−1β(x) satisfies

f(y) < min{f(z) : z ∈ WI} (7.8)

where WI is defined in (3.10).
Proof: See Dostál [11]. ¤

Lemma 7.4. Let α ∈ (0, 2‖A‖−1], x ∈ Ω, and y = x− αϕ̃(x). Then

‖ϕ(y)‖2 ≤ 9ϕ̃(x)T ϕ(x) and ‖β(y)‖ ≥ ‖β(x)‖ − 4‖ϕ̃(x)‖. (7.9)
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Proof: Let us denote F = F(y) and notice that F(y) ⊆ F(x). Since

g(y) = g(x)− αAϕ̃(x) and ϕ̃F (x) = ϕF (x) = gF (x), (7.10)

we get

‖ϕ(y)‖ = ‖gF (y)‖ = ‖gF (x)− αAF ϕ̃(x)‖ ≤ ‖ϕ̃F (x)‖+ α‖AF ϕ̃(x)‖ ≤ 3‖ϕ̃(x)‖. (7.11)

Using (7.11) and the definition of ϕ̃(x), we get

‖ϕ(y)‖2 ≤ 9‖ϕ̃(x)‖2 ≤ 9ϕ̃(x)T ϕ(x). (7.12)

To prove the second inequality of (7.9), denote B = {i ∈ A(x) : gi(x) ≤ 0} and notice
that

A(y) ⊇ A(x) ⊇ B, (7.13)

so that

‖β(y)‖ = ‖gA(y)(y)−‖ ≥ ‖gB(y)−‖ = ‖(gB(x)− αABϕ̃(x))−‖
= ‖(βB(x)− αABϕ̃(x))−‖. (7.14)

Using in sequence ‖βB(x)‖ = ‖β(x)‖, ‖αABϕ̃(x)‖ ≤ 2‖ϕ̃(x)‖, (7.14), properties of the
norm, β−(x) = β(x), and ‖z − z−‖ ≤ ‖z − t‖ for any t with non-positive entries, we get

‖β(x)‖ − ‖ϕ̃(x)‖ − ‖β(y)‖ ≤ ‖βB(x)‖ − 1
2
‖αABϕ̃(x)‖ − ‖(βB(x)− αABϕ̃(x))−)‖

≤ ‖(βB(x)− 1
2
αABϕ̃(x))‖ − ‖(βB(x)− αABϕ̃(x))−‖

≤ ‖(βB(x)− αABϕ̃(x))− (βB(x)− αABϕ̃(x))−‖+
1
2
α‖ABϕ̃(x))‖

≤ ‖βB(x)− αABϕ̃(x)− βB(x)‖+ ‖ϕ̃(x)‖ ≤ 3‖ϕ̃(x)‖.

This proves the second inequality of (7.9). ¤

Corollary 7.5. Let Γ ≥ 4, α ∈ (0, 2‖A‖−1], x ∈ Ω and

Γ2ϕ̃(x)T ϕ(x) < ‖β(x)‖2. (7.15)

Then the vector y = x− αϕ̃(x) satisfies

Γ− 4
3

‖ϕ(y)‖ < ‖β(y)‖. (7.16)
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Proof: The inequality (7.16) holds trivially for Γ = 4. For Γ > 4, using in sequence (7.9),
‖ϕ̃(x)‖2 ≤ ϕ̃(x)T ϕ(x), twice (7.15), and (7.9), we get

‖β(y)‖ ≥ ‖β(x)‖ − 4‖ϕ̃(x)‖ ≥ ‖β(x)‖ − 4
√

ϕ̃T (x)ϕ(x)

> (Γ− 4)
√

ϕ̃T (x)ϕ(x) ≥ Γ− 4
3

‖ϕ(y)‖. ¤ (7.17)

Theorem 7.6. Let {xk} denote the sequence generated by Algorithm 3.1. with α ∈
(0, 2‖A‖−1] and

Γ ≥ 3
√

κ(A) + 4. (7.18)

Then there is k ≥ 0 such that xk = x̂.
Proof: Let xk be generated by Algorithm 3.1 and let Γ satisfy (7.18). Let k0 be that
of Lemma 7.1 and let k ≥ k0 be such that xk is not strictly proportional, so that
Γ2ϕ̃(xk)T ϕ(xk) < ‖β(xk)‖2. Then by Corollary 7.5 the vector y = xk − αϕ̃(xk) satis-
fies

Γ1‖ϕ(y)‖ < ‖β(y)‖ (7.19)

with
Γ1 =

Γ− 4
3

≥
√

κ(A).

Moreover, y ∈ Ω and by Lemma 7.1 and definition of y

A(x̂) ⊇ A(y) ⊇ A(xk) ⊇ B(xk) ⊇ B(x̂), (7.20)

so that by Theorem 7.3 the vector

z = y − ‖A‖−1β(y)

satisfies
f(z) < min{f(x) : x ∈ WI} (7.21)

with I = A(y). Since I satisfies by (7.20) A(x̂) ⊇ I ⊇ B(x̂), we have also

f(x̂) = min{f(x) : x ∈ Ω} = min{f(x) : x ∈ WI}. (7.22)

However, z ∈ Ω, so that (7.22) contradicts (7.21). Thus all xk are strictly proportional for
k ≥ k0 so that

A(xk0) ⊆ A(xk0+1) ⊆ . . . .

Using the finite termination property of the conjugate gradient method, we conclude that
there must be k such that x̂ = xk. ¤
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8 Numerical experiments

The key ingredients of the algorithm have already proved to be useful in the development
of scalable algorithms for numerical solution variational inequalities [42, 43, 21, 23, 20].
The experiments presented here were carried out by the codes developed originally for
the research in the preconditioning of variational inequalities by M. Domorádová [9] and
for the development of BETI based scalable algorithms for variational inequalities by
M. Sadowská [5]. To illustrate the effect of the steplength in the expansion step, we
give here only two examples, a 2D inner obstacle problem discretized by the finite element
method and a 3D contact problem of elasticity discretized by the boundary element method
in combination with the BETI domain decomposition method. We used the stopping
criterion ‖gP (x)‖ ≤ 10−4‖b‖ and Γ = 1.

The first problem is the minimization of

f(u) =
1
2

∫

Ω
‖∇u(x)‖2dΩ +

∫

Ω
udΩ

subject to u ∈ K, where Ω = [0, 1]× [0, 1] and

K = {u ∈ H1(Ω) : −0.1 ≤ u on Ω, u(x, 0) = u(0, y) = 0 for x, y ∈ [0, 1]}.
The solution of our model problem can be interpreted as a vertical displacement of a
quarter of the membrane subject to the vertical traction with the unit density. See Fig. 1.
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Figure 1: Solution of an inner obstacle model problem

The problem was discretized using the linear finite elements on a regular grid with 100
nodal variables in each direction, 10000 altogether. No preconditioning was used in order
to isolate the effect of the steplength as much as possible. The number of the gradient
and MPRGP iterations for the varying steplength α are in Table 1.
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Table 1: Performance of the algorithm on a 2D scalar problem
α‖A‖ gradient steps MPRGP steps

0.2 545 871
0.4 445 761
0.6 338 689
0.8 293 625
1.0 247 557
1.2 221 530
1.4 204 504
1.6 187 529
1.8 169 495
2.0 156 488

The second problem arises from the application of the TBETI (total boundary ele-
ment tearing and interconnecting) domain decomposition method [5] to the solution of
a 3D contact problem of elasticity. The TBETI method proved to be an efficient scal-
able algorithm for the solution of variational inequalities. We applied it to evaluate the
displacement of the elastic cube with a side equal to 10mm fixed on one vertical face
above the plane obstacle and subjected to the volume forces -2100N/mm3. The cube is
3mm over the obstacle and is decomposed into 5 × 5 × 5 = 125 subdomains discretized
by the piecewise constant boundary elements on a regular grid so that the primal and
dual dimension of the discretized problem are 183000 and 92992, respectively. The Young
modulus E = 114000MPa and the Poisson ratio ν = 0.24. The solution is in Fig. 2.
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Figure 2: Cantilever cube over obstacle problem solution
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The nonpenetration is described by 2500 inequalities, 550 being active in the solution.
Observe that the unknowns are on the surface of the subdomains only. More details are
in the Ph.D. Thesis by Marie Sadowská [41]. The number of the gradient and MPRGP
iterations for the varying steplength α are in Table 2.

Table 2: Performance of the algorithm on a 3D TBETI problem
α‖A‖ gradient steps MPRGP steps

0.6 85 173
0.8 62 149
1.0 53 139
1.2 47 135
1.4 38 130
1.6 31 123
1.8 34 127
2.0 22 115

The results of numerical experiments are not surprising and indicate that the per-
formance of the MPRPG algorithm is better for the longer steps. However, this result
seems to contradict the estimate (5.1), which guarantees the best bound for α = ‖A‖−1.
Our explanation is that the performance of the algorithm which combines several types
of steps can hardly be captured by the worst one step bound. For example, the classical
Euclidean contraction estimate [3] gives the best bound for

αopt =
2

λmin + λmax
,

so that it is natural to assume that the chain of consecutive expansion steps is effective
for α ≈ αopt ≤ 2‖A‖−1. Moreover, for ill-conditioned problems obviously αopt ≈ 2‖A‖−1.
The estimate does not take into account the effect of the fast expansion of the active set.

9 Comments and conclusions

We extended the convergence theory of our MPRGP algorithm [26] so that it covers
the longer expansion steps. The improved performance of the expansion steps with a
longer steplength was observed a few years ago by M. Lesoinne [38], but no theory has
been developed until now. Though the estimates do not explain the faster convergence
of MPRGP for longer steplengths, they do substantiate the scalability of our FETI and
BETI based algorithms for numerical solutions of variational inequalities [5, 23, 22, 25].
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The result requires different tools of analysis as compared with the proofs of similar
statements for α ≤ ‖A‖−1. We extended also the results concerning the finite termination
property. The proof shows that for a sufficiently large balancing parameter Γ the algorithm
switches to the conjugate gradient method and enjoys a kind of superlinear convergence.
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