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Cholesky factorization and a generalized inverse of the stiffness
matrix of a floating structure with known null space
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SUMMARY

The Cholesky decomposition of the stiffness matrix A of a floating structure is a useful tool for the
solution of the related consistent system of linear equations and evaluating the action of a generalized
inverse. To use the Cholesky decomposition efficiently, it is necessary to correctly identify not only the
positions of zero rows or columns of the factors, but also a reasonably conditioned regular submatrix of
A which can be used in effective implementation of a (left) generalized inverse. The point of this note
is to show how to exploit an information about the rigid body modes of A to the both tasks, possibly
in combination with the SVD decomposition. The results of numerical experiments show that the
proposed methods are useful for implementation of the Total FETI (TFETI) domain decomposition
method. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Systems of consistent linear equations with symmetric positive semidefinite (SPS) matrices
arise naturally in the solution of many scientific and engineering problems. A typical example
is the stress analysis of a “floating” static structure whose essential boundary conditions are
not sufficient to prevent its rigid body motions [9, 14, 15, 16, 22, 24, 25, 26].

The consistent systems with a semidefinite matrix A can be solved either by an iterative
method, such as the preconditioned conjugate gradient method [2], whose performance depends
on the distribution of the spectrum of A, or by a direct method, typically based on a
decomposition, whose performance depends on the sparsity pattern of A. Assuming exact
arithmetic, it is rather easy to adapt standard direct methods for the solution of systems with
positive definite matrices, such as the Cholesky decomposition, to the solution of systems with
only positive semidefinite matrix [17]. The only modification comprises setting to zero the
columns which correspond to zero pivots. However, in agreement with the theoretical results
of Pan [21], it turns out that it is very difficult to recognize the positions of such pivots in
the presence of rounding errors when the nonsingular part of A is ill-conditioned. Moreover,
even if the zero pivots are recognized, it turns out that the ill-conditioning of the nonsingular
submatrix defined by the nonzero pivots can have a devastating effect on the precision of the
solution.

Our research has been motivated by an effort to implement effectively a variant of the FETI
domain decomposition method for the solution of systems of elliptic variational equalities or
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inequalities, such as those describing an equilibrium of a system of elastic bodies in bilateral
or unilateral contact. Let us recall that the FETI (finite element tearing and interconnecting)
method was originally proposed by Farhat and Roux [12] as a parallel solver for the problems
described by elliptic partial differential equations. The basic idea of FETI is to decompose
the domain into non-overlapping subdomains that are “glued” by Lagrange multipliers. After
eliminating the primal variables from the KKT conditions for the minimum of the discretized
energy function, typically using a variant of the Cholesky decomposition, the original problem
is reduced to a small, relatively well-conditioned bound constrained quadratic programming
problem in the Lagrange multipliers.

Due to the rounding errors, the main difficulty in implementation of the FETI method is
effective elimination of the displacements, in particular evaluation of the action of generalized
inverse of the SPS stiffness matrices of “floating” subdomains. To alleviate this problem, Farhat
and Géradin [9] proposed to combine the Cholesky decomposition with the SVD decomposition
of a relatively small matrix. The method was developed further by Papadrakakis and Fragakis
[22]. Though the resulting algorithm was much better than the original algorithm based on
the magnitude of the pivots, it still had difficulties to recognize the zero pivots. This was one
of the motivations for introduction of the FETI–DP methods [10], which avoid manipulation
with SPS stiffness matrices by keeping the subdomains joined at some nodes called corners.

Another approach to resolving the problems with implementation of the FETI method was
first considered by Felippa, Park, Justino, and Gumaste [14, 15, 23, 24, 25, 26]; then by Dostál,
Horák, and Kučera [6] and Of [20]. These authors proposed to use the Lagrange multipliers
not only for gluing of the subdomains along auxiliary interfaces, but also for implementation of
the essential boundary conditions; the latter authors coined the method Total FETI (TFETI)
[6] or All Floating FETI (AF–FETI) [20]. The main advantage of this approach is that it
makes all the subdomains floating, so that the null spaces of the stiffness matrices are a priori
known. Here we show how to exploit this information to efficiently identify zero pivots in
the Cholesky decomposition and subsequently to reliably evaluate the action of the related
generalized inverse.

The paper is organized as follows. After recalling the Cholesky decomposition of a symmetric
matrix A in exact arithmetic, we first examine the relation between the zero columns of the
Cholesky factor L and the pivots in a kind of the column echelon form of a full column rank
matrix R whose columns span KerA, the null space of A. Then we explain the limits of this
approach and present a more stable variant which does not assume any restrictions on the
ordering of nodes. Finally we give a variant of the Farhat and Géradin algorithm that actively
chooses the submatrix which is treated by the SVD decomposition. The theory is illustrated
by the results of numerical experiments.

2. NOTATIONS AND PRELIMINARIES

Throughout the whole paper, all the matrices are assumed to be real. The (i, j)th component
of a matrix A ∈ IRm×n is denoted by [A]ij , so that [A]ij = aij for A = [aij ] which is defined
by its entries aij . A matrix A ∈ IRm×n is called an (m,n)-matrix ; a matrix A ∈ IRn×n is called
a square matrix of order n.

If A ∈ IRm×n, I ⊆ {1, . . . ,m}, and J ⊆ {1, . . . , n}, I and J nonempty, we denote by AIJ
the submatrix of A with the components [A]ij , i ∈ I, j ∈ J . The local indexing of the entries
of AIJ is used whenever it is convenient. The full set of indices may be replaced by * so that
A = A∗∗ and AI∗ denotes the submatrix of A with the row indices belonging to I.

If A ∈ IRm×n and b ∈ ImA, where ImA denotes the range of A, then we can express a
solution of the system of linear equations

Ax = b (1)

by means of a left (Rao, one-condition) generalized inverse matrix A+ ∈ IRn×m which satisfies

AA+A = A. (2)
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Indeed, if b ∈ ImA, then there is y such that b = Ay and x = A+b satisfies

Ax = AA+b = AA+Ay = Ay = b.

Thus A+ acts on the range of A like the inverse matrix. If A is a nonsingular square matrix,
then obviously

A+ = A−1.

Moreover, if S ∈ IRn×p is such that AS = O and N ∈ IRn×p, then (A+) + SNT is also a left
generalized inverse as

A
(
(A+) + SNT

)
A = AA+A + ASNT A = A.

Hence the left generalized inverse is not uniquely specified by the condition (2), which is only
one of the conditions that uniquely define the well-known Moore–Penrose inverse, but it can
be used to find the unique solution of (1) that belongs to the range of A. The left generalized
inverse seems to appear for the first time in Rao [27].

If A is a square singular matrix, then there are permutation matrices P and Q such that

A = PT

[
B CT

D DB−1CT

]
Q,

where B is a nonsingular matrix whose dimension is equal to the rank of A. It may be verified
directly that the matrix

A# = QT

[
B−1 OT

O O

]
P (3)

is a left generalized inverse of A. If A is symmetric positive semidefinite, then A# is also
symmetric positive semidefinite. Notice that if AS = O, then A+ = A# + SST is also a
symmetric positive semidefinite generalized inverse.

3. GENERALIZED INVERSE AND CHOLESKY DECOMPOSITION IN EXACT
ARITHMETIC

We are concerned with the direct solution of a system of linear equations

Ax = b, (4)

where A is a symmetric positive semidefinite matrix of order n and b ∈ ImA, so that a solution
x exists. We shall assume that a basis of the kernel of A is known and the sparsity pattern of
A enables its effective triangular decomposition

A = LLT (5)

in exact arithmetic. We are especially interested in the case that (4) is to be solved many times
with varying right hand sides.

The method of evaluation of the factor L is known as the Cholesky factorization. The
Cholesky factor L of a symmetric positive definite matrix A can be computed in a number of
equivalent ways. For example, we can compute it column by column. Suppose that

A =
[

a11 aT
1

a1 A22

]
and L =

[
l11 o
l1 L22

]
.

Substituting for A and L into (5) and comparing the corresponding terms immediately reveals
that

l11 =
√

a11, l1 = l−1
11 a1, L22L

T
22 = A22 − l1l

T
1 . (6)
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4 Z. DOSTÁL, T. KOZUBEK, A. MARKOPOULOS, M. MENŠ́ıK

This gives us the first column of L, and the remaining factor L22 is simply the Cholesky
factor of the Schur complement A22 − l1l

T
1 which is known to be positive definite, so that

we can repeat the above procedure until all columns of L are evaluated. The algorithm can
be implemented to get sparse L using a reordering algorithm such as SYMAMD, SYMRCM,
SLOAN etc. (see [1, 13, 28] and references therein).

If A ∈ IRn×n is only positive semidefinite, it can happen that a11 = 0. Then

0 ≤ xT Ax = yT A22y + 2x1a
T
1 y

for any vector x =
[
x1, y

T
]T . The inequality implies that a1 = o, as otherwise we could take

y = −a1 and large x1 to get

yT A22y + 2x1a
T
1 y = aT

1 A22a1 − 2x1‖a1‖2 < 0.

Thus for A symmetric positive semidefinite and a11 = 0, (6) reduces to

l11 = 0, l1 = o, L22L
T
22 = A22. (7)

4. DETERMINING ZERO PIVOTS FROM THE END SECTION OF A BASIS OF THE
NULL SPACE OF A

The simple modification of the Cholesky decomposition of an SPS matrix presented above
assumes exact arithmetic. In the computer arithmetic, the decision whether a11 is to be treated
as zero depends on selecting a tolerance ε > 0. To get a better insight into the problem, let us
first give a simple lemma showing that the information about zero pivots, i.e., the zero rows
or columns of the Cholesky factors, can be extracted from the vectors belonging to the kernel
of the matrix A.

Lemma 1: Let A = LLT denote a triangular decomposition of a symmetric positive
semidefinite matrix A, let Ae = o, and let l(e) denote the largest index of a nonzero entry
of e ∈ KerA, so that

[e]l(e) 6= 0 and [e]j = 0 for j > l(e).

Then
[L]l(e)l(e) = 0.

Proof: If Ae = o and A = LLT , then

eT Ae = eT LLT e = (LT e)T (LT e) = 0.

Thus LT e = o and in particular

[LT e]l(e) = [L]l(e)l(e)[e]l(e) = 0.

Since [e]l(e) 6= 0, we have [L]l(e)l(e) = 0. 2

Let A ∈ IRn×n be an SPS matrix and let R ∈ IRn×d denote a full column rank matrix such
that KerA = ImR. Observing that application of equivalent transformations to the columns of
R preserves the image space and the rank of R, we can carry out the equivalent transformations
to find R which satisfies

l(R∗1) < · · · < l(R∗d).

The procedure can be described in general by the following transformations of R: transpose R,
reverse the order of columns of RT , apply the forward reduction to the resulting matrix,
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i.e., apply the same procedure as in the Gauss elimination to get the row echelon form,
reverse the order of columns, transpose the resulting matrix back, and reverse the order of
columns. Then l(R∗1), . . . , l(R∗d) are by Lemma 1 the indices of zero columns of a factor of
the modified Cholesky factorization; the factor cannot have any other zero columns due to the
rank argument. The procedure has been described and tested in Menš́ık [19]. Denoting by the
crosses and dots the nonzero and undetermined entries, respectively, the relations between the
pivots of R and the zero columns of a Cholesky factor L can be illustrated by

R =




. .

. .
× .
0 .
0 ×


 ⇒ L =




× 0 0 0 0
. × 0 0 0
. . 0 0 0
. . 0 × 0
. . 0 . 0


 .

Let us illustrate the above procedure on 2D elasticity. To this end, assume that we have the
stiffness matrix A ∈ IRn×n of a two-dimensional (plane) elastic body obtained by a suitable
finite element discretization using the nodes VI = (xI , yI), I = 1, 2, . . . , N , n = 2N . Denoting
S = {n− 3, n − 2, n− 1, n}, J = N − 1, and K = N , we get easily that the last four rows of
the matrix R whose columns span the kernel of A can be written in the form

RS∗ =




yJ 1 0
−xJ 0 1
yK 1 0
−xK 0 1


 .

Thus after application of two equivalent transformations to the columns of RS∗ we get



yJ − yK 1 0
−xJ + xK 0 1

0 1 0
0 0 1


 .

Since the nodes are different, we have either −xJ + xK 6= 0 and the rows n− 2, n− 1, n with
zero pivots, or −xJ + xK = 0, yJ − yK 6= 0, and the rows n− 3, n− 1, n with zero pivots. To
make the procedure more stable, we place the zero pivot into the row which corresponds to
the larger of the values of | − xJ + xK | and |yJ − yK |. Notice that

max{| − xJ + xK |, |yJ − yK |} ≥ ‖−−−→VJVK‖/
√

2,
−−−→
VJVK =

√
(xK − xJ)2 + (yJ − yK)2,

so that we can identify the zero pivots reliably provided the corresponding nodes are not too
close, which should be checked by the mesh generator.

If our goal is effective evaluation of the action of A+, the reliability of the procedure depends
not only on exact determination of the indices of zero pivots, but also on the conditioning
of the submatrix AJJ of A which corresponds to the nonzero pivots. This feature can be
illustrated informally in case that A is the stiffness matrix of an elastic body without prescribed
displacements, since then AJJ can be considered as a matrix of the same body as the matrix A
with prescribed zero displacements in the positions of zero pivots. Thus the last two nodes VI
and VJ should be in such a position that the related boundary conditions make the structure
as stiff as possible. When dealing with the kernel of the stiffness matrix of a floating 3D
linear elastic body, this can be achieved by appropriate numbering of the nodal variables. The
following section shows that it is possible to use an alternative strategy.

5. IDENTIFICATION OF A WELL-CONDITIONED NONSINGULAR SUBMATRIX
FROM THE NULL SPACE OF A

Let us now show that if we are able to identify a full column rank submatrix of R, then we
can determine a regular submatrix of A.
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Proposition 1: Let A ∈ IRn×n denote a symmetric matrix whose kernel is spanned by the
full column rank matrix R ∈ IRn×d, so that d is the defect of A. Let

I = {i1, . . . , id}, 1 ≤ i1 < i2 < · · · < id ≤ n,

denote a set of indices such that RI∗ is nonsingular, and let

J = N − I, N = {1, 2, . . . , n}.
Then AJJ is nonsingular.

Proof: Since AR = O by the assumption, we have

AJJRJ∗ + AJIRI∗ = O.

Moreover, using that RI∗ is assumed to be nonsingular, we get

AJJRJ∗R−1
I∗ = −AJI ,

and using A = AT , we get that there is a permutation matrix P such that

A = PT

[
AJJ −AJJRJ∗R−1

I∗
−R−T

I∗ RT
J∗AJJ AII

]
P.

Let us now assume by contradiction that AJJ is singular, so that there is a vector e ∈ IRn,
eJ 6= o, such that

AJJ eJ = o. (8)
Then we can pad eJ with zeros to get e ∈ IRn such that eI = o, e 6= o,

e = PT
[

eJ
eI

]
,

and

Ae = PT

[
AJJ −AJJRJ∗R−1

I∗
−R−T

I∗ RT
J∗AJJ AII

]
PPT

[
eJ
o

]
= PT

[
AJJ eJ

−R−T
I∗ RT

J∗AJJ eJ

]
= o.

Thus e ∈ KerA and there is x ∈ IRd such that

e = Rx. (9)

Since the columns of R are independent and e 6= o, we have x 6= o. However, it follows by (9)
that

eI = RI∗x.

Since RI∗ is nonsingular and eI = o, it follows that x = o and e = o, which contradicts e 6= o.
We conclude that there is no vector eJ 6= o which satisfies (8), so that AJJ is nonsingular. 2

Let us assume that A ∈ IRn×n is the stiffness matrix of a three-dimensional elastic
body obtained by a suitable finite element discretization using the nodes VI = (xI , yI , zI),
I = 1, 2, . . . , N , n = 3N . We assume that the vector of displacements (uI , vI , wI) is associated
with each node VI . Then a suitable submatrix RS∗ ∈ IR9×6 of R is defined by any three nodes
VI , VJ , VK that are sufficiently far from each other and are not placed near any straight line;
the set I comprises nine indices which correspond to the displacements of the nodes VI , VJ , VK .
It is easy to verify that the rows of R which correspond to VI are defined by

[
0 −zI yI 1 0 0
zI 0 −xI 0 1 0
−yI xI 0 0 0 1

]
;
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similar formulae define the remaining six rows of RS∗.
To illustrate application of Proposition 1, let us choose S as the set of indices defined by

three nodes VI , VJ , VK selected so that the segment say
−−−→
VIVJ is approximately parallel to one

of the coordinate axes and approximately orthogonal to
−−−→
VIVK . Then we can find the set I

just as in Fig. 6 by geometric considerations, taking into account that choosing the indices I
amounts to eliminating the related six degrees of freedom. In general, we should choose at least
three points that are not on a line and the indices I in such a way that the related prescribed
zero displacements make the system as uniformly stiff as possible. We call the strategy of
choice of zero pivots described above geometric choice (GC).

Alternatively, having a set of s > 6 indices S such that RS∗ has strongly independent
columns, we can also use a suitable column transformations with complete pivoting to reduce
RS∗ into the form

RS∗G = P
[

D
B

]
,

where G ∈ IR6×6 is a suitable regular matrix, such as a product of Gauss transformations or
Householder reflections (see, e.g., Golub and Van Loan [17]), D ∈ IR6×6 is the diagonal matrix
with the pivots on the diagonal, and B ∈ IR(s−6)×6. In the first step of complete pivoting, we
find the pivot, i.e., the largest entry in absolute value of RS∗, add suitable multiplies of the
column with the pivot to the other columns to generate zeros in the row corresponding to the
pivot. In the next steps, we repeat the procedure to the modified RS∗, but choose the pivots
only from the columns that do not contain any pivot chosen before. The positions of the zero
rows or columns of the factors in the decomposition of A are just the positions of the nonzero
components of P∗J , J = {1, . . . , 6}. We call the strategy of choice of zero pivots described
above the local pivoting (LP). If we choose S = {1, . . . , n}, we call the resulting method the
global pivoting (GP). Let us recall once more that the strategies described above are motivated
by an effort to guarantee a reasonable conditioning of the nonsingular submatrix of A that is
used in evaluation of the action of A#.

6. LU–SVD DECOMPOSITION

The analysis of the GP method of the previous section shows that if we choose M nodes that
are neither near each other nor placed near any line, M < N , M ≥ 2 in 2D, and M ≥ 3 in 3D,
then the submatrix AJJ of the stiffness matrix A defined by the set J of the indices of the
displacements of the other nodes is “reasonably” nonsingular. Of course, this is not surprising,
as AJJ can be considered as the stiffness matrix of the body that is fixed in the chosen nodes.
Using the arguments of mechanics, it is natural to assume that if fixing of the chosen nodes
makes the body uniformly stiff, then AJJ is well-conditioned. In this section we show how to
combine this observation with the LU–SVD method proposed by Farhat and Géradin [9].

Our starting point is the following partial decomposition of the SPS matrix A ∈ IRn×n

PAPT = L

[
U ÃJI
O ÃII

]
, (10)

where L ∈ Rn×n is a nonsingular lower triangular matrix, U ∈ Rr×r a nonsingular upper
triangular matrix of order r, r = n − 2M in 2D, r = n − 3M in 3D, and P a permutation
matrix which corresponds to both preserving sparsity and fixing nodes reordering. Then

A+ = PT

[
U ÃJI
O ÃII

]+

L−1P = PT

[
U−1 −U−1ÃJIÃ+

II
O Ã+

II

]
L−1P, (11)

where Ã+
II denotes the Moore–Penrose pseudoinverse [17] computed by the SVD decomposition

ÃII = V ΣWT , i.e.,
Ã+
II = WΣ+V T . (12)
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To find P , we shall proceed in two steps. We first form a permutation matrix V1 to decompose
A into blocks

PT
1 AP1 =

[
AJJ AJI
AIJ AII

]
, (13)

where the submatrix AJJ is nonsingular and AII corresponds to the degrees of freedom
of the M fixing nodes. Then we apply a suitable reordering algorithm on PT

1 AP1 to get a
permutation matrix P2 which leaves the part AII without changes and enables the sparse
triangular factorization (10). Further, we decompose PAPT as shown in (10) with P = P2P1.
To preserve sparsity we may use well-known sparse reordering algorithms such as SYMAMD,
SYMRCM, SLOAN etc. (see [1, 13, 28] and references therein). The choice depends on the
sparse matrix storing and on the problem geometry. Finally, we can choose efficiently the fixing
nodes using METIS [18]. First we split our mesh into M submeshes and from each one we take
one node (our experience shows that the “center” of submesh is a good choice).

7. NUMERICAL EXAMPLES

To verify the above considerations, we have implemented the above procedures into our
experimental MATLAB library MatSol [4] and carried out several tests. Our matrix A was the
stiffness matrix (no prescribed displacements) of the elastic three-dimensional body depicted in
Fig. 1. The material properties were defined by the Young modulus E = 2.11MPa and Poison’s
constant ν = 0.3. The body was discretized using trilinear bricks with a kind of lexicographic
ordering of nodes so that the last nodes were on the curved edge as in Fig. 1. The bottoms
of the bricks have their vertical coordinates z ∈ {0, 0.5688, 0.7542, 0.8895}. The curvature of
the edge was defined by the radius r. We considered also the straight edge corresponding to
r = ∞. To assess the efficiency of our methods we use the regular condition number

cond(H) = λ1/λk

of a given SPS matrix H, where λ1 ≥ λ2 ≥ · · · ≥ λk > λk+1 = · · · = λn = 0 denote the
eigenvalues of H. In particular,

κ = cond(A) = λ1/λn−6.

Figure 1. The benchmark and the last nodes.

We first checked how the algorithm identifies the zero pivots in the Cholesky decomposition
using the algorithm based on Lemma 1. We found that the procedure identified correctly the
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Figure 2. Fixed degrees of free-
dom corresponding to a curve.

Figure 3. Fixed degrees of
freedom corresponding to

a curve.

Figure 4. Fixed degrees of free-
dom corresponding to a segment.

indices of zero pivots for r ≤ 7.4e7 (see Figs. 2 and 3), and then switched to the configuration
of Fig. 4. The configuration of Fig. 4 is obviously correct in exact arithmetic in the case that
the edge with the last nodes is a straight segment.

We give also the Euclidean norms of the error

e(r) = ‖AA#A−A‖
for r ∈ {0.2, 4.0e4, 1.6e7} and the condition numbers

κ = cond(A) and κ = cond(A#) = cond(AJJ )

of the corresponding regular part. The results of experiments are in Table I, where C and
S denote the configurations corresponding to the last nodes on a curve (see Fig. 2, 3) and a
segment (see Fig. 4), respectively. Detailed development of the condition number is in Fig. 5. We
can see that the condition number deteriorates with the increasing r as long as the algorithm
uses the last three nodes.

Figure 5. Conditioning of the regular part for the last nodes on a circle with the radius r.

Then we tried to evaluate the generalized inverse matrix by using the procedures LP and GP
described in Sect. 5. The relative errors and the condition numbers of the corresponding regular
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Table I. Error of the generalized inverse without choice

Curvature r Configuration e(r)/‖A‖ cond(AJJ )

2.0e-1 C 3e-11 7.2e5
4.0e4 C 2.4e8 9.4e15
1.6e7 S 1.8e-11 7.4e5
∞ S 1.8e-11 7.4e5

Table II. Error of the generalized inverse with choice for r = ∞

Strategy e(r)/‖A‖ cond(AJJ )

LP 6.9e-14 1.4e4
GP 4.0e-14 5.3e3

parts are in Table II. Comparing Tab. I and Tab. II, we can see that any of the strategies used
in Tab. II is superior to that used in Tab. I. In the local pivoting strategy (LP), we used three
nodes depicted in Fig. 6. The “removed” degrees of freedom resulting from the global pivoting
strategy are depicted in Fig. 7.

Figure 6. Fixed degrees of freedom corre-
sponding to SLP .

Figure 7. Fixed degrees of freedom corre-
sponding to SGP .

Examples show that the knowledge of the kernel of a positive semidefinite matrix A, i.e., the
rigid body modes associated with the stiffness matrix A, can be effectively exploited to reliably
identify zero rows or columns of the Cholesky factors and to the specification of a relatively
well-conditioned regular submatrix of A whose dimension is the rank of A which enables to
evaluate effectively the action of a generalized inverse matrix. The generalized inverse matrix
turned out to be more sensitive to the conditioning of the regular part than to the correct
choice of zero pivots in the sense of exact arithmetic.

Finally, we implemented the procedure of Section 6 and carried out similar experiments as
above. In Figures 8–12, we can see the effect of positions of fixing nodes on corresponding
regular condition number of the generalized inverse κ = cond(A+). The results of experiments
agree with the intuitive rule that fixing more nodes in more regular pattern improves
conditioning of the corresponding submatrix. In particular, comparing Figure 11 and Figure 12,
we can observe that placing the eight fixing nodes inside the body can result in more stable
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Figure 8. Fixing 3 corners for LU–SVD. Figure 9. Fixing 4 corners for LU–SVD.

Figure 10. Fixing 4 nodes in the corner and on
the edges for LU–SVD.

Figure 11. Fixing all corners for LU–SVD.

Figure 12. Fixing inner nodes for LU-SVD.
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generalized inverse than placing them at the corners.

8. CONCLUSIONS

We described the algorithms which use a known basis of the kernel of a given positive
definite matrix A to identify zero rows or columns of its Cholesky factors and a relatively
well-conditioned regular submatrix of A with the same rank as A. The latter result is
useful for the effective implementation of the action of a left generalized inverse of A. We
described implementation of the action of a generalized inverse to the stiffness matrix of a
two-dimensional elastic body with the three-dimensional kernel and of a three-dimensional
elastic body with the six-dimensional kernel. The theoretical results were also used to the
effective implementation of the modified LU–SVD strategy of Farhat and Géradin. The
results were illustrated by numerical experiments. The results were already enhanced into
our implementation of the TFETI (AFFETI) method. The direct solvers of SPS systems
are useful also to the solution of eigenvalue problems with a singular matrix [9]. The results
are of a special importance for the solution of semicoercive contact problems of elasticity with
“floating” bodies [7, 8], when it is not possible to avoid manipulations with positive semidefinite
matrices by application of the FETI–DP method [10]. Moreover, our experiments show that our
variant of the Farhat and Géradin method can be used to get effectively the subdomain TFETI
flexibility matrices that are better conditioned than the corresponding FETI–DP matrices.
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9. Farhat C, Géradin M. On the general solution by a direct method of a large scale singular system of linear
equations: application to the analysis of floating structures. International Journal for Numerical Methods
in Engineering 1998; 41:675–696.

10. Farhat C, Lesoinne M, LeTallec P, Pierson K, Rixen D. FETI–DP. A dual–prime unified FETI method.
I: A faster alternative to the two–level FETI method. International Journal for Numerical Methods in
Engineering 2001; 50:1523–1544.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



CHOLESKY FACTORIZATION AND A GENERALIZED INVERSE 13

11. Farhat C, Mandel J, Roux FX. Optimal convergence properties of the FETI domain decomposition method.
Computer Methods in Applied Mechanics and Engineering 1994; 115:365–385.

12. Farhat C, Roux FX. A method of finite element tearing and interconnecting and its parallel solution
algorithm. International Journal for Numerical Methods in Engineering 1991; 32:1205–1227.

13. George A, Liu J. Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981.

14. Justino MR JR, Park KC, Felippa CA. The construction of free–free flexibility matrices as generalized
stiffness matrices. International Journal for Numerical Methods in Engineering 1997; 40: 2739–2758.

15. Felippa CA, Park KC. The construction of free–free flexibility matrices for multilevel structural analysis.
Computer Methods in Applied Mechanics and Engineering 2002; 191:2111-2140.

16. Felippa CA, Park, KC Justino MR JR. The construction of free–free flexibility matrices as generalized
stiffness matrices. Computers and Structures 1998; 68:411–418.

17. Golub GH, Van Loan CF. Matrix Computations. (2nd edn), John Hopkins University Press: Baltimore,
1989.

18. Karypis G. METIS - a family of programs for partitioning unstructured graphs and hypergraphs and
computing fill-reducing orderings of sparse matrices, http://glaros.dtc.umn.edu/gkhome/views/metis.
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