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Abstract. We present an extension of an update technique for precondi-
tioners for sequences of non-symmetric linear systems that was proposed
in [5]. In addition, we describe an idea to improve the implementation
of the update technique. We demonstrate the superiority of the new ap-
proaches in numerical experiments with a model problem.

1 Introduction

Sequences of linear systems with large and sparse matrices arise in many ap-
plications like computational fluid dynamics, structural mechanics, numerical
optimization as well as in solving non-PDE problems. In many cases, one or
more systems of nonlinear equations are solved by a Newton or Broyden-type
method [6], and each nonlinear equation leads to a sequence of linear systems.
The solution of sequences of linear systems is the main bottleneck in many of
the above mentioned applications. For example, some solvers need strong pre-
conditioners to be efficient and computing preconditioners for individual systems
separately may be very expensive.

In recent years, a few attempts to update preconditioners for sequences of
large sparse systems have been made. If a sequence of linear systems arises from
a quasi-Newton method, straightforward approximate small rank updates can
be useful (this has been done in the SPD case in [9,3]). For shifted SPD lin-
ear systems, an update technique was proposed in [8] and a different one can
be found in [2]. The latter technique, based on approximate diagonal updates,
has been extended to sequences of parametric complex symmetric linear sys-
tems (see [4]). This technique, in turn, was generalized to approximate (possibly
permuted) triangular updates for nonsymmetric sequences [5]. In addition, recy-
cling of Krylov subspaces by using adaptive information generated during pre-
vious runs has been used to update both preconditioners and Krylov subspace
iterations (see [7,10,1]).

In this paper we address two ways to improve the triangular updates of pre-
conditioners for nonsymmetric sequences of linear systems from [5]. It was dis-
cussed in [5] that triangular updates may be particularly beneficial under three
types of circumstances: first, if preconditioner recomputation is for some rea-
son expensive (e.g. in parallel computations, matrix-free environment); second,

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2007, LNCS 4818, pp. 737–744, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



738 J.D. Tebbens and M. Tůma

if recomputed preconditioners suffer from instability and the updates relate to
a more stable reference factorization; third, if the update is dominant, at least
structurally, that is, if it covers a significant part of the difference between the
current and reference matrix. Our first contribution is motivated by the third
case. The updates from [5] exhibit this property whenever a permutation can be
found such that one triangular part of the permuted difference matrix clearly
dominates the other part. Experiments given there show that this is the case
in many types of applications where the permutation may not even be needed.
Nevertheless, these techniques neglect one of the two triangular parts of the
(permuted) difference matrix and possibly useful information contained in this
part is lost. We will describe here how both triangular parts can be taken into
account by considering a simple but effective extension of the original technique.
We compare the new idea with the original strategy and experiments demon-
strate its improved power on a model problem. Our second contribution is of a
more technical nature. We present a different implementation for the triangular
updates. The important time savings with respect to the strategy used in [5]
confirm what we only assumed there, and reveal more about the potential of the
preconditioner updates.

In the next section we address the first improvement and Section 3 describes
the second one. Numerical experiments are presented in Section 4. We denote
by ‖ · ‖ an arbitrary, unspecified matrix norm.

2 Gauss-Seidel Type Updates

We consider a system Ax = b with a factorized preconditioner M = LDU and let
A+x+ = b+ be a system of the same dimension, and denote the difference matrix
A−A+ by B . We search for an updated preconditioner M+ for A+x+ = b+. We
have ‖A − M‖ = ‖A+ − (M − B)‖, hence the norm of the difference A+ − M+

with M+ ≡ M −B, called the accuracy of M+ (with respect to A+), is the same
as that of M with respect to A. If M+ = M − B is the preconditioner, we need
to solve systems with M −B as system matrix in every iteration of the iterative
solver. Clearly, for general B the preconditioner M+ = M −B cannot be used in
practice since the systems are too expensive to solve. Instead, we will consider
cheap approximations of M − B. If M − B is nonsingular, we approximate it by
a product of factors which are easier to invert. The approximation consists of
two steps. First, we approximate M − B as

M − B = L(DU − L−1B) ≈ L(DU − B), (1)

or by
M − B = (LD − BU−1)U ≈ (LD − B)U. (2)

The choice between (1) and (2) is based on the distance of L and U to identity.
If ‖I − L‖ < ‖I − U‖ then we will base our updates on (1) and in the following
C will denote the matrix DU −B. If on the other hand ‖I −L‖ > ‖I −U‖, then
we will use (2) and we define C by C ≡ LD − B. Our implementation chooses
the appropriate strategy adaptively.
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Our next goal is to find an approximation of C that can be used as a precon-
ditioner. We split C as C = LC + DC + UC , where LC , DC , UC denote the strict
lower triangular, the main diagonal and the strict upper triangular part of C,
respectively. In [5], C was approximated by a single triangular factor LC +DC or
UC + DC . In this paper we propose a Gauss-Seidel type of approach that takes
into account both triangular parts of C. We will use the classical symmetric
Gauss-Seidel approximation C ≈ (LC + DC)D−1

C (UC + DC). Putting the two
approximation steps together, we obtain an updated preconditioner of the form

M+ = L(LC + DC)D−1
C (UC + DC), C = DU − B, (3)

when ‖I − L‖ < ‖I − U‖, and otherwise we use

M+ = (LC + DC)D−1
C (UC + DC)U, C = LD − B. (4)

These updates can be cheaply obtained. C is a difference of two sparse matri-
ces, the splitting of C is trivial. The updated preconditioner has one additional
factor compared with the original factorization LDU , hence its application is
a little more expensive. In cases where the sparsity patterns of B and L or U
differ significantly, the solves with the updated factors are also more expensive
than with the original factors. The choice between (3) and (4) can be based on
comparing the Frobenius norms of I − L and I − U , which is very cheap with
sparse factors. As for storage costs, the original factorization and the reference
matrix A must be available when applying updates of this form.

We showed in [5] that the accuracy of the updates introduced there increases
with a factor L (or U) closer to identity and with a smaller error ‖C − DC −
UC‖ (or ‖C − DC − LC‖). Also stability increases with these properties. Our
theoretical results explained why the updates are often more powerful than old
factorizations and may even be, in favorable cases, more powerful than newly
computed factorizations. For the updates introduced in this paper, similar results
hold. We will now concentrate on comparison of the new Gauss-Seidel updates
with the original technique. The updates from [5] can be written as

M+ = L (DC + UC) , C = DU − B, (5)

and
M+ = (LC + DC) U, C = LD − B. (6)

Intuitively it is clear that the Gauss-Seidel type updates may be expected to be
more powerful than (5) and (6) if their approximation of C is stronger than with
one triangular part only. Let E = A − LDU denote the accuracy error of the
preconditioner for A and let G = C − (LC + DC)D−1

C (UC + DC) = LCD−1
C UC

be the approximation error of C for the Gauss-Seidel update. We split B as B =
LB + DB + UB, where LB, DB, UB denote the strict lower triangular, the main
diagonal and the strict upper triangular part of B, respectively. The accuracy
of (6) can then be written as

‖A+−(LC +DC)U‖ = ‖A−LDU −B+(LB +DB)U‖ = ‖E−B(I−U)−UBU‖,

where we used that LC +DC = LD −LB −DB. Similarly, the accuracy of (4) is
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‖A+ − (LC + DC)(D−1
C UC + I)U‖ =

‖E − UB − (LB + DB)(I − U) − (LCD−1
C + I)UCU‖ =

‖E − UB − (LB + DB)(I − U) + UB U − G · U‖ =
‖E − B(I − U) − G · U‖.

Hence the accuracies of (4) and (6) are of the form ‖X − GU‖ and ‖X − UBU‖,
where X = E − B(I − U). As UB is nothing but the error to approximate C
according to (6), here we see the effect of the approximation errors G and UB

with the two update techniques. The updates (5) and (3) share a similar relation.
Now let us denote by striu the strict upper triangular part and by tril the

lower triangular part of a matrix (including the main diagonal). In the Frobenius
norm, denoted by ‖ · ‖F , positive influence of the Gauss-Seidel technique can be
expressed as follows. Assume that

‖tril(E − B(I − U) − G · U)‖2
F + (7)

‖striu(E − B + (B − G) · U)‖2
F ≤ (8)

‖tril (E − B(I − U)) ‖2
F + (9)

‖striu (E − B + (LB + DB)U) ‖2
F , (10)

then

‖A+ − (LC + DC)(D−1
C UC + I)U‖2

F =
‖tril(E − B(I − U) − G · U)‖2

F + ‖striu(E − B + (B − G) · U)‖2
F ≤

‖tril (E − B(I − U)) ‖2
F + ‖striu (E − B + (LB + DB)U) ‖2

F =
‖A+ − (DC + LC) U‖2

F .

The last equality follows from striu(BU) = striu((UB + LB + DB)U) =
striu(UBU) + striu((LB + DB)U) = UBU + striu((LB + DB)U). Thus superi-
ority of the Gauss-Seidel type update (6) may be expected if the contribution of
−GU to the lower triangular part of X reduces the entries of this part and if the
contribution of (B − G)U to the strict upper triangular part of X reduces the
entries more than the contribution of (LB + DB)U to this part. We will confirm
exactly this behavior in the experiments in Section 4.

3 Alternative Implementation

The update (5) (or (6)) in [5] was implemented with two backward (or forward)
solves. In the upper triangular case (5), the solve step with DC + UC , which is
equal to DU −(DB +UB), used separate loops with DU and with DB +UB in [5].
These loops were tied together by scaling with the sum of the diagonal entries
of DU and B. In detail: Let the entries of DU and B be denoted by (du)ij and
bij , respectively, and consider a linear system (DU − DB − UB) z = y. Then for
i = n, n − 1, . . . , 1 the subsequent cycles
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zi = yi −
∑

j>i

(du)ijzj , zi = zi −
∑

j>i

bijzj , (11)

were used, followed by putting

zi =
zi

(du)ii + bii
. (12)

A first advantage of this implementation is that the solution process is straight-
forward. The sparsity patterns of DU and DB + UB, which are immediately
available, do not need to be further processed. Another advantage of this imple-
mentation is that the difference matrix B may be sparsified in a different way
for different matrices of a sequence. It was mentioned repeatedly in [5], however,
that merging the two matrices DU and DB +UB may yield better timings. Here
we present results of experiments with merged factors which formed the sum
DU − DB − UB, or its lower triangular counterpart, explicitly. This sum needs
to be formed only once at the beginning of the solve process of the linear sys-
tem, that is in our case, before the preconditioned iterations start. Every time
the preconditioner is applied, the backward solve step with the merged factors
may be significantly cheaper than with (11)–(12) if the sparsity patterns of DU
and DB + UB are close enough. In our experiments we confirm this.

4 Numerical Experiments

Our model problem is a two-dimensional nonlinear convection-diffusion model
problem. It has the form (see, e.g. [6])

− Δu + Ru

(
∂u

∂x
+

∂u

∂y

)
= 2000x(1 − x)y(1 − y), (13)

on the unit square, discretized by 5-point finite differences on a uniform grid. The
initial approximation is the discretization of u0(x, y) = 0. In contrast with [5] we
use here R = 100 and different grid sizes. We solve the resulting linear systems
with the BiCGSTAB [11] iterative method with right preconditioning. Iterations
were stopped when the Euclidean norm of the residual was decreased by seven
orders of magnitude. Other stopping criteria yield qualitatively the same results.

In Table 1 we consider a 70 × 70 grid, yielding a sequence of 13 matrices of
dimension 4900 with 24220 nonzeros each. We precondition with ILU(0), which
has the same sparsity pattern as the matrix it preconditions. This experiment
was performed in Matlab 7.1. We display the number of BiCGSTAB iterations
for the individual systems and the overall time to solve the whole sequence. The
first column determines the matrix of the sequence which is preconditioned. The
second column gives the results when ILU(0) is recomputed for every system of
the sequence. In the third column ILU(0) is computed only for the first system
and reused (frozen) for the whole sequence. In the remaining columns this first
factorization is updated. ’Triang’ stays for the triangular updates from [5], that
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Table 1. Nonlinear convection-diffusion model problem with n=4900, ILU(0)

ILU(0), psize ≈ 24000
Matrix Recomp Freeze Triang GS
A(0) 40 40 40 40
A(1) 25 37 37 27
A(2) 24 41 27 27
A(3) 20 48 26 19
A(4) 17 56 30 21
A(5) 16 85 32 25
A(6) 15 97 35 29
A(7) 14 106 43 31
A(8) 13 97 44 40
A(9) 13 108 45 38
A(10) 13 94 50 44
A(11) 15 104 45 35
A(12) 13 156 49 42

overall time 13 s 13 s 7.5 s 6.5 s

Table 2. Nonlinear convection-diffusion problem with n=4900: Accuracies and values
(7)–(10)

i ‖A(i) − M
(i)
GS‖2

F ‖A(i) − M
(i)
TR‖2

F value of (7) value of (9) value of (8) value of (10)
1 852 857 ∗ ∗ ∗ ∗
2 938 1785 377 679 560 1105
3 1102 2506 373 843 729 1663
4 1252 3033 383 957 869 2076
5 1581 3975 432 1155 1149 2820
6 1844 4699 496 1303 1388 3395
7 2316 5590 610 1484 1706 4106
8 2731 6326 738 1631 1993 4695
9 2736 6372 735 1642 2002 4731
10 2760 6413 742 1650 2018 4763
11 2760 6415 742 1650 2018 4765
12 2760 6415 742 1650 2018 4765

is for adaptive choice between (5) and (6). The last column presents results for
the Gauss-Seidel (GS) updates (3) and (4). The abbreviation ’psize’ gives the
average number of nonzeros of the preconditioners.

As expected from [5], freezing yields much higher iteration counts than any
updated preconditioning. On the other hand, recomputation gives low iteration
counts but it is time inefficient. The new GS strategy from Section 2 improves
the power of the original triangular update. Table 2 displays the accuracies of
(4) (here denoted by MGS) and (6) (denoted by MTR) in the Frobenius norm
and the values of (7-10). These values reflect the efficiencies of the two updates
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Table 3. Nonlinear convection-diffusion model problem with n=49729, ILUT(0.2/5)

ILUT(0.2/5), psize ≈ 475000, ptime ≈ 0.05
Matrix Recomp Freeze Triang GS
A(0) 113/2.02 113/2.02 113/2.02/2.02 113/2.02
A(1) 119/2.06 112/1.94 104/1.95/1.81 122/2.26
A(2) 111/1.94 111/1.95 104/1.91/1.78 100/1.84
A(3) 94/1.66 115/2.00 92/1.64/1.45 96/1.77
A(4) 85/1.44 116/2.00 92/1.77/1.55 90/1.67
A(5) 81/1.45 138/2.44 93/1.73/1.47 83/1.55
A(6) 72/1.28 158/2.75 101/1.89/1.63 85/1.59
A(7) 72/1.28 163/2.86 101/1.91/1.59 92/1.69
A(8) 78/1.36 161/2.84 94/1.77/1.53 82/1.48
A(9) 72/1.23 159/2.72 92/1.72/1.73 80/1.55
A(10) 73/1.27 153/2.66 97/1.91/1.61 82/1.48

and confirm the remarks made after (7-10). Note that the first update in this
sequence is based on (3), resp. (5) and thus the values (7-10) do not apply here.

In Table 3 we use the grid size 223 and obtain a sequence of 11 linear systems
with matrices of dimension 49729 and with 247753 nonzeros. The preconditioner
is ILUT(0.2,5), that is incomplete LU decomposition with drop tolerance 0.2 and
number of additional nonzeros per row 5. This experiment was implemented in
Fortran 90 in order to show improvements in timings for the alternative imple-
mentation strategy discussed in Section 3. The columns contain the BiCGSTAB
iteration counts, followed by the time to solve the linear system, including the
time to compute the (updated or new) factorization. In the column ’Triang’ the
last number corresponds to the implementation with merged factors as explained
above and ’ptime’ denotes the average time to recompute preconditioners.

The benefit of merging is considerable. Still, even with this improved im-
plementation, the Gauss-Seidel type of updates happens to be faster than the
standard triangular updates for several systems of the sequence. As for the
BiCGSTAB iteration counts, for the majority of the linear systems Gauss-Seidel
updates are more efficient. We have included in this table the results based on
recomputation as well. In contrast to the results of the previous example, the de-
composition routines are very efficient and exhibit typically in-cache behaviour.
Then they often provide the best overall timings. This does not need to be the
case in other environments like matrix-free or parallel implementations, or in
cases where preconditioners are computed directly on grids.

5 Conclusion

In this paper we considered new ways for improving triangular updates of fac-
torized preconditioners introduced in [5]. We proposed a Gauss-Seidel type of
approach to replace the triangular strategy, and we introduced a more efficient
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implementation of adaptive triangular updates. We showed on a model nonlin-
ear problem that both techniques may be beneficial. As a logical consequence,
it seems worth to combine the two improvements by adapting the new imple-
mentation strategy for Gauss-Seidel updates. We expect this to yield even more
efficient updates. For conciseness, we did not present some promising results
with the Gauss-Seidel approach generalized by adding a relaxation parameter.
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