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Abstract. Iterative aggregation/disaggregation methods (IAD) for computation stationary
probability vectors of large scale Markov chains is an efficient tool in practice. However, its conver-
gence theory is still not developed appropriately. Similarly as in other multi-level methods such as
multigrid methods the number of relaxations on the fine level of the IAD algorithms that is to be
executed plays a very important role Some new concepts to better understanding the methods as
well as behavior and dependence of various parameterrs involved in the aggregation algorithms are
studied and some necessary and/or sufficient conditions for convergence are established. The theory
developed offers as one of the main results a proof of convergence of IAD algorithms independently
of the fact whether the governing iteration matrix is primitive or cyclic. Another important result
concerns comparison of the rates of convergence two IAD processes. Some examples document the
diversity of behavior of IAD methods.
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1. Introduction. As documented in the literature, e.g. [2] and [13, Section 6.3],
aggregation/disaggregation iterative methods (IAD) belong to competitive classes of
methods for computation stationary probability vectors of Markov chains and Leontev
systems. The appropriate convergence theory still is far of being complete in the sense
of understanding the dependence of these methods upon all parameters influencing
convergence and its rate. The aim of this contribution is to decode some of the
subtle parts of the theory. In particular, some new concepts such as convergence
indices are introduced and their properties studied. These convergence indices allow
to establish some relations between the number of relaxations on the fine level in each
iteration sweep and the convergence/divergence behavior of the IAD. Some results
in this direction appear as decisive in order to understand the interplay between the
basic iteration matrix and the IAD algorithms. Consequently, a new important result
is established: The IAD processes do return convergent sequences of iterants without
requiring the splittings which the IAD algorithms are based on to be convergent;
e.g. splittings leading to cyclic iteration matrices are not only allowed but they may
appear as preferable in comparison with primitive iteration matrices obtained using
shifts of the originally cyclic iteration matrices.

2. Definitions and notation.

2.1. Generalities. As standard, we denote by ρ(C) the spectral radius of matrix
C, i.e.

ρ(C) = max {|λ| : λ ∈ σ(C)} ,

where σ(C) denotes the spectrum of C. Further we define the quantity

γ(C) = sup {|λ| : λ ∈ σ(C), λ 6= ρ(C) = 1} .

∗Department of Mathematics, Czech University of Technology, Thákurova 7, 166 29 Praha 6,
Czech Republic (marek@ms.mff.cuni.cz).

†Department of Mathematics, Czech University of Technology, Thákurova 7, 166 29 Praha 6,
Czech Republic , (pmaye@ms.mff.cuni.cz).

‡Department of Mathematics, Czech University of Technology, Thákurova 7, 166 29 Praha 6,
Czech Republic , (ivana@mat.fsv.cvut.cz).

1



2 I. MAREK, P. MAYER AND I. PULTAROVA

We are going to call γ(C) the convergence factor of C. We also need another more
general characteristic of convergence, therefore we introduce

2.1. Definition For any N ×N matrix C = (cjk), where cjk, j, k = 1, ..., N, are
complex numbers, let us define quantity

τ(C) = max{|λ| : λ ∈ σ(C), |λ| 6= ρ(C)}.

This quantity is called spectral subradius of C.
REMARK Let C be any N × N matrix. Then obviously,

ρ(C) ≥ γ(C) ≥ τ(C)

with possible strict inequalities in place of the nonstrict ones.
Let p be a positive integer B is an irreducible column stochastic matrix with

spectral decomposition

B = Q + Z, Q2 = Q, QZ = ZQ = 0, ρ(Z) < 1,

where

Q =

p
∑

j=1

λj−1Qj , QjQk = QkQj = δjkQj, j, k = 1, ..., p.

Let us note that the above formulas describe two essentially different situations:
The primitive case appears if p = 1 and the cyclic case if p > 1 respectively.

2.2. Aggregation communication. Let E = RN ,F = Rn, n < N , eT =
e(N)T = (1, ..., 1) ∈ RN . Let G be a map defined on the index sets:

G : {1, ..., N}
onto

→ {1, ..., n}

With this notation we can write eT = (e(r1)
T , ..., e(rn)T ), where

rj = card
({

j ∈ {1, ..., N} : G(j) = j
})

.

Iterative Aggregation/disaggregation communication operators are defined as

(Rx)j =
∑

G(j)=j

xj

S = S(u), (S(u)z)j =
uj

(Ru)j

(Rx)j

We obviously have

RS(u) = IF

For the aggregation projection P (x) = S(x)R

P (x)T e = e ∀x ∈ RN , xj > 0, j = 1, ..., N

and

P (x)x = x ∀x ∈ RN , xj > 0, j = 1, ..., N.(2.1)

Define the aggregated matrix as

B(x) = RBS(x).



CONVERGENCE ISSUES IN IAD METHODS 3

3. IAD Algorithms.

3.1. Algorithm SPV(B; T ; t, s; x(0);G; ε) (Stationary Probability Vector Algo-
rithm). Let B be an N ×N irreducible stochastic matrix and x̂ its unique stationary
probability vector. Further, let I − B = M − W be a splitting of I − B such that
T = M−1W is an elementwise nonnegative matrix. Finally, let t, s be positive inte-
gers, x(0) ∈ RN an elementwise positive vector and ε > 0 a tolerance.

Step 1. Set k = 0.

Step 2. Construct the aggregated matrix (in case s = 1 irreducibility of B implies that
of B(x(k)))

B(x(k)) = RBsS(x(k))

Step 3. Find the unique stationary probability vector z(k) from

B(x(k))z(k) = z(k), e(n)T z(k) = 1, e(n) = (1, ..., 1)T ∈ Rn.

Step 4. Let

Mx(k+1,m) = Wx(k+1,m−1), x(k+1,0) = x(k), m = 1, ..., t,

x(k+1) = x(k+1,t), e(N)T x(k+1) = 1.

Step 5. Test whether

‖x(k+1) − x(k)‖ < ǫ.

Step 6. If NO in Step 6, then let

k + 1 → k

and GO TO Step 2.
Step 7. If YES in Step 6, then set

x̂ := x(k+1)

and STOP.

The error matrix is defined as

J(B; T ; t, s;G; x(0); ε) = T t [I − P (x) (B − Q1)]
−1

(I − P (x)) ,

where we set Q1 = Q if p = 1 and

xT = (x1, ..., xN ), xj > 0, j = 1, ..., N.

If the dependence of the iteration sequence on the iteration matrix should be
made explicit we write x(k)(T ) in place of x(k), where T = M−1W .
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3.2. Algoritm LM(C; M, W ; t;G; y(0)) (Leontev Model Algorithm). Let C be
an N × N aggregation convergent matrix with nonnegative real elements, and let
{M, W} be a splitting of of A = I − C such that the iteration matrix T = M−1W is
elementwise nonnegative.
Step 1. Set 0 → k.
Step 2. Construct the matrix

C(y(k)) = RCS(y(k)).

Step 3. Find a unique the solution z̃(k) to the problem

z̃(k) − C(y(k))z̃(k) = Rb.(3.1)

Step 4. Disaggregate by setting

v(k+1) = S(y(k))z̃(k).

Step 5. Let

My(k+1,m) = Ny(k+1,m−1) + b, y(k+1,0) = v(k+1), m = 1, ..., t,

y(k+1) = y(k+1,t).

Step 6. Test whether

‖y(k+1) − y(k)‖ < ǫ.

Step 7. If NO in Step 6, then let

k + 1 → k

and GO TO Step 2.
Step 8. If YES in Step 6, then set

x∗ := y(k+1)

and STOP.
REMARK The algorithms of the type introduced in this section are known as

Leontev procedures invented by Leontev in the thirties of the twentieth century in
his famous sectorial economy theory. Actually, his sectorial variables are just the
aggregates of the initial variables and sectorial production matrix is our aggregation
matrix etc.

Since both algorithms SPV and LM possess the property that the corresponding
error-vector formulas are identical and the corresponding theories are very similar we
will investigate the case of SPV algorithms only.

4. Some properties of IAD methods. According to definition of SPV algo-
rithm the error-vector formula for the sequence of approximants reads

x(k+1) − x̂ = Jt(x
(k))

(

x(k) − x̂
)

,(4.1)
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where [5]

Jt(x) = J(B; T t; x) = T t [I − P (x)Z]−1 (I − P (x)) ,(4.2)

and where Z comes from the spectral decomposition of B = Q + Z, Q2 = Q, QZ =
ZQ = 0, 1 /∈ σ(Z). Furthermore, Jt(x) = T t−1J1(x), t ≥ 1, holds for any x with all
components positive.

We want to analyze convergence properties of IAD methods with no explicit
requirement that the basic iteration matrix is convergent, i.e. the following limit

lim
k→∞

T k

exists.
REMARK One of the most delicate questions concerning Theorem 4.2 reads: How

to choose the number of smoothings t̂? The answer to this question is not a simple
matter as does the following example show. It turns us back to another basic question
and namely, how to aggregate. Some results concerned with convergence issues of the
SPV algorithm with small number of smoothings t can be found in [11].

EXAMPLE Assume p > 1 is a positive integer and B is the transition matrix of
a Markov chain such that it can be written in a block form as









B11 0 . . . 0 B1p

B21 B22 . . . 0 0
. . . . . . .
0 0 . . . Bpp−1 Bpp









.

The iteration matrix T = M−1W is defined via splitting I − B = M − W with

M = diag{B11, ..., Bpp}, W = I − B − M.

We see that the iteration matrix T is block p-cyclic.
The aggregation communication operators are chosen such that

R = (1, ..., 1)T

is 1 × N matrix and

S(x)z =
z

Rx
x, x ∈ IntRN , z ∈ R1.

This means that the SPV algorithm reduces to the simple power method with the
iteration matrix T t. Assume the off-diagonal blocks are elementwise positive. Obvi-
ously, the SPV process possesses the following properties: It does not converge for
t < p and does converge for t = kp, k = 1, 2, ... We see that our IAD method does
preserve the nonconvergence property of the original power method.

On the other hand, if the aggregation operators are chosen as shown in Section
4 i.e. each single block of matrix B is aggregated to 1 × 1 matrix, the situation may
change dramatically. As example let us take transition matrix whose off-diagonal row
blocks satisfy Bjk = vju

T
jk, j 6= k where vj and ujk, j, k = 1, ..., n, are some vectors.

Then taking the same splitting as in the example discussed in this section the exact
stationary probability vector is obtained after at most two iteration sweeps [7].

These examples show that some of the aggregation/disaggregation procedures
may be inefficient whilst some other ones can be extremely efficient. The simplicity
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of these examples should not lead to conclusion that inefficiency is due to our ”wish”
to demonstrate existence of a poor situation. Divergence may appear whenever one
aggregates inappropriately within some blocks of a given transition matrix. Dangerous
may be aggregations leading to mixing the cycles. Thus, the situation does not seem
to be trivial, but anyhow, inefficiency and even divergence may always be expected.
A way out leads to some ”order”: We propose a suitable concept − aggregation-
convergence.

4.1. Aggregation-convergence. Let us remind a definition relevant in the con-
text of IAD methods [6].

Definition 4.1. Assume B is N×N irreducible stochastic matrix with stationary
probability vector x̂ and R and S(x) IAD communication operators. A splitting of
I − B , where

I − B = M − W = M(I − T ), T ≥ 0,

is called aggregation-convergent if

lim
k→∞

(I − P (x̂))T k = 0

An interesting question is how to recognize that a splitting is aggregation-convergent.
If looking at the error-vector formula valid for any IAD constructed utilizing

splitting of

A = I − B = M(I − T ), T ≥ 0(4.3)

we can summarize our knowledge concerning the class of IAD algorithms as
Theorem 4.2. [6] Consider algorithm SPV(B; M, W, T ; t, s = 1;G; x(0); ε) with

an irreducible stochastic matrix B, aggregation-convergent splitting (4.3) and initial
guess taken such that x(0) ∈IntRN

+ .

Then there exist generally two positive integers t̃, t̂ and two, generally different,
neighborhoods Ωt̃ (x̂) and Ωt̂ (x̂) such that Algorithm SPV(B; M, W, T ; t,
s = 1;G; x(0); ε) returns a sequence of iterants {x(k)} for which

lim
k→∞

x(k) = x̂ = Bx̂, eT x̂ = 1,

for t = t̃ and x(0) ∈ Ωt̃(x̂),
(4.4)

for t ≥ t̂ and x(0) ∈ Ωt̂(x̂).
(4.5)

REMARK Theorem 4.2 deserves some comments.
a) First of all, generally, t̃ in (4.4) may be large.
b) There are examples [12] showing that SPV(B; B; t = 1, s = 1; x(0); ε) does

converge and SPV(B; B; t = 2, s = 1; x(0); ε) does not.
EXAMPLE [12] Let us consider

B =













0 0 0 1/2 0
1 1/2 1/100 1/2 1/100
0 0 0 0 99/100
0 0 99/100 0 0
0 1/2 0 0 0













.
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It can be shown that

ρ(J(x̂)) = 0.9855 < 1 for SPV(B; B; t = 1; s = 1; x(0); ε = 1.10−5)

and

ρ(J(x̂)) = 1.1271 > 1 for SPV(B; B; t = 2; s = 1; x(0); ε = 1.10−5).

The effect just shown is caused by nonnormality of the iteration matrix. In this
context let us recall a popular problem of shuffling the cards (see A. Greenbaum [3]).

5. Necessary and/or sufficient conditions for local and global conver-
gence. Let G be a mapping of the index sets {1, ..., N} onto {1, ..., n} and R and
S(x) the corresponding communication maps determining the aggregation projection
P (x) = S(x)R [6]. Let B denote a fixed irreducible column stochastic matrix and
I−B = M−W its splitting such that the iteration matrix T = M−1W is elementwise
nonnegative.

Definition 5.1. A nonnegative integer r is called a-index of algorithm
SPV(B; T = M−1W ; t, s;G; x(0); ε) if this algorithm returns convergent sequences of
iterants for t = r and divergent ones for r = r + 1.

Definition 5.2. A positive integer tb is called (convergence) b-index of algorithm
SPV(B; T = M−1W ; t, s;G; x(0); ε) if tb is the smallest positive integer such that SPV
algorithm returns convergent sequences of iterants for all t ≥ tb. If a considered SPV
process is not convergent we also say that its b-index is zero.

In this section we are going to examine convergence issues concerned with Algo-
rithm SPV(B; T = M−1W ; t, s;G; x(0); ε) formulated in terms of the a and b indices
of this algorithm .

Prior we formulate the appropriate statements we comment on Theorem 4.2 uti-
lizing the above introduced convergence indices.

REMARK Parts of Theorem 4.2 concerned with relations (4.4) and (4.5) can be
reformulated as follows: The a-index of SPV(B; T ; t, s = 1;G; x(0); ε), let us denote it
by ta, satisfies ta ≥ t̃ and for the b-index, denoted by tb, we have relation tb ≤ t̂.

The convergence indices just introduced allow us to formulate natural conditions
necessary and sufficient for convergence and/or divergence of SPV algorithms. They
are presented in the form of Propositions.

Proposition 5.3. (Sufficient conditions for global convergence) Assume B =
C + γI, where γ > 0 is an irreducible stochastic matrix.

Then, there exist positive integers t̃ and s̃ such that for any x(0) ∈ RN with strictly
positive components algorithm SPV(B; B; t, s;G; x(0); ε) for t ≥ t̃ and s ≥ s̃ returns
convergent sequence of iterants {x(k)}, i.e.

lim
k→∞

x(k) = x̂ = Bx̂.(5.1)

In other words, the b-index of algorithm SPV(B; B; t ≥ t̃, s ≥ s̃;G; x(0); ε), say tb, is
bounded above by t̃: tb ≤ t̃.

Proof. Let ‖.‖MS denote the norm defined in (10.1) (see also [4]). It follows that

‖P (x̂)‖MS = 1
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implying that

‖I − P (x̂)‖MS ≤ 2,

and

∥

∥

∥[I − P (x̂)Cs]
−1

∥

∥

∥

MS
≤

1

1 − ‖C‖MS

.

In a manner similar to that in [4] we derive that

‖xk+1 − x̂‖MS = ‖Ct[I − P (x̂)Cs]−1(I − P (x̂))‖MS‖x
k+1 − x̂‖MS

≤ ‖Ct‖MS‖[I − P (x̂)Cs]−1‖MS‖I − P (x̂)‖MS‖x
k+1 − x̂‖MS

≤ 2α
1−β

‖xk+1 − x̂‖MS .

To complete the proof it is enough to take t̃ and s̃ such that ‖C t̃‖MS = α and
C s̃‖MS = β satisfy

2α + β < 1.

REMARK It may seem strange that such a simple statement with a quite trivial
proof may appear as new after a rather long period of investigating IAD methods. The
reason might be the absence of well understanding the role of the indices t and s in the
SPV Algorithm. The examples of Section 8 showing e.g. that SPV(B; B; t = 1, s =
1;G; x(0); ε) may not converge even locally while SPV(B; B; t = 1, s = 1;G; x(0); ε)
does led us to defining the a- and b- convergence indices and finding a way to local
and global convergence of IAD algorithms.

Proposition 5.4. (Necessary condition for local convergence) Suppose, all free
variables of Algorithm SPV(B; T = M−1W ; t = s = 1; x(0); ε) are fixed and

ρ
(

J(B; B; t, s = 1; x(0); ε)
)

< 1 ∀t ≥ t̂

.
Then

ρ
(

(I − P (x̂))T t
)

< 1 ∀t ≥ t̂.(5.2)

Proof. Let us assume that the conclusion of Proposition 5.4 is false. Then the
spectral resolution of the of matrix (I − P (x̂))T t reads

(I − P (x̂)) T t =

p
∑

j=1

λjPj + F,

where

ρ(F ) < ρ
(

(I − P (x̂))T t
)

= |λj | ≥ 1.
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Let y ∈ RN be such that

Pj0y 6= 0, j0 ∈ {1, ..., p} .

It follows that

lim inf
k→∞

∥

∥

∥

[

(I − P (x̂)) T t
]k

y
∥

∥

∥ > 0.

Thus, the implication
∥

∥

∥J(B; B; t, s = 1; x(0); ε)
∥

∥

∥ → 0 as t → ∞

is contradictory.
Proposition 5.5. (Necessary and sufficient conditions for local convergence)

Let tb ≥ 0 be the b-index of algorithm SPV(B; T ; t ≥ tb, s = 1;G; x(0); ε). Then the
following conditions (i) and (ii) are equivalent.

(i) The SPV iterative process returns convergent sequences of iterants.
(ii) Relation

ρ
(

(I − P (x̂))T t
)

< 1

holds for all t ≥ tb.

As a consequence of Propositions 5.5 and 5.3 we deduce
Theorem 5.6. To every SPV algorithm SPV(B; T ; t, s = 1;G; x(0); ε) there be-

longs a finite b-index of convergence.
REMARK Logically, the negation of the condition necessary for convergence de-

scribed in the above proposition is sufficient for divergence of the SPV iterative pro-
cess. However, according to the next proposition, possible divergence may appear only
if the extreme case of the sufficient conditions takes place, i.e. if ρ((I − P (x̂))T ) = 1.

Theorem 5.7. Let B be a column stochastic matrix and I − B = M − W =
M(I − T ) its splitting of nonnegative type with iteration matrix T ≥ 0 and eT M =
ẽT = (η1e(r1)

T , ..., ηne(rn)T ).
Then

ρ((I − P (x̂))T ) ≤ 1.

Proof. Instead of (I − P (x̂))T we will explore the spectral radius of

D−1(I − P (x̂))TD

where

D = diag

{
√

x̂1

η1
, ...,

√

x̂r1

η1
, ...,

√

x̂N−rn−1+1

ηn

, ...,

√

x̂N

ηn

}

.

Denoting Ts = D−1TD we will utilize norm (10.1) with z = DMT e = Dẽ. An
estimate of ||Ts||(z) is obtained using relations

zT Ts = eT MDTs = eT MDD−1M−1WD = eT WD = eT MD = zT .
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Thus ||Ts||(z) ≤ 1. An estimate of ||T T
s ||(z) can be obtained from

Tsz = D−1M−1WDDMT e.

Further, since

D2MT e = x̂,

we have

Tsz = D−1M−1Wx̂ = D−1x̂ = DMT e = z.

Then ||Ts||(z) ≤ 1 and ||T T
s ||(z) ≤ 1. For 2-norm of D−1(I − P (x̂))TD we have

||D−1(I−P (x̂))TD||2 ≤ ||D−1(I−P (x̂))D||2 ||Ts||2 = ||D−1(I−P (x̂))D||2 ρ(T T
s Ts) ≤

≤ ||D−1(I − P (x̂))D||2 ||T
T
s Ts||(z) ≤ ||D−1(I − P (x̂))D||2 ||Ts||(z) ||T

T
s ||(z) ≤

≤ ||D−1(I − P (x̂))D||2.

Since D−1(I − P (x̂))D is a symmetric projection, we get

||D−1(I − P (x̂))TD||2 ≤ 1

then ρ((I − P (x̂))T ) ≤ 1.

REMARK
The assumptions of Theorem 5.7 were restricted to the case where M is chosen

in such a way that

eT M = ẽT = (η1e(r1)
T , ..., ηne(rn)T )(5.3)

The reason was that in the proof we use a matrix D which has to fulfill the following
three properties

a) D is symmetric,
b) D2MT e = x̂,
c) D−1P (x̂)D is symmetric.

In case of the special choice of M given by the relation (5.3), matrix D can be diagonal
with

Dii =

√

x̂i

ck

for i with G(i) = k as introduced in the proof of Theorem 5.7. But when we do not
assume (5.3), matrix D in a diagonal form does not fulfill these three conditions any
more. When the size of B is N ×N , the number of equations corresponding to these
three conditions a), b) and c) are

N2 − N

2
, N,

N2 − N

2
,

respectively, and the sum of them is N2. Thus it seems that such a matrix D can be
found and that the statement of Theorem 5.7 is valid without the assumption (5.3).
Still we do not provide the exact construction of D yet.
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6. Convergence of IAD within the class of irreducible stochastic matri-
ces. If looking at the error-vector formula one recognizes immediately that conver-
gence will take place if the spectral radii ρ(J(B, T, x(k))) < 1, k ≥ k̂ for some k̂. On
the first look, there seems to be no reason guaranteeing convergence . The only factor
in the product forming matrix J(B, T k, x) that changes with k is T k. However, {T k}
does not converge if T is cyclic. On the other hand, we did have massive numerical
evidence that the IAD processes with iteration matrices Tm, m = 1, 2, ..., where

Mm =

(

1 +
1

m

)

I

implying that

Tm =

(

1 + m

m

)−1 (

1

m
I + B

)

=
1

1 + m
I +

m

1 + m
B,

showed a monotonically increasing rate of convergence for increrasing index m. This
observation led us to a conclusion that cyclicity of the iteration matrix is harmless.
Our theory confirms this claim.

Let us consider a subclass of the class of all irreducible Markov chains whose
transition matrices are block cyclic. Let B be such a matrix. Then

B =





B11 . . . B1p

. . . . .
Bp1 . . . Bpp





= H









0 . . . 0 B̃1p

B̃21 . . . . 0
. . . . . .

0 . . . B̃pp−1 0









HT ,

(6.1)

where H is some permutation matrix.
6.1. Agreement In our analysis we will always assume that the examined

stochastic matrix is in a block form obtained by applying an aggregation map G. This
concerns in particular the case of cyclic matrices where we assume the block form
shown in (6.1).

Now we consider Algorithm 3.1 and assume that our transition matrix B has the
form

B = Q + Z(B), ρ(Z(B)) ≤ 1, 1 /∈ σ(Z(B)),

and

Q2 = Q, QZ(B) = Z(B)Q = 0,

B as well as T have the blocks of identical sizes and T is block p-cyclic, i.e.

T = M−1W =

p
∑

j=1

λj−1Qj + Z(T ), λ = exp

{

2πi

p

}

,

where

Q2
j = Qj, QjQk = QkQj = 0, j 6= k,

QjZ(T ) = Z(T )Qj = 0

ρ(Z(T )) < 1.
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Defining

U =

p
∑

j=2

λj−1Qj + Z(T ),

we see that 1 is not an eigenvalue of P (x̂)Z(B), I − P (x̂)Z(B) is invertible and

J(x) = T t[I − P (x̂)Z(B)]−1(I − P (x̂)).

Suppose y is an eigenvector of T corresponding to an eigenvalue λ such that
|λ| = 1 and x̂ is the unique stationary probability vector of B. Then, according to
[1], the multi-components of vectors x̂ and y satisfy

y(j) = αj x̂(j), yT = (yT
(1), ..., y

T
(p)),(6.2)

with some αj 6= 0, j = 1, ..., p. It follows that

(P (x̂)y)(j) = x̂(j)

(

1
(Rx̂)j

)

(Ry)j

= αj x̂(j)
1

(Rx̂)j
(Rx̂)j

= y(j)

and thus,

(I − P (x̂))y = 0.(6.3)

Let w be an eigenvector of J(x̂), i.e.

J(x̂)w = λw.

Since

J(x̂) = J(x̂)(I − P (x̂)),

we also have that

λ(I − P (x̂))w = (I − P (x̂))J(x̂)(I − P (x̂))w.

Thus, together with w vector (I − P (x̂))w is an eigenvector of J(x̂) corresponding to
the same λ.

Since, according to (6.3),

(I − P (x̂))Qj = 0,

we have

(I − P (x̂))U = (I − P (x̂))Z(T )

and thus, there is a t̃ ≥ 1 such that

τ(T t) = ρ((I − P (x̂))(Z(T ))t) < 1, for t ≥ t̃.
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It follows that there is a t̂ ≥ t̃ such that

ρ (J(x̂)) = τ
(

T t[I − P (x̂)Z(B)]−1(I − P (x̂))
)

< 1 for t ≥ t̂.

Thus, we have convergence.
Summarizing we can state the following
6.2. Theorem Let B be an irreducible stochastic matrix and I − B = M − W

its splitting such that the iteration matrix T = M−1W is block p-cyclic.
Then there exists a positive integer t̂ and a neighborhood Ω(x̂) such that the SPV

Algorithm returns a sequence of iterants {x(k)} such that

lim
k→∞

x(k) = x̂ = Bx̂ = T x̂,

whenever x(0) ∈ Ω(x̂).
6.3. Remark Because of the counterexamples shown generally one cannot prove

more. There are some results on the local convergence properties of some special types
of the aggregation algorithm [11].

7. A comparison result. Our numerous experiments with applying Algorithm
SPV(B; I, B; t = 1, s = 1; x(0); ε) never failed to converge if applied to practical
problems. A possible explanation might consist of the fact that in any neighborhood of
an irreducible stochastic for which a given SPV algorithm returns divergent sequences
of iterants there is another stochastic matrix for which the same algorithm does return
convergent sequences of iterants.

The next result enlightens a bit the role of b-index of the basic algorithm SPV. In
fact, a very natural fact is shown and namely that the smaller is the spectral radius
of the variable part of the error matrix the faster convergence of the corresponding
SPV algorithm is guaranteed.

Theorem 7.1. Let ‖.‖ denote any norm on RN and also the corresponding oper-
ator norm. Further, let B is an irreducible stochastic matrix and I−B = M−1

j Wj , j =
1, 2 are two splittings such that Tj is elementwise nonnegative.

Assume that relations

∥

∥P (T t
2x) − P (x̂)

∥

∥ ≤
∥

∥P (T t
1x) − P (x̂)

∥

∥ , x ∈ Ω1(x̂)(7.1)

hold for t ≥ t1 where t1 is the b-convergence index of SPV(B; T1; t, s = 1;G, x(0); ε)
and where Ω1(x̂) is a corresponding neigborhood of local covergence.

Then algorithm SPV(B; T2; t, s = 1;G; x(0); ε) is locally convergent too and its
B-convergence index t2 ≤ t1.

Proof. Let x(k)(T t
j ) denote the iterant returned by Algorithm SPV(B; T2; t, s =

1;G; x(0); ε). Our goal is to show convergence of the sequence {x(k)(T t
2)} with t ≥

t1. By construction of the sequence we know that it is componentwise uniformly
bounded and hence it is pre compact as a bounded set. Let ỹ be any of its points
of condensation and let us assume, without loss of generality, that the corresponding
convergent subsequence coincides with that of {x(k)(T t

2)}. Relations (7.1) imply that

‖P (x(k))(T2) − P (x̂)‖ ≤ ‖P (x(k))(T1) − P (x̂)‖

hold for k = 1, 2, ... and consequently,

lim
k→∞

P (x(k)(T2)) = P (x̂).
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Local convergence of Algorithm SPV(B; T2; t, s = 1;G; x(0); ε) then follows because of
validity of the next proposition proven in [6], [7].

Proposition 7.2. Let x ∈ RN ⊕ iRN , i2 = 1, satisfy

P (x) = P (x̂).

Then x̂ = x(1), where x(1) is the vector returned after one iteration sweep of Algorithm
SPV(B; T2; t, s = 1;G; x(0) = x; ε) .

The proof of Theorem 7.1 is complete.

8. Examples. Example 1. We compute spectral radii of error matrices

Jt = Bt(I − P (x̂)Z)−1(I − P (x̂)),

for a trivial example, namely for a primitive 3 × 3 matrix

B =





a 0 b
1 − a 0 1 − b

0 1 0





for t = 1, . . . , 15 and for various values of a and b, respectively. The values of a and b
represent situations of nearly cyclic or nearly reducible matrix B,

i) a = b = 0.9, it means nearly reducible matrix B,
ii) a = b = 0.1, nearly reducible matrix B,
iii) a = 0.9 and b = 0.1, nearly cyclic matrix B,
iv) a = 0.1 and b = 0.9, nearly cyclic matrix B.

All of these four cases lead to local divergenece for t = 1. The nearly reducible cases
(i) and (ii) differ significantly for increasing t. While in (i) the spectral radii decrease
rapidly, the spectral radii in (ii) decrease very slowly. The effect is more remarkable
for a = b → 0 in (ii). The behavior of nearly cyclic cases (iii) and (iv) also differ for
changing t. Thus one can see that even in such a trivial example, the choice of the
aggregation groups is crucial.

Example 2. While in Example 1 all choices of a and b lead to local convergent
IAD process for any t = 1, 2, . . . , 15, the situation is different for matrix

B =













0 0 0 0.1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0.9 0













.(8.1)

In Figure 8.2, we show the spectral radii of error matrices Jt = Bt(I −P (x̂)Z)−1(I −
P (x̂)) (solid line) and for (I − P (x̂))Zt (dashed line) for t = 1, 2, . . . , 12. We can
observe that smoothings with some of the powers of B lead to processes divergent
even locally.

9. Concluding remarks. When summarizing our observations we can say that
the theory, computer experiments and practical computations confirm a view accepted
in the literature and namely that iterative aggregation/disaggregation methods are
competitive means for computations the characteristics of Markov chains, in particular
stationary probability vectors. Let us recall that any IAD method possesses a finite
b-index of convergence independently of whether the governing iteration matrix is
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Fig. 8.1. Spectral radii of matrices Jt for four different choices of a and b in Example 1.
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Fig. 8.2. Spectral radii of matrices Jt (solid line) and (I − P (x̂))Zt (dashed line) in Example 2.

primitive or cyclic. This property significantly distinguishes the IAD methods of
other methods. Another of our results we want to mention explicitly is concerned
with the theory of convergence indices including a new type of comparison of rates of
convergence. We observed examples showing divergence of some SPV algorithms too.
We show however that the divergence can take place only for indices t < tb, where tb
is the convergence b-index of the appropriate SPV algorithm.
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10. Appendix: A special norm. Let C be an N × N matrix whose elements
are reals and let zT = (ζ1, ..., ζN ), ζj > 0, j = 1, ..., N . Define

‖C‖(z) = νz(C) = min
{

α ∈ R+ : |CT |z ≤ αz
}

(10.1)

and |C| denotes the matrix of absolute values of elements of matrix C.
Proposition 10.1. [4] The expression (10.1) is a norm on the space of N × N

matrices over R.

Acknowledgments. The work on which this contribution is based was sup-
ported by the Program Information Society under Project 1ET400300415, Grant No.
201/05/0453 of the Grant Agency of the Czech Republic and by the Grants No. MSM
210000010 and No. MSM 6840770001 of the Ministry of Education, Youth and Sports
of the Czech Republic.

REFERENCES

[1] Courtois P.J., Semal P. Block iterative algorithms for stochastic matrices, Linear Algebra Appl.
76, 59-80 (1986).

[2] Dayar T., Stewart W.J. Comparison of partitioning techniques for two-level iterative solvwers
on large, sparse Markov chains. SIAM J. Sci. Comput.Vol 21, No. 5, 1691-1705 (20

[3] Greenbaum A. Card shuffling and the polynomial numerical hull of degree k. Manuscript,
Uniersity of Washington, Seattle (2002.

[4] J. Mandel, B. Sekerka, A local convergence proof for the iterative aggregation method. Linear
Algebra and Its Applications 51, 163 - 172, 1983.

[5] Marek I., Mayer P. Convergence analysis of an aggregation/disaggregation iterative method
for computation stationary probability vectors of stochastic matrices. Numerical Linear
Algebra With Applications, 5 253-274 (1998).

[6] Marek I., Mayer P. Convergence theory of a class of aggregation/ disaggregation iterative meth-
ods for computing stationary probability vectors of stochastic matrices. Linear Algebra
Appl. 363 177- 200, 2002).

[7] Marek I., Mayer P. Iterative aggregation/disaggregation methods for computing stationary prob-
ability vectors of stochastic matrices can be finitely terminating, International Journal of
Differential Equations Vol. 3, 301-313 (2001).
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