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Abstract. Some problems connected with 2D modeling of geosynthetic tubes on rigid

foundation are studied. Basic equations are derived and analyzed. The analysis of the

equations in based on the implicit function theorem. Geosynthetic tubes are made of a

special fabric and then filled with water or slurry. After being filled tubes take certain

shapes and tensions are induced in geosynthetic. The modeling is based on the following

hypotheses: the problem is two dimensional; the geosynthetic is flexible, inextensible and

has negligible weight; the foundation is rigid; there is no friction between the foundation

and the geosynthetic.
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1. Introduction

Geosynthetic tubes are comprised of thin sheets and pumped with water or slurry.
The tubes are made of synthetic fabrics (geotextile). They have been used as dikes
or breakwaters and to prevent beach erosion. They have got many other applications
in geoengineering (see[2]).

The geosynthetic tubes are often very long and their cross sections are identical
so they can be modelled as 2D objects. The geosynthetic tubes have been studied in
many papers. The geosynthetic tubes on rigid foundation are studied, for instance,
in [1, 3]. These results are generalized for tubes on elastic foundation [5]. The
geosynthetic tubes in mutual contact are studied in [6]. Some problems connected
with 3D modeling are solved in [7]. Similar techniques have been applied for solving
some quite different problems. The floating liquid filled membranes are studied in
[8, 9]. The shape of towed boom of logs is studied in [4].

The main purpose of this paper is to give the strict mathematical formulation
and analysis of the geosynthetic tubes on the rigid foundation. An alternative
formulation of the problem is presented. The derived equations are analyzed from
the point of the existence and the algorithms for numerical solutions are proposed
and tested on model problems.

2. Basic hypotheses and setting up problems

The geosynthetic tubes have diameters ranging from one to several meters and
have theoretically infinite length. Let us consider that all cross sections are identical,
so we can study the geosynthetic tubes as a two dimensional problem. The modeling
is based on the following hypotheses:

1The research was supported by Grants FT-TA3/069 and 1ET400300415.
E-mail address:malik@ugn.cas.cz.



(1) The geosynthetic is inextensible and flexible and its weight can be neglected.
(2) The filling medium (water or slurry) behaves as an ideal liquid which gen-

erates the hydrostatic preassure in every point and act in the perpendicular
direction to the geosynthetic.

(3) There is no friction between the foundation and the geosynthetic.

The geosynthetic tube is filled through the inlets on the top of the tube, which
results in the proccess, where the certain part of the geosynthetic rises and the other
part of the geosynthetic rests on the rigid foundation (see Fig.1.).
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Fig.1 Cross section of a geosynthetic tube

Let us consider the coordinates in Fig.1 with the origin in the point O and with
the axes x, y oriented in the way depicted in Fig.1. Let us use the notation

ρ the density of the water or slurry.
g the gravitational acceleration.
p the pressure of the water or slurry in the point O.

The pressure p can be interpreted as the pumping pressure of the water or slurry
which is transported into the tube. Let us set up equilibrium conditions on the
curve representing the shape of the cross section of the geosynthetic tube.

Let s be the parameter representing the length of the curve. The parameter is
equal 0 in the point O and is oriented in the anticlockwise direction.

Let n = (nx, ny) be the normal vector to the curve, H(s) be the tension force in
the geosynthetic in the point corresponding to the parameter s, and the functions
x(s), y(s) describe the shape of the curve between the points O, C.
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Now we are prepared to formulate the equilibrium conditions on the interval
AB (see Fig.1), where the points A, B correspond to the parameters s1, s2. The
equilibrium conditions read

(1)

H(s2)
dx(s2)

ds
− H(s1)

dx(s1)

ds
+

s2
∫

s1

nx(s) (gρy(s) + p) ds = 0,

H(s2)
dy(s2)

ds
− H(s1)

dy(s1)

ds
+

s2
∫

s1

ny(s) (gρy(s) + p) ds = 0.

Since the parameter s represents the length of the curve, the normal vector n

corresponds to
(

dy

ds
,−dx

ds

)

. If we consider that the values s1, s2 are arbitrary, then

the equations (1) can be rewritten into the differential equations

(2)

d

ds

(

H
dx

ds

)

+
dy

ds
(gρy + p) = 0,

d

ds

(

H
dy

ds

)

− dx

ds
(gρy + p) = 0,

which hold on the interval OC (see Fig. 1.). Since s represents length, we have the
identity

(3)

(

dx

ds

)2

+

(

dy

ds

)2

= 1

Let us consider (3), then the equations

(4)

d

ds
H =

d

ds

(

H

(

dx

ds

)2

+ H

(

dy

ds

)2
)

=
d

ds

(

H
dx

ds

)

dx

ds
+

d

ds

(

H
dy

ds

)

dy

ds
+ H

(

dx

ds

d2x

ds2
+

dy

ds

d2y

ds2

)

hold. Since the equations (2) hold, then from (3), (4) it follows the identity

dH

ds
= 0,

which means that H is constant on the whole curve OC.
From now the parameter H in the equations (2) is constant and these equations

represent the equilibrium of forces on the curve OC. Moreover, the equilibrium of
forces in the points O, C results in the equations

(5)
dy

ds
(sO) =

dy

ds
(sC) = 0,

where sO, sC represent the values of the parameter s in O, C. It is obvious as well
that the curve describing the shape of the cross section is symmetric with respect
to the axis x (see Fig. 1).
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In the rest of this paper the parameters p, H will be positive. Let us formulate
some useful relations. Let sC be the value of the parameter s in the point C, then
the perimeter L is

(6) L = 2sC + 2x(sC).

Since the value of the parameter s in O vanishes, the area V of the cross section
reads

(7) V = 2

sC
∫

0

x
dy

ds
ds,

where sC is the value of the parameter s in the point C.
In some practical problems it is useful to know the hight h of the geosynthetic

tube. The high can be express by the formula

(8) h = y(sC),

where sC corresponds with the point C.
Let us set up some problems which are of practical use. In the following three

problems the value of the perimeter is prescribed.
Problem 1. Let the length of the perimeter L > 0 and the pumping pressure

p > 0 be given. Find the values of parameters H > 0, sC > 0, so that the solutions
x(s), y(s) to the equations (2) on the interval (0, sC) satisfy the equations (5), (6)
together with the following equations

(9) x(0) = y(0) = 0.

Moreover, the inequality

(10)
dy

ds
> 0

holds on the interval (0, sC).
Let us mention that the relations (3) and (5) yield the equations

dx(0)

ds
= 1,

dx(sC)

ds
= −1.

Problem 2. Let the length of the perimeter L > 0 and the high of the tube
h > 0 be given. Find the values of parameters H > 0, p > 0, sC > 0, so that the
solutions x(s), y(x) to the equations (2) on the interval (0, sC) satisfy the conditions
(5), (6), (8), (9), (10).

Problem 3. Let the length of the perimeter L > 0 and the area of the cross
section V > 0 be given. Find the values of parameters H > 0, p > 0, sC > 0, so
that the solutions x(s), y(x) to the equations (2) on the interval (0, sC) satisfy the
conditions (5), (6), (7), (9), (10).

Let us formulate another problem which can be of practical use. We have a
pump with the pumping pressure p. The tube, after being filled with the pump,
shout achieve the prescribed high h. We look for the value of perimeter so that the
conditions above are fullfilled.
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Problem 4. Let the pumping pressure p > 0 and the high of the tube h > 0
be given. Find the values of parameters H > 0, sC > 0, so that the solutions x(s),
y(x) to the equations (2) on the interval (0, sC) satisfy the conditions (5), (8), (9),
(10). Then the value of L is given by (6).

The solutions to the problems formulated above can be of practical use for the
designer who can set some parameter in an optimal way.

We will solve the problems in a new parameterization which was adopted, for
instance, in [3, 4]. This parameterization makes easier the mathematical analysis
of the problems.

Let α be the angle between the tangential vector ( dx
ds

, dy

ds
) in the point (x, y) on

the curve and the axis y (see Fig. 1), which yields the equations

(11)
dx

ds
= − sinα,

dy

ds
= cosα.

Lemma 2.1. Let all assumption for
Problem 1 – 3 hold, then

dα

ds
> 0

on the interval (0, sC).

Proof. Let α be the angle between the two vectors u, v, then the following formula
holds

cosα =
< u, v >

‖ u ‖‖ v ‖ ,

where < ., . >, ‖ . ‖ are the scalare product and norm in R2. Let u = (dx
ds

, dy
ds

) and
v = (0, 1), then the last formula can be revritten into

cosα =
dy

ds
.

Let us derivate the last formula with respect to s and apply the second equation
in (2), then we have the equation

− sinα
dα

ds
=

dx

ds

(

gρy + p

H

)

.

From (11) it follows

(12)
dα

ds
=

gρy + p

H
.

If we consider that p, H are positive numbers and y(s) > 0 on the interval (0, sC),
which follows from (10), then we have the desired result. �

Lemma 2.1 guarantees the regularity of the parameterization with respect to α.
This parameterization defines the bijection from the interval (0, sC) to the interval
(−π

2 , π
2 ).

Applying the equations (11), we can rewrite the first equation in (2) into

(13) −H cosα
dα

ds
+ cosα(gρy + p) = 0.
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From the second equation in (11) it follows the equations

dα

ds
=

dα

dy

dy

ds
=

dα

dy
cosα.

These equation together with the equation (13) yield

cosα
dα

dy
=

gρy

H
+

p

H
,

which results in the relation

(14) [sin θ]
α

−
π

2

=

[

gρz2

M
+

pz

H

]y(α)

0

,

where y(α) is equal to y(s) in the parameterization described above. After simple
operations (14) yields the equation

(15) y(α) =
−p + (p2 + 2gρH(1 + sin α))

1

2

gρ

The last equation is the solution to the quadratic equation (14), where we have
chosen the solution satisfying the condition y(−π

2 ) = 0 which corresponds to the
condition in (5). Moreover, the equation (15) can be rewritten into

(16) y(α) =

α
∫

−π

2

H cos θdθ

(p2 + 2gρH(1 + sin θ))
1

2

.

This formula will be useful in the analysis in the next section.
Let us consider (11) and (12), then we have the equations

dα

ds
=

dα

dx

dx

ds
= −dα

dx
sin α =

gρy

H
+

p

H
,

dα

ds
=

dα

dy

dy

ds
=

dα

dx
cosα =

gρy

H
+

p

H
.

From the last equations and (15) it follows the formulas

(17)

dx

dα
= − H sin α

(p2 + 2gρH(1 + sin α))
1

2

,

dy

dα
=

H cosα

(p2 + 2gρH(1 + sinα))
1

2

,

ds

dα
=

H

(p2 + 2gρH(1 + sinα))
1

2

.
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The formulas (17) and the equations x(−π
2 ) = s(−π

2 ) = 0 yield

(18)

x(α) = −
α
∫

−
π

2

H sin θdθ

(p2 + 2gρH(1 + sin θ))
1

2

,

s(α) =

α
∫

−
π

2

Hdθ

(p2 + 2gρH(1 + sin θ))
1

2

which together with (15) and (16) describe the geometry of the cross section with
respect to the parameter α.

From the definition of the length of the perimeter (6), the equation α(sC) = π
2 ,

and (18) it follows

(19) L = 2

π

2
∫

−π

2

H(1 − sin θ)dθ

(p2 + 2gρH(1 + sin θ))
1

2

.

From the definition of the area of the cross section (7), the equation α(sC) = π
2 ,

(15), (17), and (18) it follows

(20)

V = + 2

π

2
∫

−
π

2

x
dy

dα
dα =

− 2

π

2
∫

−
π

2

H cosαdα

(p2 + 2gρH(1 + sin α))
1

2

α
∫

−
π

2

H sin θdθ

(p2 + 2gρH(1 + sin θ))
1

2

=

− 2

π

2
∫

−
π

2

H sin θ (p2 + 4gρH)
1

2 dθ

(p2 + 2gρH(1 + sin θ))
1

2 gρ
.

From the definition (8), the equation α(sC) = π
2 , (15), and (16) it follows the

formula for the high of the tube

(21) h =

π

2
∫

−π

2

H cos θdθ

(p2 + 2gρH(1 + sin θ))
1

2

=
(p2 + 4gρH)

1

2 − p

gρ
.

The relations derived in this section will be applied in the next section for the
analysis of Problem 1 – 3.
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3. Analysis of solvability

First of all we analyze Problem 1, where the length of the perimether L̄ together
with the pumping pressure p̄ are prescribed. In the sequel all prescribed param-
ether will be denoted by the bar. Moreover, all expressions in (19), (20), (21) are
considered as the functions L(p, H), V (p, H), h(p, H) with the variables p, H .

Lemma 3.1. Let L(p, H) be defined by (19), then for all p > 0, H > 0 the
inequality

∂L(p, H)

∂H
> 0

holds. Moreover, for any fixed p > 0 the expression L as a function of H is bijective
from (0,∞) to (0,∞).

Proof. Let us consider the following inequalities

(22)

1 − sin θ

(p2 + 2gρH(1 + sin θ))
1

2

> 0,

gρH(1 + sin θ)

p2 + 2gρH(1 + sin θ)
<

1

2
,

which hold on the interval (−π
2 , π

2 ), then from the second inequality in (22) it follows
the inequality

(23) 1 − gρH(1 + sin θ)

p2 + 2gρH(1 + sin θ)
>

1

2
,

which hold on the interval (−π
2 , π

2 ) as well. The inequalities (22) and (23) yield the
relations

(24)

∂

∂H

(

2H(1 − sin θ)

(p2 + 2gρH(1 + sin θ))
1

2

)

=

2(1 − sin θ)

(p2 + 2gρH(1 + sin θ))
1

2

(

1 − gρH(1 + sin θ)

p2 + 2gρH(1 + sin θ)

)

> 0

which holds on the interval (−π
2 , π

2 ). Then from (19) and (24) it follows the in-
equality

(25)
∂L(p, H)

∂H
> 0,

which is the first assertion of this lemma.
If p > 0, then the limits

(26)

lim
H→0

2H(1 − sin θ)

(p2 + 2gρH(1 + sin θ))
1

2

= 0,

lim
H→∞

2H(1 − sin θ)

(p2 + 2gρH(1 + sin θ))
1

2

= ∞

hold for all θ ∈ (−π
2 , π

2 ). From (24) it follows that the convergence is monotone for
all θ ∈ (−π

2 , π
2 ).
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Due to the monotone convergence theorem and (26) we have the limits

lim
H→0

L(p, H) = 0, lim
H→∞

L(p, H) = ∞.

These limits together with (25) mean that L as a function of H is bijective from
(0,∞) to (0,∞) for any p, which is the second assertion of this lemma. �

Lemma 3.2. Let L(p, H) be defined by (19), then for all p > 0, H > 0 the
inequality

∂L(p, H)

∂p
< 0

holds. Moreover, for any fixed H > 0 the expression L as a function of p is bijective
from (0,∞) to (0,∞).

Proof. Let us consider the relations

(27)

∂

∂p

(

2H(1− sin θ)

(p2 + 2gρH(1 + sin θ))
1

2

)

=

− 2pH(1− sin θ)

(p2 + 2gρH(1 + sin θ))
3

2

< 0

which hold for all θ ∈ (−π
2 , π

2 ). Then from (19) it follows

∂L(p, H)

∂p
< 0,

which proves the first assertion of this lemma.
Now let H be fixed. Let us consider the substition ϕ = θ+ π

2 , where θ ∈ (−π
2 , π

2 ),
then there exist an interval (0, a) and a constant C1 > 0 such that for any ϕ ∈ (0, a)
the inequality

p2 + 2gρH
(

1 + sin
(

ϕ − π

2

))

≤ p2 + C1ϕ
2

holds. From the last inequality it follows the existence of C2 > 0 such that the
relations

L(p, H) ≥
a
∫

0

C2dϕ

(p2 + C1ϕ2)
1

2

=
C2√
C1

(

ln
(

C1a +
√

C1a2 + p2
)

− ln(p))
)

hold (see any textbook of calculus). The last relations yield the limit

(28) lim
p→0

L(p, H) = ∞.

On the other hand the following limit

(29) lim
p→∞

2H(1− sin θ)

(p2 + 2gρH(1 + sin θ))
1

2

= 0

holds for all θ ∈ (−π
2 , π

2 ). From (27) it follows that the convergence is monotone,
which together with (29) yields

(30) lim
p→∞

L(p, H) = 0.

The limits (28), (30) yield the second assertion of this lemma. �
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Lemma 3.3. Let h(p, H) be the function defined by (21). Then for any p > 0,
H > 0 the inequalities

∂h(p, H)

∂p
< 0, h(p, H) < 2

√

H

gρ

hold.

Proof. Let us consider the relations

(31)
∂

∂p

(

H cos θ

(p2 + 2gρH(1 + sin θ))
1

2

)

= − pH cos θ

(p2 + 2gρH(1 + sin θ))
3

2

< 0,

the from (21) it follows the inequality

(32)
∂h(p, H)

∂p
< 0.

From the second equality in (21) it follows

h(0, H) = 2

√

H

gρ
,

which together with the inequality (32) yields the inequality

h(p, H) < 2

√

H

gρ
.

The last inequality and (32) prove this lemma. �

Let H(p) be the function from (0,∞) to (0,∞) defined by the equation

(33) L(p, H(p)) = L̄,

where L̄ is the prescribed value of the perimeter. The existence and uniqueness of
this function follows from Lemma 3.1 and the implicit function theorem.

Lemma 3.4. Let L̄ > 0 be prescribed and H(p) be the function defined by (33).
Then for any ε > 0 there exists p > 0 such that the inequality

h(p, H(p)) < ε

holds.

Proof. Let us choose H̄ such that the inequality

ε > 2

√

H̄

gρ

holds, then from Lemma 3.2 it follows the existence of p > 0 such that the equation

L(p, H̄) = L̄

holds. Then Lemma 3.3 yields the inequality

h(p, H̄) < ε.
10



From Lemma 3.1 and the implicit function theorem it follows

H(p) = H̄,

which proves this lemma. �

Lemma 3.5. Let L̄ > 0 be prescribed and H(p) be defined by (33). Then for
any ε > 0 there exists p > 0 such that the inequality

h(p, H(p)) >
L̄

π
− ε

holds.

Proof. Let p → ∞ and H → ∞ so that

(34)
2H

p
→ L̄

π
,

then the following limits

(35)

2H(1− sin θ)

(p2 + 2gρH(1 + sin θ))
1

2

→ L̄

π
(1 − sin θ),

2H cos θ

(p2 + 2gρH(1 + sin θ))
1

2

→ L̄

π
cos θ

hold for all θ ∈ (−π
2 , π

2 ). From (19), (21), and the limits (35) it follows the limits

(36) L(p, H) → L̄, h(p, H) → L̄

π
.

From (36) it follows that for any small ε > 0 there exist sufficiently large positive
numbers p1, p2, H0 such that the inequalities

(37)
L(p1, H0) > L̄, h(p1, H0) >

L̄

π
− ε,

L(p2, H0) < L̄, h(p2, H0) >
L̄

π
− ε

hold. The continuity of the function L(p, H) yields that there exists p0 ∈ (p1, p2)
such that the equation

(38) L(p0, H0) = L̄

holds. Let us derivate (21) with respect to p, then after simple opeartions, we have

∂h(p, H)

∂p
> 0.

The last inequality together with the inequalities (37) yield the inequality

(39) h(p0, H0) >
L̄

π
− ε.

From Lemma 3.1, the equality in (38), and the implicit function theorem it follows

H(p0) = H0,

which together with the inequality (39) proves this lemma. �
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Lemma 3.6. Let h(p, H) be defined by (21), then for all p > 0, H > 0 the
inequality

∂h(p, H)

∂H
> 0

holds. Moreover, for any fixed p > 0 the expression h as a function of H is bijective
from (0,∞) to (0,∞).

Proof. After derivating (21) with respect to H , we have the first assertion of this
lemma. The following equality

∂h(p, 0)

∂H
= 0

and the limit

lim
H→∞

h(p, H) = ∞,

which hold for any p > 0, yield together with the implicit function theorem this
lemma. �

If p → ∞, H → ∞ so that the limit (34) holds, then from the formulas (16), (18)
it follows that the limiting shape of the cross section is described by the equations

(40)

x(α) = − L̄

π

α
∫

−π

2

sin θdθ =
L̄

π
cosα,

y(α) =
L̄

π

α
∫

−π

2

cos θdθ =
L̄

π
(1 + sin α)

which correspond to the circle with the perimeter L̄.
The analysis above shows that the increase of pumping pressure results in the

increase of the tension in the geotextile and for very large values the relation

H ≈ L̄p

π

holds.

Theorem 3.1. Let the positive number L̄, p̄ be given. Then Problem 1 has
exactly one solution.

This theorem follows from Lemma 3.1 and the implicit function theorem.

Theorem 3.2. Let the positive number L̄, h̄ be given and the following inequality

h̄ <
L̄

π

hold. Then Problem 2 has a solution.
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Proof. From Lemma 3.4 and Lemma 3.5 it follows that there exist the positive
numbers p1, p2 such that the relations

(41)
L(p1, H(p1)) = L(p2, H(p2)) = L̄,

h(p1, H(p1)) < h̄ < h(p2, H(p2))

hold.
Let us consider that the functions L(p, H), h(p, H) are continuous as well as the

function H(p) defined by the equation

L(p, H(p)) = L.

The function H(p) is defined on (0,∞), which is the result of Lemma 3.1 and
implicit function theorem. Then there exists p0 ∈ (p1, p2) such that the equation

h(p0, H(p0)) = h̄

holds, which follows from (41). �

Theorem 3.3. Let the positive numbers L̄, V̄ be given and the following inequal-
ity

V̄ <
L̄2

4π
hold. Then Problem 3 has a solution.

Proof. From Lemma 3.4 it follows that there exist p1 > 0 such that the relations

(42) L(p1, H(p1)) = L̄, h(p1, H(p1)) <
2ε

L̄

hold for sufficiently small ε > 0, where H(.) is defined by (33). From the relations
(42) it follows that the cross section is contained in the rectangle with the sites 2ε

L̄
,

L
2 , which yields the inequality

(43) V (p1, H(p1)) < ε,

where the function V (p, H) is defined by (20).
From Lemma 3.5 and the equations (40) it follows that there exists p2 > 0 such

that the relations

(44) L(p2, H(p2)) = L̄, V (p2, H(p2)) <
L̄2

4π
− ε

hold, where ε > 0 is sufficiently small.
The relations (42), (43), (44), and the assumptions of this theorem yield the

inequalities

(45) V (p1, H(p1)) < V̄ < V (p2, H(p2)).

Then from the continuity of the functions V (p, H), H(p) and the inequalities (45)
it follows the equations

L(p0, H(p0)) = L̄, V (p0, H(p0)) = V̄ ,

which proves the theorem. �

13



Theorem 3.4. Let the positive number h̄, p̄ be given. Then Problem 4 has
exactly one solution.

This theorem follows from Lemma 3.6 and the implicit function theorem.

4. Algorithms for numerical solutions.

This section contains algorithms for solving the problems formulated above. The
algorithms are based on the analyses worked out in Section 3.

Problem 1. For given p̄ and L̄ we look for H such that the equation

L(p̄, H) = L̄

is fullfilled. Due to Lemma 3.1 we can apply, for instance the Newton method.
Problem 2. For given h̄ and L̄ we look for p, H such that the equation

L(p, H) = L̄, h(p, H) = h̄

are fullfilled. Moreover h̄ , L̄ satisfy the inequality

h̄ <
L̄

π

which guarantees, due to Theorem 3.2, the existence of a solution to Problem 2.
Let us select ε > 0, which represents the numerical accuracy, and suppose that we
can solve the equation L(p̄, H) = L̄ with the respect to H for given p̄, L̄.

Algorithm for Problem 2:

(1) Choose p > 0, pmax = pmin = 0.
(2) Solve L(p, H) = L̄ with the respect to H .
(3) If h(p, H) ≥ h̄, then pmax = p else pmin = p.
(4) If pmax = 0, then go to (5) else go to (8).
(5) p = 2p.
(6) Solve h(p, H) = L̄ with respect to H .
(7) If h(p, H) ≥ h̄ then pmax = p and go to (11) else go to (5).
(8) p = p/2.
(9) Solve L(p, H) = L̄ with respect to H .

(10) If h(p, H) ≤ h̄, then pmin = p and go to (11) else go to (8).
(11) p = (pmin + pmax)/2.
(12) Solve L(p, H) = L̄ with respect to H .
(13) If h(p, H) ≥ h̄, then pmax = p else pmin = p.
(14) If | h(p, H)− h̄ |< ε, then p, H are a solution to Problem 2 else go to (11).

The correctness and convergence of the algorithms follow from the analysis above.
Problem 3 For given V̄ , L̄ we look for p, H such that the equations

V (p, H) = V̄ , L(p, H) = L̄

are fullfilled. Moreover, L̄, V̄ satisfy the inequality

V̄ <
L̄2

4π
,

which guarantees, due to Theorem 3.3, the existence of a solution to Problem 3.
14



Let us select ε > 0, which represents the numerical accuracy, and suppose that
we can solve the equations L(p̄, H) = L̄ with respect to H for any the given p̄ and
L̄.

Algorithm for Problem 3:

This algorithm can be formulated in the same way as Algorithm for Problem 2.
We only have to substitute the expressions

h(p, H) ≥ h̄, h(p, H) ≤ h̄, | h(p, H) − h̄ |< ε

for the expression

V (p, H) ≥ V̄ , V (p, H) ≤ V̄ , | V (p, H) − V̄ |< ε.

The algorithms were implemented in MATLAB. Now let us apply the MATLAB
code for solving some model problems. Let us consider that we have a tube with the
perimeter 10m filled with water (ρ = 1000kg/m3) and g = 10m/s−2. The graphs
in Fig.2 describe the shapes of the tube for some values of the parameters p, H and
L = 10m. The graphs in Fig.3-5 describe the functional dependences between h
and p, H , V for L = 10m.

5. Conclusion

From the analysis above it follows that Problem 1 and 4 are uniquely solvable and
Problem 2 and 3 are only solvable. The numerical experiment show that Problem
2 and 3 have unique solutions, but the author neither can prove uniqueness nor the
opposite assertion.

From the graphs above it is clear that the dependence between the parameters
p, H , L, h, V is nonlinear. The result show how to choose some parameters of the
geotextile so that the tension H does not exceed the limits which can result in a
destruction of the tube. Such information can contribute to the optimal design.
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