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Abstract. The generalized minimum residual method (GMRES) [Y. Saad and M. Schultz, SIAM
J. Sci. Statist. Comput., 7 (1986), pp. 856–869] for solving linear systems Ax = b is implemented
as a sequence of least squares problems involving Krylov subspaces of increasing dimensions. The
most usual implementation is Modified Gram-Schmidt GMRES (MGS-GMRES). Here we show that
MGS-GMRES is backward stable. The result depends on a more general result on the backward
stability of a variant of the MGS algorithm applied to solving a linear least squares problem, and uses
other new results on MGS and its loss of orthogonality, together with an important but neglected
condition number, and a relation between residual norms and certain singular values.
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1. Introduction. Consider a system of linear algebraic equations Ax = b, where
A is a given n by n (unsymmetric) nonsingular matrix and b a nonzero n-dimensional
vector. Given an initial approximation x0, one approach to finding x is to first compute
the initial residual r0 = b − Ax0. Using this, derive a sequence of Krylov subspaces
Kk(A, r0) ≡ span{r0, Ar0, . . . , A

k−1r0}, k = 1, 2, . . . , in some way, and look for ap-
proximate solutions xk ∈ x0 + Kk(A, r0) . Various principles are used for constructing
xk which determine various Krylov subspace methods for solving Ax = b. Similarly,
Krylov subspaces for A can be used to obtain eigenvalue approximations or to solve
other problems involving A.

Krylov subspace methods are useful for solving problems involving very large
sparse matrices, since these methods use these matrices only for multiplying vectors,
and the resulting Krylov subspaces frequently exhibit good approximation proper-
ties. The Arnoldi method [2] is a Krylov subspace method designed for solving the
eigenproblem of unsymmetric matrices. The generalized minimum residual method
(GMRES) [20] uses the Arnoldi iteration and adapts it for solving the linear system
Ax = b. GMRES can be computationally more expensive per step than some other
methods; see for example Bi-CGSTAB [24] and QMR [9] for unsymmetric A, and
LSQR [16] for unsymmetric or rectangular A. However GMRES is widely used for
solving linear systems arising from discretization of partial differential equations, and
as we show, it is backward stable and it does effectively minimize the 2-norm of the
residual at each step.

The most usual way of applying the Arnoldi method for large sparse unsymmetric
A is to use modified Gram–Schmidt orthogonalization (MGS). Unfortunately in finite
precision computations this leads to loss of orthogonality among the MGS Arnoldi
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vectors. If these vectors are used in GMRES we have MGS-GMRES. Experience
suggested that MGS-GMRES succeeds despite this loss of orthogonality, see [12].
For this reason we examine the MGS version of Arnoldi’s algorithm and use this
to show that the MGS–GMRES method does eventually produce a backward stable
approximate solution when applied to any member of the following class of linear
systems with floating point arithmetic unit roundoff ǫ (σ means singular value):

Ax = b 6= 0, A ∈ Rn×n, b ∈ Rn, σmin(A) ≫ n2ǫ‖A‖F .(1.1)

(See also Appendix A. The restriction here is deliberately imprecise, see below.)
Moreover we show that MGS–GMRES gives backward stable solutions for its least
squares problems at all iteration steps, thus answering important open questions. The
proofs depend on new results on the loss of orthogonality and backward stability of
the MGS algorithm, as well as the application of the MGS algorithm to least squares
problems, and a lot of this paper is devoted to first obtaining these results.

While the k-th step of MGS produces the k-th orthonormal vector vk, it is usual
to say vk is produced by step k−1 in the Arnoldi and MGS-GMRES algorithms. We
will attempt to give a consistent development while avoiding this confusion. Thus
step k−1 of MGS-GMRES is essentially the k-th step of MGS applied to [b, AVk−1] to
produce vk in [b, AVk−1] = VkRk, where Vk ≡ [v1, . . . , vk] and Rk is upper triangular.
In practice, if we reach a solution at step m−1 of MGS-GMRES, then numerically b
must lie in the range of AVm−1, so that Bm ≡ [b, AVm−1] is numerically rank deficient.
But this means we have to show that our rounding error analysis of MGS holds for
rank deficient Bm — and this requires an extension of some results in [5].

In Section 2 we describe our notation and present some of the tools we need which
may be of more general use. For example we show the importance of the condition
number κ̃F (A) in (2.1), prove the existence of a nearby vector in Lemma 2.3, and
provide a variant of the singular value–residual norm relations of [17] in Theorem 2.4.
In Sections 3.1–3.2 we review MGS applied to n×m B of rank m, and its numerical
equivalence to the Householder QR reduction of B augmented by an m×m matrix of
zeros. In Section 3.3 we show how the MGS rounding error results extend to the case
of m>n, while in Section 4 we show how these results apply to the Arnoldi algorithm.
In Section 5 we analyze the loss of orthogonality in MGS and the Arnoldi algorithm
and how it is related to the near rank deficiency of the columns of B or its Arnoldi
equivalent, refining a nice result of Giraud and Langou [10, 14]. Section 6 introduces
the key step used to prove convergence of these iterations. In Section 7.1 we prove
the backward stability of the MGS algorithm applied to solving linear least squares
problems of the form required by the MGS-GMRES algorithm, and in Section 7.2 we
show how loss of orthogonality is directly related to new normwise relative backward
errors of a sequence of different least squares problems, supporting a conjecture on
the convergence of MGS-GMRES and its loss of orthogonality, see [18]. In Section 8.1
we show that at every step MGS-GMRES computes a backward stable solution for
that step’s linear least squares problem, and in Section 8.2 we show that one of these
solutions is also a backward stable solution for (1.1) in at most n+1 MGS steps.

The restriction on A in (1.1) is essentially a warning to be prepared for difficulties
in using the basic MGS-GMRES method on singular systems, see for example [6, 23].
The imprecise nature of the condition (using ≫ instead of > with some constant) was
chosen to make the presentation easier. A constant could be provided (perhaps closer
to 100 than 10), but since the long bounding sequence used was so loose, it would
be meaningless. Appendix A suggests that the form n2ǫ‖A‖F might be optimal, but
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since for large n rounding errors tend to combine in a semi-random fashion, it is
reasonable to replace n2 by n, and a more practical requirement than (1.1) might be:

(1.2) For large n, nǫ‖A‖F /σmin(A) ≤ 0.1.

2. Notation and mathematical basics. We describe the notation we will use,
together with some generally useful results. We use “≡” to mean “is defined as” in
the first occurrence of an expression, but in any later occurrences of this expression
it means “is equivalent to (by earlier definition)”. A bar above a symbol will denote
a computed quantity, so if Vk is an ideal mathematical quantity, V̄k will denote its
actual computed value. The floating point arithmetic unit roundoff will be denoted
by ǫ (half the machine epsilon, see [13, pp.37–38]), In denotes the n×n unit matrix,
ej will be the j-th column of a unit matrix I, so Bej is the j-th column of B, and
Bi:j ≡ [Bei, . . . , Bej ]. We will denote the absolute value of a matrix B by |B|, its
Moore-Penrose generalized inverse by B†, ‖ · ‖F will denote the Frobenius norm, σ(·)
will denote a singular value, and κ2(B) ≡ σmax(B)/σmin(B). See (2.1) for κ̃F (·).
Matrices and vectors whose first symbol is ∆, such as ∆Vk, will denote rounding error
terms. For the rounding error analyses we will use Higham’s notation [13, pp.63–68]:
c̃ will denote a small integer ≥ 1 whose exact value is unimportant, (c̃ might have
a different value at each appearance) and γn ≡ nǫ/(1 − nǫ), γ̃n ≡ c̃nǫ/(1 − c̃nǫ).
Without mentioning it again, we will always assume the conditions are such that the
denominators in objects like this (usually bounds) are positive, see for example [13,
(19.6)]. We see γ̃n/(1 − γ̃n) = c̃nǫ/(1 − 2c̃nǫ), and might write γ̃n/(1 − γ̃n) = γ̃′

n for
mathematical correctness, but will refer to the right hand side as γ̃n thereafter. Em,
Êm, Ẽm will denote matrices of rounding errors (see just before Theorem 3.3), and
‖Emej‖2 ≤ γ‖Bej‖2 implies this holds for j = 1, . . . ,m unless otherwise stated.

Remark 2.1. (See also Appendix A). An important idea used throughout this
paper is that column bounds of the above form lead to several results which are inde-
pendent of column scaling, and we take advantage of this by using the following choice
of condition number. Throughout the paper, D will represent any positive definite
diagonal matrix.

The choice of norms is key to making error analyses readable, and fortunately
there is a compact column-scaling-independent result with many uses. Define

(2.1) κ̃F (A) ≡ min
diagonal D > 0

‖AD‖F /σmin(AD).

This leads to some useful new results.
Lemma 2.1. If E and B have m columns then for any positive definite diagonal

matrix D: ‖Eej‖2 ≤ γ‖Bej‖2, j = 1, . . . ,m, ⇒ ‖ED‖F ≤ γ‖BD‖F ;

‖Eej‖2 ≤ γ‖Bej‖2 for j = 1, . . . ,m & rank(B) = m ⇒ ‖EB†‖F ≤ γκ̃F (B).

With the QR factorization B = Q1R, this leads to ‖ER−1‖F ≤ γκ̃F (B) = γκ̃F (R).
Proof. ‖Eej‖2 ≤ γ‖Bej‖2 implies ‖EDej‖2 ≤ γ‖BDej‖2 so ‖ED‖F ≤ γ‖BD‖F .

For B of rank m, (BD)† = D−1B†, ‖(BD)†‖2 = σ−1
min(BD), and so

‖EB†‖F = ‖ED(BD)†‖F ≤ ‖ED‖F ‖(BD)†‖2 ≤ γ‖BD‖F /σmin(BD).

Since this is true for all such D, we can take the minimum, proving our results.
Lemma 2.2. If m × m R̄ is nonsingular and PT

1 P1 = I in P1R̄ = B + E, and
γκ̃F (B) < 1, then

‖Eej‖2 ≤ γ‖Bej‖2, j = 1, . . . ,m, ⇒ ‖ER̄−1‖F ≤ γκ̃F (B)/(1 − γκ̃F (B)).
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Proof. For any D in (2.1), ‖Eej‖2 ≤ γ‖Bej‖2 ⇒ ‖ED‖F ≤ γ‖BD‖F , and then
σmin(R̄D) ≥ σmin(BD) − γ‖BD‖F , so ‖ER̄−1‖F = ‖ED(R̄D)−1‖F is bounded by

‖ED‖F ‖(R̄D)−1‖2 ≤ γ‖BD‖F

σmin(BD) − γ‖BD‖F

=
γ‖BD‖F /σmin(BD)

1 − γ‖BD‖F /σmin(BD)
.

Taking the minimum over D proves the result.
Suppose V̄m ≡ [v̄1, . . . , v̄m] is an n×m matrix whose columns have been compu-

tationally normalized to have 2-norms of 1, and so have norms in [1−γ̃n, 1+γ̃n]. Now
define Ṽm ≡ [ṽ1, . . . , ṽm] where ṽj is just the correctly normalized version of v̄j , so

V̄m = Ṽm(I + ∆m), ∆m ≡ diag(νj), where |νj | ≤ γ̃n, j = 1, . . . ,m;(2.2)

V̄ T
m V̄m = Ṽ T

m Ṽm + Ṽ T
m Ṽm.∆m + ∆m.Ṽ T

m Ṽm + ∆m.Ṽ T
m Ṽm.∆m,

‖V̄ T
m V̄m − Ṽ T

m Ṽm‖F /‖Ṽ T
m Ṽm‖F ≤ γ̃n(2 + γ̃n) ≡ γ̃′

n.

From now on we will not document the analogs of the last step γ̃n(2 + γ̃n) ≡ γ̃′
n, but

finish with ≤ γ̃n. In general it will be as effective to consider Ṽm as V̄m, and we will
develop our results in terms of Ṽm rather than V̄m. The following will be useful here

‖[Ṽm, In]‖2
2 = ‖In+ṼmṼ H

m ‖2 = 1+‖ṼmṼ H
m ‖2 = 1+‖Ṽm‖2

2 ≤ 1+‖Ṽm‖2
F = 1+m.(2.3)

Lemma 2.3 deals with the problem: Suppose we have d ∈ Rn and we know for

some unknown perturbation f ∈ R(m+n) that ‖
[
0
d

]
+f‖2 = ρ. Is there a perturbation

g of the same dimension as d, and having a similar norm to that of f , such that
‖d + g‖2 = ρ also? Here we show such a g exists in the form g = Nf , ‖N‖2 ≤

√
2.

Lemma 2.3. For a given d ∈ Rn and unknown f ∈ R(m+n), if
[

f1

d + f2

]
≡

[
0
d

]
+ f = pρ ≡

[
p1

p2

]
ρ, where ‖p‖2 = 1,

then there exists 0 ≤ σ ≤ 1, v ∈ Rn with ‖v‖2 = 1, and n×(m+n) N of the form

N ≡ [v(1 + σ)−1pT
1 , In],(2.4)

so that d + Nf = vρ.(2.5)

This gives ‖
[
0
d

]
+ f‖2 = ‖d + Nf‖2 = ρ, 1 ≤ ‖N‖2 ≤

√
2.(2.6)

Proof. Define σ ≡ ‖p2‖2. If σ = 0 take any v ∈ Rn with ‖v‖2 = 1. Otherwise
define v ≡ p2/σ so ‖v‖2 = 1. In either case p2 = vσ and pT

1 p1 = 1 − σ2. Now define
N as in (2.4), so

d + Nf = d + v(1 + σ)−1‖p1‖2
2ρ + f2 = p2ρ + v(1 − σ)ρ = vρ

NNT = I + v(1 + σ)−2(1 − σ2)vT ,

1 ≤ ‖N‖2
2 = ‖NNT ‖2 = 1 + (1 − σ)/(1 + σ) ≤ 2,

proving (2.5) and (2.6).
This is a refinement of a special case of [5, Lem.3.1], see also [13, Ex.19.12]. The fact
that the perturbation g in d has the form of N times the perturbation f is important,
as we shall see in Section 7.1.
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Finally we give a general result on the relation between least squares residual
norms and singular values. The bounds below were given in [17, Thm.4.1], but subject
to a certain condition [17, (1.4)] that we cannot be sure will hold here. To prove that
our results here hold subject to the different condition (1.1), we need to prove a related
result. In order not to be too repetitive, we will prove a slightly more general result
than we considered before, or need here, and make the theorem and proof brief.

Theorem 2.4. Let B ∈ Rn×k have rank s and singular values σ1 ≥ · · · ≥ σs > 0.
For c ∈ Rn and a scalar φ≥0 define ŷ ≡ B†c, r̂ ≡ c − Bŷ, σ(φ) ≡ σs+1([cφ,B]) and
δ(φ) ≡ σ(φ)/σs. If r̂φ 6= 0 then σ(φ)>0, and if φ0 ≡ σs/‖c‖ then δ(φ)<1 ∀φ ∈ [0, φ0),

σ2(φ)(φ−2+‖ŷ‖2
2) ≤ ‖r̂‖2

2 ≤ σ2(φ)(φ−2+‖ŷ‖2
2/[1−δ2(φ)]), ∀φ > 0 s.t. δ(φ)<1.

Proof. r̂ is the least squares residual for By ≈ c, so r̂φ 6= 0 means [cφ,B] has
rank s+1 and σ(φ) > 0. If 0 ≤ φ < φ0 then ‖cφ‖ < ‖cφ0‖ = σs, so via Cauchy’s
interlacing theorem, 0 ≤ σ(φ) ≡ σs+1([cφ,B]) < σs, giving 0 ≤ δ(φ) < 1. Using the
singular value decomposition B = W diag(Σ, 0)ZT , WT = W−1, ZT = Z−1, write

WT [c,BZ] =

[
a1 Σ 0
a2 0 0

]
, Σ ≡




σ1

·
σs


 , a1 ≡




α1

·
αs


 , ŷ = Z

[
Σ−1a1

0

]
.

It is then straightforward to show, see for example [26, (39.4)], [17, (2.6)], [15, pp.1508–
10], et al., that for all φ such that φ > 0 and δ(φ) < 1, σ(φ) is the smallest root of

‖r̂‖2 = σ(φ)2

[
φ−2 +

s∑

i=1

α2
i /σ2

i

1 − σ(φ)2/σ2
i

]
.

But then ‖ŷ‖2
2 =

s∑

i=1

α2
i

σ2
i

≤
s∑

i=1

α2
i /σ2

i

1−σ(φ)2/σ2
i

≤
s∑

i=1

α2
i /σ2

i

1−σ(φ)2/σ2
s

=
‖ŷ‖2

2

1−δ2(φ)

while δ(φ) ≡ σ(φ)/σs < 1, and the result follows.

We introduced φ0 to show δ(φ)<1 for some φ > 0. For results related to Theorem 2.4
we refer to [15, pp.1508–1510], which first introduced this useful value φ0.

3. The Modified Gram-Schmidt (MGS) algorithm. In order to understand
the numerical behavior of the MGS-GMRES algorithm, we first need a very deep
understanding of the MGS algorithm. Here this is obtained by a further study of
the numerical equivalence between MGS and the Householder QR factorization of an
augmented matrix, see [5], and also [13, §19.8].

We do not give exact bounds, but work with terms of the form γ̃n instead, see
[13, pp.63–68] and our Section 2. The exact bounds will not even be approached for
the large n we are interested in, so there is little reason to include such fine detail. In
Sections 3.1–3.3 we will review the MGS-Householder equivalence and extend some
of the analysis that was given in [5] and [13, §19.8].

3.1. The basic MGS algorithm. Given a matrix B ∈ Rn×m with rank m ≤ n,
the Modified Gram-Schmidt algorithm (MGS) in theory produces Vm and nonsingular
Rm in the QR factorization

(3.1) B = VmRm, V T
m Vm = Im, Rm upper triangular,
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where Vm ≡ [v1, . . . , vm], and m × m Rm ≡ (ρij). The version of the MGS al-
gorithm which immediately updates all columns computes a sequence of matrices

B = B(1), B(2), . . . , B(m+1) = Vm ∈ Rn×m, where B(i) = [v1, . . . , vi−1, b
(i)
i , . . . , b

(i)
m ].

Here the first (i−1) columns are final columns in Vm, and b
(i)
i , . . . , b

(i)
m have been made

orthogonal to v1, . . . , vi−1. In the i-th step we take

(3.2) ρii := ‖b(i)
i ‖2 6= 0 since rank(B) = m, vi := b

(i)
i /ρii,

and orthogonalize b
(i)
i+1, . . . , b

(i)
m against vi using the orthogonal projector I − viv

T
i ,

ρij := vT
i b

(i)
j , b

(i+1)
j := b

(i)
j − viρij , j = i + 1, . . . ,m.(3.3)

We see B(i) = B(i+1)R(i) where R(i) has the same i-th row as Rm, but is the unit
matrix otherwise. Note that in the m-th step no computation is performed in (3.3),
so that after m steps we have obtained the factorization

(3.4) B = B(1) = B(2)R(1) = B(3)R(2)R(1) = B(m+1)R(m) . . . R(1) = VmRm,

where in exact arithmetic the columns of Vm are orthonormal by construction.
This formed Rm a row at a time. If the j-th column of B is only available after

vj−1 is formed, as in MGS-GMRES, then we usually form Rm a column at a time.

This does not alter the numerical values if we produce ρ1,j , b
(2)
j ; ρ2,j , b

(3)
j ; etc..

It was shown in [3] that for the computed R̄m and V̄m in MGS

B + E = V̄mR̄m, ‖E‖2 ≤ c1(m,n)ǫ‖B‖2, ‖I − V̄ T
m V̄m‖2 ≤ c2(m,n)ǫκ2(B),(3.5)

where ci(m,n) denoted a scalar depending on m, n and the details of the arithmetic.
We get a deeper understanding by examining the MGS-Householder QR relationship.

3.2. MGS as a Householder method. The modified Gram-Schmidt algo-
rithm for the QR factorization of B can be interpreted as an orthogonal transforma-
tion applied to the matrix B augmented with a square matrix of zero elements on
top. This is true in theory for any method of QR factorization, but for Householder’s
method it is true in the presence of rounding errors as well. This observation was
made by Charles Sheffield, and relayed to the authors of [5] by Gene Golub.

First we look at the theoretical result. Let B ∈ Rn×m have rank m, and let
Om ∈ Rm×m be a zero matrix. Consider the QR factorization

B̃ ≡
[
Om

B

]
= Pm

[
R
0

]
≡

[
P11 P12

P21 P22

] [
R
0

]
, PT

m = P−1
m .(3.6)

Since B has rank m, P11 is zero, P21 is an n×m matrix of orthonormal columns, and,
see (3.1), B = VmRm = P21R. If upper triangular Rm and R are both chosen to have
positive diagonal elements in BT B = RT

mRm = RT R, then Rm = R by uniqueness,
so P21 = Vm can be found from any QR factorization of the augmented matrix B̃.
The last n columns of Pm are then arbitrary up to an n×n orthogonal multiplier, but
in theory the Householder reduction produces, see [5, (2.7)–(2.8)], the (surprisingly
symmetric) orthogonal matrix

(3.7) Pm =

[
Om V T

m

Vm I−VmV T
m

]
,
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showing that in this case Pm is fully defined by Vm.
A crucial result for this paper is that the Householder QR factorization giving (3.6)

is also numerically equivalent to MGS applied to B. A close look at this Householder
reduction, see for example [5, (2.6)–(2.7)], shows that for the computed version

P̄T
m ≡ P̄ (m) · · · P̄ (1), P̄ (j) = I − p̄j p̄

T
j , p̄j =

[
−ej

v̄j

]
, j = 1, . . . ,m,(3.8)

where the v̄j are numerically identical to the computed v̄j in (3.2), so for example after

the first two Householder transformations, our computed equivalent of P̄ (2)P̄ (1)B̃ is

(3.9)




ρ̄11 ρ̄12 ρ̄13 · · · ρ̄1m

0 ρ̄22 ρ̄23 · · · ρ̄2m

0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

0 0 b̄
(3)
3 · · · b̄

(3)
m




,

where the ρ̄jk and b̄
(j)
k are also numerically identical to the corresponding computed

values in (3.2) and (3.3). That is, in practical computations, the v̄j , ρ̄jk and b̄
(j)
k are

identical in both algorithms, see [5, p.179]. Note that the j-th row of R̄m is completely

formed in the j-th step and not touched again, while b̄
(j)
j is eliminated.

3.3. MGS applied to n×m B with m>n. The paper [5] was written assuming
that m ≤ n and n×m B in (3.1) had rank m, but it was mentioned in [5, p.181]
that the rank condition was not necessary for proving the equivalence mentioned in
the last paragraph of Section 3.2 above. For computations involving n × m B with
m>n, Householder QR on B will stop in at most n−1 steps, but both MGS on B,
and Householder QR on B̃ in (3.6), can nearly always be carried on for the full m
steps. The MGS–Householder QR equivalence also holds for m > n, since the MGS
and augmented Householder methods, being identical theoretically and numerically,
either both stop with some ρ̄kk = 0, k<m, see (3.2), or both carry on to step m. It is
this m>n case we need here, and we extend the results of [5] to handle this. Because
of this numerical equivalence, the backward error analysis for the Householder QR
factorization of the augmented matrix in (3.6) can also be applied to the modified
Gram-Schmidt algorithm on B. Two basic lemmas contribute to Theorem 3.3 below.

Lemma 3.1. In dealing with Householder transformations such as (3.8), Wilkin-
son [26, §4.2] pointed out that it is perfectly general to analyze operations with P =
I−ppT for p having no zero elements. (This means we can drop the zero elements of
p and the corresponding elements of the unit matrix and vector that P is applied to.
In (3.8) each p has at most n+1 nonzero elements that we need to consider).

Lemma 3.2. [13, Lem.19.3]. In practice, if j Householder transformations are
applied to a vector b ∈ Rn, the computed result c̄ satisfies

c̄ = Pj · · ·P2P1(b + ∆b), ‖∆b‖2 ≤ jγ̃n‖b‖2.

In Theorem 3.3, Em will refer to rounding errors in the basic MGS algorithm,
while later Êm will refer to errors in the basic MGS algorithm applied to solving the
equivalent of the MGS-GMRES least squares problem, and Ẽm will refer to errors in
the MGS-GMRES algorithm. All these matrices will be of the following form:

Em ∈ R(m+n)×m, Em ≡
[
E′

m

E′′
m

]
}m
}n .(3.10)
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Theorem 3.3. Let R̄m and V̄m = [v̄1, . . . , v̄m] be the computed results of MGS
applied to B ∈ Rn×m as in (3.1)–(3.4), but now allow m > n. For j = 1, . . . ,m,

step j computes v̄j and the j-th row of R̄m and b̄
(j+1)
j+1 , . . . , b̄

(j+1)
m (see (3.9)). Define

p̄j =

[
−ej

v̄j

]
, P̄ (j) = I − p̄j p̄

T
j , P̄m = P̄ (1)P̄ (2) . . . P̄ (m),(3.11)

ṽj = v̄j/‖v̄j‖2, p̃j =

[
−ej

ṽj

]
, P̃ (j) = I − p̃j p̃

T
j , P̃m = P̃ (1)P̃ (2) . . . P̃ (m).

Then P̃ (j) is the orthonormal equivalent of the computed version P̄ (j) of the House-
holder matrix applied in the j-th step of the Householder QR factorization of B̃ in
(3.6), so that P̃T

mP̃m = I, and for the computed version R̄m of R = Rm in (3.6), and
any positive definite diagonal matrix D, see Lemma 2.1, (here j = 1, . . . ,m)

P̃m

[
R̄m

0

]
=

[
E′

m

B + E′′
m

]
; P̃m orthogonal; R̄m, E′

m ∈ Rm×m;(3.12)

Em ≡
[
E′

m

E′′
m

]
; ‖Emej‖2 ≤ jγ̃n‖Bej‖2, ‖EmD‖F ≤ mγ̃n‖BD‖F ;

‖R̄mej‖2 ≤ ‖Bej‖2 + ‖Emej‖2 ≤ (1 + jγ̃n)‖Bej‖2;(3.13)

E′
me1 = 0, ‖E′

mej‖2 ≤ j
1

2 γ̃n‖Bej‖2, j = 2, . . . ,m;(3.14)

‖E′
mD‖F ≤ m

1

2 γ̃n‖(BD)2:m‖F ;

P̃m =

[
S̃m (I − S̃m)Ṽ T

m

Ṽm(I − S̃m) I − Ṽm(I − S̃m)Ṽ T
m

]
, P̃mP̃T

m = I.(3.15)

where m×m E′
m and S̃m are strictly upper triangular. The j-th row of E′

m is wholly
produced in step j, just as the j-th row of R̄m is. The j-th column of S̃m is not
defined until step j, and is not altered thereafter. (If MGS stops with ρ̄kk = 0, see
(3.2), rows k, . . . ,m of R̄m and E′

m are zero, and columns k, . . . ,m of V̄m and S̃m

are nonexistent, so we replace m above by k).
Proof. The MGS–augmented Householder QR equivalence for the case of m ≤ n

was proven in [5], and that this extends to m > n is proven in the first paragraph of
Section 3.3. As a result we can apply Lemmas 3.1 & 3.2 to give (3.12)–(3.13). The
ideal P in (3.6) has the structure in (3.7), but it was shown in [5, Thm.4.1, & (4.5)]
(which did not require n≥m in our notation) that P̃m in (3.11) and (3.12) has the
extremely important structure of (3.15), for some strictly upper triangular m×m S̃m.
Since E′

m = S̃mR̄m, this is strictly upper triangular too.
The rest follow with Lemmas 3.1 & 3.2. We have used γ̃n = γ̃′

n+1 rather than γ̃m+n

because in each step, p̄j in (3.11) has only n+1 elements, see (3.9) and Lemma 3.1.
Row j in R̄m is not touched again after it is formed in step j, see (3.9), and so the
same is true for row j in E′

m in (3.12), see Lemma 3.1. Since E′
m = S̃mR̄m, the j-th

column of S̃m is not defined until ρ̄jj is computed in step j, and since these three
matrices are all upper triangular, it is not altered in later steps. Finally we obtain new
bounds in (3.14). The element ρ̄ij is formed by the one transformation P̄ (i) in (3.11)

applied to b̄
(i)
j in (3.9), and so from Lemma 3.2 we can say (remember (E′

m)ii = 0)

|(E′
m)ij | ≤ γ̃n‖b̄(i)

j ‖2 ≤ γ̃′
n‖Bej‖2, j = i+1, . . . ,m,

which is quite loose, but leads to the the bounds in (3.14).
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Note that (3.14) involves j
1

2 , rather than the j in previous publications.
Remark 3.1. It is counter-intuitive that E′

m is strictly upper triangular, so we
will explain it. We need only consider the first augmented Householder-MGS trans-
formation of the first vector to form ρ̄11 in (3.9). We can rewrite the relevant part of
the first transformation ideally as, see (3.11) and Lemma 3.1,

P

[
0
b

]
=

[
ρ
0

]
, P =

[
0 vT

v I − vvT

]
, b = vρ, ‖v‖2 = 1.

From b we compute ρ̄ and v̄, then define ṽ ≡ v̄/‖v̄‖2 so ‖ṽ‖2 = 1. In order for
E′

me1 = 0 in (3.12), there must exist a backward error term ∆b such that

[
0 ṽT

ṽ I − ṽṽT

] [
0

b + ∆b

]
=

[
ρ̄
0

]
,

which looks like n + 1 conditions on the n-vector ∆b. But multiplying throughout by
P shows there is a solution ∆b = ṽρ̄ − b. The element above ∆b is forced to be zero,
so that there are actually n+1 conditions on n+1 unknowns. An error analysis (see
Lemma 3.2) then bounds ‖∆b‖2 ≤ γ̃n‖b‖2.

4. The Arnoldi algorithm as MGS. The Arnoldi algorithm [2] is the basis
of MGS-GMRES. We assume that the initial estimate of x in (1.1) is x0 = 0, so that
the initial residual r0 = b, and use the Arnoldi algorithm with ρ ≡ ‖b‖2, v1 ≡ b/ρ, to
sequentially generate the columns of Vk+1 ≡ [v1, . . . , vk+1] via the ideal process:

(4.1) AVk = VkHk,k + vk+1hk+1,keT
k = Vk+1Hk+1,k, V T

k+1Vk+1 = Ik+1.

Here k × k Hk,k = (hij) is upper Hessenberg, and we stop at the first hk+1,k = 0.
Because of the orthogonality, this ideal algorithm must stop for some k ≤ n. Then
AVk = VkHk,k where Hk,k has rank at least k−1. If hk+1,k = 0 and Hk,k has rank
k−1, there exists a nonzero z such that AVkz = VkHk,kz = 0, so that A must be
singular. Thus when A is nonsingular so is Hk,k, and so in MGS-GMRES, solving
Hk,ky = e1ρ and setting x = Vky solves (1.1). But if A is singular, this might not
provide a solution even to consistent Ax = b:

A =

[
0 1
0 0

]
, x =

[
0
1

]
, v1 = b = Ax =

[
1
0

]
, AV1 = V1H1,1, H1,1 = 0.

Thus it is no surprise that we will require a restriction of the form (1.1) to ensure
that the numerical MGS-GMRES algorithm always obtains a meaningful solution.

To relate the Arnoldi and MGS-GMRES algorithms to the MGS algorithm, we
now replace k+1 by m and say that in the m-th MGS step these produce vm, and
MGS-GMRES also produces the approximation xm−1 = Vm−1ym−1 to the solution
x of (1.1). Then apart from forming the Avj , the algorithm we use to give (4.1) is
identical to (3.2)–(3.3) with the same vectors vj , and

b1 ≡ b, ρ11 ≡ ρ; and for j =1, . . . ,m−1, bj+1 ≡ Avj , ρi,j+1 ≡ hi,j i=1, . . . , j+1,

except that Avj cannot be formed and orthogonalized against v1, . . . , vj until vj is
available. This does not alter the numerical values. Thus with upper triangular Rm,

Bm ≡ A [x, Vm−1] = [b, AVm−1] = Vm [e1ρ,Hm,m−1] ≡ VmRm, V T
m Vm = I.(4.2)
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So in theory the Arnoldi algorithm obtains the QR factorization of Bm ≡ [b, AVm−1]
by applying MGS to Bm. Computationally we can see that we have applied MGS
to B̄m ≡ [b, fl(AV̄m−1)] where V̄m−1 ≡ [v̄1, . . . , v̄m−1] is the matrix of supposedly
orthonormal vectors computed by MGS, and see for example [13, §3.5],

fl(Av̄j) = (A+∆Aj)v̄j , |∆Aj | ≤ γn|A|, so fl(AV̄m−1) = AṼm−1+∆Vm−1,

|∆Vm−1| ≤ γn|A|.|V̄m−1|, ‖∆Vm−1‖F ≤ m
1

2 γn‖|A|‖2 ≤ m
1

2 γn‖A‖F ,(4.3)

gives the computed version of AV̄m−1. We could replace n by the maximum number
of non-zeros per row, while users of preconditioners, or less simple multiplications,
could insert their own bounds on ∆Vm−1 here.

Remark 4.1. The bounds in (4.3) are not column-scaling independent. Also any
scaling applies to the columns of AV̄m−1, not to A, and so would not be of such an
advantage for MGS-GMRES as for ordinary MGS. Therefore it would seem important
to ensure the columns of A are reasonably scaled for MGS-GMRES — e.g. to approach
the minimum over positive diagonal D of ‖AD‖F /σmin(AD), see Appendix A.

The rounding error behavior of the Arnoldi algorithm is as follows.
Theorem 4.1. For the computational version of the Arnoldi algorithm (4.1)

(with m ≡ k + 1) with floating point arithmetic unit roundoff ǫ producing V̄m and
R̄m ≡ [e1ρ̄, H̄m,m−1], see (4.2), there exists an n+m square orthogonal matrix P̃m of

the form (3.15) where Ṽm is V̄m with its columns correctly normalized, such that if

(4.4) B̄m ≡ [b, fl(AV̄m−1)] = [b, AṼm−1] + [0,∆Vm−1],

where we can use the bounds on ∆Vm−1 in (4.3), then all the results of Theorem 3.3
apply with B there replaced by B̄m here.

Thus whatever we say for MGS will hold for the Arnoldi algorithm if we simply
replace B by B̄m ≡ [b, fl(AV̄m−1)] = [b, AṼm−1]+[0,∆Vm−1]. The key idea of viewing
the Arnoldi algorithm as MGS applied to [b, AVn] appeared in [25]. It was used in [8]
and [1], and in particular in [18], in which we outlined another possible approach to
backward stability analysis of MGS–GMRES. Here we have chosen a different way of
proving the backward stability result, and this follows the spirit of [5] and [10].

5. Loss of orthogonality of V̄m from MGS and the Arnoldi algorithm.
The analysis here is applicable to both the MGS and Arnoldi algorithms. B will
denote the given matrix in MGS, or B̄m ≡ [b, fl(AV̄m−1)] in the Arnoldi algorithm.
Unlike [10, 14], we do not base the theory on [5, Lem.3.1], since a direct approach
is cleaner and gives nicer results. It is important to be aware that our bounds will
be of a different nature to those in [10, 14]. Even though the rounding error analysis
of MGS in [10, 14] is based on the ideas in [5], the bounds obtained in [10] and
[14, pp.32–38] are unexpectedly strong compared with our results based on [5]. This
is because [10, (18)–(19)] and [14, (1.68)–(1.69)] leading to [10, Thm.3.1] and [14,
Thm.1.4.1] follow from [26, p.160, (45.3)]. But in Wilkinson’s [26], (45.3) follows
from his (45.2), (45.1) and (44.6), where this last is clearly for fl2 arithmetic (double
precision accumulation of inner products). Since double precision is used in [10, 14],
their analysis is essentially assuming what could be called fl4 — quadruple precision
accumulation of inner products. This is not stated in [10, 14], and the result is
that their bounds appear to be much better (tighter) and the conditions much easier
(less strict) than those that would have been obtained using standard floating point
arithmetic. We will now obtain refined bounds based on our standard floating point
arithmetic analysis, and attempt to correct this misunderstanding.
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Remark 5.1. The γ̃n in each expression in (3.12)–(3.14) is essentially the same
γ̃n, that from Lemma 3.2, so we will call it γ̂n. We could legitimately absorb various
small constants into a series of new γ̃n, but that would be less transparent, so we will
develop a sequence of loose bounds based on this fixed γ̂n.

To simplify our bounds, we use “{≤}” to mean “≤” under the assumption that
mγ̂nκ̃F (B) ≤ 1/8. Note that this has the following consequences.

mγ̂nκ̃F (B) ≤ 1/8 ⇒ { (1 − mγ̂nκ̃F (B))−1 ≤ 8/7 &(5.1)

µ ≡ m
1

2 γ̂nκ̃F (B)8/7 ≤ 1/7 & (1 + µ)/(1 − µ) ≤ 4/3 }.

The basic bound is for S̃m = E′
mR̄−1

m , see (3.12), (3.15). This is part of an orthogonal
matrix so ‖S̃m‖2 ≤ 1. From (3.12) and (3.14) for any m × m diagonal matrix D>0,

‖S̃m‖F = ‖E′
mD(R̄mD)−1‖F ≤ ‖E′

mD‖F ‖(R̄mD)−1‖2 = ‖E′
mD‖F /σmin(R̄mD)

≤ ‖E′
mD‖F

σmin(BD) − ‖EmD‖2
≤ m

1

2 γ̂n‖(BD)2:m‖F

σmin(BD) − mγ̂n‖BD‖F

,(5.2)

‖S̃m‖F ≤ m
1

2 γ̂nκ̃F (B)/(1−mγ̂nκ̃F (B)) {≤} 8

7
m

1

2 γ̂nκ̃F (B) {≤} 1

7
.(5.3)

with obvious restrictions. The bounds (5.3) took a minimum over D.
V̄m ≡ [v̄1, . . . , v̄m] is the n×m matrix of vectors computed by m steps of MGS,

Ṽm ≡ [ṽ1, . . . , ṽm] is the correctly normalized version of V̄m, so Ṽm satisfies (2.2)–(2.3).
Since I−S̃m is nonsingular upper triangular, the first m rows of P̃m in (3.15) give

(I − S̃m)Ṽ T
m Ṽm(I − S̃m)T = I − S̃mS̃T

m

= (I − S̃m)(I − S̃m)T + (I − S̃m)S̃T
m + S̃m(I − S̃m)T ,

Ṽ T
m Ṽm = I + S̃T

m(I − S̃m)−T + (I − S̃m)−1S̃m,(5.4)

(I−S̃m)−1S̃m = S̃m(I−S̃m)−1 =strictly upper triangular part(Ṽ T
m Ṽm).(5.5)

Since Ṽ T
m−1ṽm is the above diagonal part of the last column of symmetric Ṽ T

m Ṽm−I,
(5.5) and (5.3) give the key bound (at first using 2mγ̂nκ̃F (B)<1, see (5.1))

√
2‖Ṽ T

m−1ṽm‖2 ≤ ‖I−Ṽ T
m Ṽm‖F =

√
2‖(I−S̃m)−1S̃m‖F(5.6)

≤
√

2‖S̃m‖F /(1−‖S̃m‖2) ≤ (2m)
1

2 γ̂nκ̃F (B)/[1−(m+m
1

2 )γ̂nκ̃F (B)],

{≤} 4

3
(2m)

1

2 γ̂nκ̃F (B), (cf. [3], [5, (5.3)]),

and similarly for V̄m, see (2.2). This is superior to the bound in [5], but the scaling
idea is not new. Higham [13, p.373] (and in the 1996 first edition) argued that κ2(B)
in [5] and [3], see (3.5), might be replaced by the minimum over positive diagonal
matrices D of κ2(BD), which is almost what we have proven using κ̃F (B) in (2.1).

One measure of the extent of loss of orthogonality of Ṽm is κ2(Ṽm).
Lemma 5.1. If Ṽ T

m Ṽm = I + F̃m+F̃T
m with strictly upper triangular F̃m and S̃m

in F̃m ≡ S̃m(I−S̃m)−1, see (5.4), then for all singular values σi(Ṽm)

1 − ‖S̃m‖2

1 + ‖S̃m‖2

≤ σ2
i (Ṽm) ≤ 1 + ‖S̃m‖2

1 − ‖S̃m‖2

, κ2(Ṽm) ≤ 1 + ‖S̃m‖2

1 − ‖S̃m‖2

.

Proof. Obviously ‖F̃m‖2 ≤ ‖S̃m‖2/(1 − ‖S̃m‖2). For any y ∈ Rk such that
‖y‖2 = 1, ‖Ṽmy‖2

2 = 1+2yT F̃my ≤ 1+2‖F̃m‖2 ≤ (1+‖S̃m‖2)/(1−‖S̃m‖2), which gives
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the upper bound on every σ2
i (Ṽm). From (5.4) (I−S̃m)Ṽ T

m Ṽm(I−S̃m)T = I−S̃mS̃T
m,

so for any y ∈ Rk such that ‖y‖2 = 1, define z ≡ (I − S̃m)T y so ‖z‖2 ≤ 1 + ‖S̃m‖2

and then

zT Ṽ T
m Ṽmz

zT z
=

1 − yT S̃mS̃T
my

zT z
≥ 1 − ‖S̃m‖2

2

(1 + ‖S̃m‖2)2
=

1 − ‖S̃m‖2

1 + ‖S̃m‖2

,

giving the lower bound on every σ2
i (Ṽm). The bound on κ2(Ṽm) follows.

Combining Lemma 5.1 with (5.1) and (5.3) gives the major result

for j =1, . . . ,m, jγ̂nκ̃F (Bj) ≤ 1/8 ⇒ ‖S̃j‖F ≤ 1/7(5.7)

⇒ κ2(Ṽj), σ−2
min(Ṽj), σ2

max(Ṽj) ≤ 4/3.

At this level the distinction between κ2(V̄m) and κ2(Ṽm) is miniscule, see (2.2), and
by setting j = m we can compare this with the elegant result which was the main
theorem of Giraud and Langou [10], see [14, Thm.1.4.1]. In our notation:

Theorem 5.2. [10, Thm.3.1], [14, Thm.1.4.1]. Let B ∈ Rn×m be a matrix with
full rank m ≤ n and condition number κ2(B) such that

(5.8) 2.12(m + 1)ǫ < 0.01 and 18.53m
3

2 ǫκ2(B) ≤ 0.1.

Then MGS in floating point arithmetic (Present comment in 2005: actually fl2, or
fl4 if we use double precision) computes V̄m ∈ Rn×m as

κ2(V̄m) ≤ 1.3.

Note that the conditions (5.8) do not involve the dimension n of each column of V̄m,
and this is the result of their analysis using fl2. We can assume m satisfying the
second condition in (5.8) will also satisfy the first.

To compare Theorem 5.2 with j = m in (5.7), note that mγ̃n essentially means
c̃mnǫ for some constant c̃ > 1, probably less than the 18.53 in Theorem 5.2. We
assumed standard (IEEE) floating point arithmetic, but if we had assumed fl2 arith-
metic, that would have eliminated the n from our condition in (5.7). We used (2.1),

which involves ‖BD‖F ≤ m
1

2 ‖BD‖2. If we inserted this upper bound, that would
mean our condition would be like that in Theorem 5.2, except we have the opti-
mal result over column scaling, see (2.1). So if the same arithmetic is used, (5.7) is
more revealing than Theorem 5.2. It is worth noting that with the introduction of
XBLAS [7], the fl2 and fl4 options may become available in the near future.

6. A critical step in the Arnoldi and MGS-GMRES iterations. It will
simplify the analysis if we use (5.7) to define a distinct value m̂ of m. This value will
depend on the problem and the constants we have chosen, but it will be sufficient for
us to prove convergence and backward stability of MGS-GMRES in m̂−1 ≤ n steps.
For the ordinary MGS algorithm remember B̄m = Bm, and think of m as increasing.

Let m̂ be the first integer such that κ2(Ṽm̂) > 4/3,(6.1)

then we know from (5.7) that for B̄m̂ in the Arnoldi algorithm, see (4.4) and (2.1),

m̂γ̂nκ̃F (B̄m̂) > 1/8, so σmin(B̄m̂D) < 8m̂γ̂n‖B̄m̂D‖F ∀ diagonal D > 0.(6.2)

But since σmin(Ṽj) ≤ σ1(ṽ1) = ‖ṽ1‖2 = 1 ≤ σmax(Ṽj), (6.1) also tells us that

κ2(Ṽj), σ−1
min(Ṽj), σmax(Ṽj) ≤ 4/3, j = 1, . . . , m̂−1.(6.3)
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The above reveals the philosophy of the present approach to proving backward
stability of MGS-GMRES. Other approaches have been tried. Here all is based on
κ̃F (B̄m) rather than the backward error or residual norm. In [12, Thm.3.2, p.713] a
different approach was taken — the assumption was directly related to the norm of the
residual. The present approach leads to very compact and elegant formulations, and
it is hard to say now whether the earlier approaches (see [18]) would have succeeded.

7. Least squares solutions via MGS. The linear least squares problem

(7.1) ŷ ≡ arg min
y

‖b − Cy‖2, r̂ ≡ b − Cŷ, C ∈ Rn×(m−1),

may be solved via MGS in different ways. Here we discuss two of these ways, but first
we remind the reader how this problem appears in MGS-GMRES with C = AVm−1.

After carrying out step m− 1 of the Arnoldi algorithm as in Section 4 to produce
[b, AVm−1] = VmRm, see (4.2), the MGS-GMRES algorithm in theory minimizes the
2-norm of the residual ‖rm−1‖2 = ‖b − Axm−1‖2 over xm−1 ∈ x0 + Km−1(A, r0) ,
where for simplicity we are assuming x0 = 0 here. It does this by using Vm−1 from
(4.1) to provide an approximation xm−1 ≡ Vm−1ym−1 to the solution x of (1.1). Then
the corresponding residual is

(7.2) rm−1 ≡ b−Axm−1 = [b, AVm−1]

[
1

−ym−1

]
= VmRm

[
1

−ym−1

]
,

where Rm ≡ [e1ρ,Hm,m−1]. The ideal least squares problem is

(7.3) ym−1 = arg min
y

‖[b, AVm−1]

[
1
−y

]
‖2,

but (in theory) the MGS-GMRES least squares solution is found by solving

(7.4) ym−1 ≡ arg min
y

‖Rm

[
1
−y

]
‖2.

7.1. The MGS least squares solution used in MGS-GMRES. If B =
[C, b] in (3.1)–(3.4), and C has rank m−1, then it was shown in [5, (6.3)], see also
[13, §20.3], that MGS can be used to compute ŷ in (7.1) in a backward stable way.
Here we need to show that we can solve (7.1) in a stable way with MGS applied to
B = [b, C] (note the reversal of C and b) in order to prove the backward stability
of MGS-GMRES. Just remember B = [b, C] ≡ B̄m in (4.4), for MGS-GMRES. The
analysis could be based directly on [5, Lem.3.1], but the following is more precise.

Let MGS on B in (3.1) lead to the computed R̄m (we can assume R̄m is nonsin-
gular, see later) satisfying (3.12), where B = [b, C]. Then (3.12) and (7.1) give

P̃m

[
R̄m

0

]
=

[
0

[b, C]

]
+ Em; ‖Emej‖2 ≤ jγ̃n‖[b, C]ej‖2, j = 1, . . . ,m,(7.5)

ŷ ≡ arg min
y

‖B
[

1
−y

]
‖2, r̂ = B

[
1
−ŷ

]
.(7.6)

To solve this latter computationally, having applied MGS to B to give R̄m, we

(7.7) carry out a backward stable solution of min
y

‖R̄m

[
1
−y

]
‖2
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by orthogonal reduction followed by solution of a triangular system. With (3.13) we
will see this leads to

Q̂T (R̄m + ∆Rm) =

[
t̄ Ū + ∆U
τ̄ 0

]
, (Ū + ∆U)ȳ = t̄,(7.8)

‖∆Rmej‖2 ≤ γ̃′
m‖R̄ej‖2 ≤ γ̃m‖Bej‖2 = γ̃m‖[b, C]ej‖2, j = 1, . . . ,m,

where Q̂ is an orthogonal matrix while τ̄ , t̄, nonsingular upper triangular Ū , and ȳ
are computed quantities. Here ∆U is the backward rounding error in the solution of
the upper triangular system to give ȳ, see for example [13, Thm.8.3], and ∆Rm was
obtained by combining ∆U with the backward rounding error in the QR factorization
that produced τ̄ , t̄ and Ū , see for example [13, Thm.19.10] (where here there are m−1
stages, each of one rotation). Clearly ȳ satisfies

(7.9) ȳ = arg min
y

‖(R̄m + ∆Rm)

[
1
−y

]
‖2.

In order to relate this least squares solution back to the MGS factorization of B,
we add the error term ∆Rm to (7.5) to give (replacing jγ̃n+γ̃m by jγ̃n)

P̃m

[
(R̄m + ∆Rm)

0

]
=

[
0

[b, C]

]
+ Êm, Êm ≡ Em + P̃m

[
∆Rm

0

]
,(7.10)

‖Êmej‖2 ≤ jγ̃n‖[b, C]ej‖2, j = 1, . . . ,m.

Now we can write for any y ∈ Rm−1

r=r(y)≡b−Cy, p=p(y)≡ P̃m

[
(R̄m+∆Rm)

0

] [
1
−y

]
=

[
0
r

]
+Êm

[
1
−y

]
,(7.11)

and we see from (2.6) in Lemma 2.3 that for any y ∈ Rm−1 there exists N(y) so that

‖p(y)‖2 = ‖(R̄m + ∆Rm)

[
1
−y

]
‖2 = ‖b − Cy + N(y)Êm

[
1
−y

]
‖2, ‖N(y)‖2 ≤

√
2.

Defining [∆b(y),∆C(y)] ≡ N(y)Êm shows that for all y ∈ Rm−1

(7.12) ‖(R̄m + ∆Rm)

[
1
−y

]
‖2 = ‖b + ∆b(y) − [C + ∆C(y)]y‖2.

Thus ȳ in (7.9) also satisfies

ȳ = arg min
y

‖b+∆b(y)−[C+∆C(y)]y‖2,(7.13)

‖[∆b(y),∆C(y)]ej‖2 ≤ jγ̃n‖[b, C]ej‖2, j = 1, . . . ,m,

where the bounds are independent of y, so that ȳ is a backward stable solution for
(7.1). That is, MGS applied to B = [b, C] followed by (7.7) is backward stable as long
as the computed R̄m from MGS is nonsingular (we can stop early to ensure this). The
almost identical analysis and result applies wherever b is in B, but we just gave the
B = [b, C] case for clarity.

Since we have a backward stable solution ȳ, we expect various related quantities
to have reliable values, and we now quickly show two cases of this. If ‖E‖F ≤ γ‖B‖F
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then ‖Ey‖2
2 =

∑
i ‖eT

i Ey‖2
2 ≤ ∑

i ‖eT
i E‖2

2‖y‖2
2 = ‖E‖2

F ‖y‖2
2 ≤ γ2‖B‖2

F ‖y‖2
2. So from

the bounds in (7.10) we have for any y ∈ Rm−1 the useful basic bound

‖Êm

[
1
−y

]
‖2 ≤ γ̃mnψm(y), ψm(y) ≡ ‖b‖2+‖C‖F ‖y‖2.(7.14)

Multiplying (7.8) and (7.10) on the right by

[
1
−ȳ

]
shows that the residual r̄ satisfies

r̄ ≡ b − Cȳ, P̃m

[
Q̂emτ̄

0

]
=

[
0
r̄

]
+ Êm

[
1
−ȳ

]
, | ‖r̄‖2 − |τ̄ | | ≤ γ̃mnψm(ȳ),(7.15)

so that |τ | approximates ‖r̄‖2 with a good relative error bound. Multiplying the last
equality in this on the left by [Ṽm, In], and using (3.15), (3.12), (7.10), (7.8), (3.14),
and (2.3) with the argument leading to (7.14), we see

ṼmQ̂emτ̄ = r̄ + [Ṽm, In]Êm

[
1
−ȳ

]
= r̄ + [Ṽm(E′

m + ∆Rm) + E′′
m]

[
1
−ȳ

]
,(7.16)

‖r̄ − ṼmQ̂emτ̄‖2 ≤ γ̃mnψm(ȳ) for m < m̂ in (6.1).

Thus V̄mQ̂emτ̄ also approximates r̄ ≡ b − Cȳ with a good relative error bound, see
(2.2) and its following sentence.

7.2. Least squares solutions and loss of orthogonality in MGS. An ap-
parently strong relationship was noticed between convergence of finite precision MGS-
GMRES and loss of orthogonality among the Arnoldi vectors, see [12, 19]. It was
thought that if this relationship was fully understood, we might use it to prove that
finite precision MGS-GMRES would necessarily converge, see for example [18]. A
similar relationship certainly does exist — it is the relationship between the loss of
orthogonality in ordinary MGS applied to B, and the residual norms for what we will
call the last vector least squares (LVLS) problems involving B, and we will derive this
here. It adds to our understanding but it is not necessary for our other proofs, and
could initially be skipped.

Because this is a theoretical tool, we will only consider rounding errors in the
MGS part of the computation. We will do the analysis for MGS applied to any
matrix B = [b1, . . . , bm]. After step j we have n×j V̄j and j×j R̄j , so that

R̄j ≡
[
Ūj t̄j

τ̄j

]
, Ūj ȳj = t̄j , ȳj = arg min

y
‖R̄j

[
−y
1

]
‖2, |τ̄j |=‖R̄j

[
−ȳj

1

]
‖2.(7.17)

In theory ȳj minimizes ‖bj −Bj−1y‖2, but we would like to know that loss of orthogo-
nality caused by rounding errors in MGS does not prevent this. One indicator of loss
of orthogonality is Ṽ T

j−1ṽj . From (7.17) we see that

R̄−1
j =

[
Ū−1

j −Ū−1
j t̄j τ̄

−1
j

τ̄−1
j

]
=

[
Ū−1

j

0

[
−ȳj

1

]
τ̄−1
j

]
, R̄−1

j ej τ̄j =

[
−ȳj

1

]
,(7.18)

so that with (5.5) we have with r̄j ≡ bj −Bj−1ȳj , (see (7.14) and (7.15) but now using

E′
j and its bound in (3.14) rather than Êj and its bound in (7.10)),

(I−S̃j)

[
Ṽ T

j−1ṽj

0

]
= S̃jej =E′

jR̄
−1
j ej =E′

j

[
−ȳj

1

]
τ̄−1
j , |‖r̄j‖2−|τ̄j || ≤ j

1

2 γ̃nψm(ȳj).(7.19)
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Now define a normwise relative backward error (in the terminology of [13, Thm.7.1])

(7.20) βF (b, A, y) ≡ βA,b
F (b, A, y) where βG,f

F (b, A, y) ≡ ‖b − Ay‖2

‖f‖2 + ‖G‖F ‖y‖2
.

Remark 7.1. [13, Thm.7.1] assumes a vector norm with its subordinate matrix
norm, but with the Frobenius norm in the denominator Rigal and Gaches’ theory still
works, so this is a possibly new, useful (and usually smaller) construct that is easier
to compute than the usual one. A proof similar to that in [13, Thm.7.1] shows that

βG,f
F (b, A, y) = min

δA,δb
{η : (A + δA)y = b + δb, ‖δA‖F ≤ η‖G‖F , ‖δb‖2 ≤ η‖f‖2}.

Using (7.20) with the bounds in (3.14), (5.6), (7.19) and the definition in (7.14) (see
also (5.3)) shows that

|τ̄j |.‖Ṽ T
j−1ṽj‖2 = ‖(I−S̃j)

−1E′
j

[
−ȳj

1

]
‖2 ≤ j

1

2 γ̃nψm(ȳj)/(1 − ‖S̃j‖2),

βF (bj , Bj−1, ȳj)‖Ṽ T
j−1ṽj‖2≤

j
1

2 γ̃n

1 − ‖S̃j‖2

.(7.21)

Remark 7.2. The product of the loss of orthogonality ‖Ṽ T
j−1ṽj‖2 at step j and

the normwise relative backward error βF (bj , Bj−1, ȳj) of the LVLS problem is bounded

by O(ǫ) until ‖S̃j‖2 ≈ 1, that is until orthogonality of the ṽ1, . . . , ṽj is totally lost, see
(5.5), also Lemma 5.1.

This is another nice result, as it again reveals how MGS applied to Bm loses
orthogonality at each step — see the related Section 5. These bounds on the individual
‖Ṽ T

j−1ṽj‖2 complement the bounds in (5.6), since they are essentially in terms of the
individual normwise relative backward errors βF (bj , Bj−1, ȳj), rather than κ̃F (Bj).
However it is important to note that the “last vector” least squares (LVLS) problem
considered in this section (see the line after (7.17)) is not the least squares problem
solved for MGS-GMRES, which has the form of (7.6) instead. The two can give very
different results in the general case, but in the problems we have solved via MGS-
GMRES, these normwise relative backward errors seem to be of similar magnitudes
for both problems, and this led to the conjecture in the first place. The similarity
in behavior of the two problems is apparently related to the fact that Bm in MGS-
GMRES is a Krylov basis. In this case it appears that the normwise relative backward
errors of both least squares problems will converge (numerically) as the columns of
Bj approach numerical linear dependence, see [17, 18]. Thus we have neither proven
nor disproven the conjecture, but we have added weight to it.

8. Numerical behavior of the MGS-GMRES algorithm. We now only
consider MGS-GMRES, and use k instead of m−1 to avoid many indices of the form
m−1. In Section 4 we saw that k steps of the Arnoldi algorithm is in theory just k+1
steps of the MGS algorithm applied to Bk+1 ≡ [b, AVk] to give [b, AVk] = Vk+1Rk+1 =
Vk+1[e1ρ,Hk+1,k]. And in practice the only difference in the rounding error analysis

is that we apply ordinary MGS to B̄k+1 ≡ [b, fl(AV̄k)] = [b, AṼk]+ [0,∆Vk], see (4.3).
In Section 8.1 we combine this fact with the results of Section 7.1 to prove backward
stability of the MGS-GMRES least squares solution ȳk at every step.
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In theory MGS-GMRES must solve Ax = b for nonsingular n × n A in n steps
since we cannot have more than n orthonormal vectors in Rn. But in practice the
vectors in MGS-GMRES lose orthogonality, so we need another way to prove that
we reach a solution to (1.1). In Section 8.2 we will show that the MGS-GMRES
algorithm for any problem satisfying (1.1) must, for some k, produce V̄k+1 so that
numerically b lies in the range of AV̄k, and that MGS-GMRES must give a backward
stable solution to (1.1). This k is m̂ − 1, which is ≤ n, see (6.1).

8.1. Backward stability of the MGS-GMRES least squares solutions.
The equivalent of the MGS result (7.13) for MGS-GMRES is obtained by replacing
[b, C] by B̄k+1 ≡ [b, AṼk + ∆Vk] throughout (7.13), see Theorem 4.1. Thus the
computed ȳk at step k in MGS-GMRES satisfies (with (4.3) and Section 6)

ȳk = arg min
y

‖r̃k(y)‖2, r̃k(y) ≡ b+∆bk(y)−[AṼk+∆Vk+∆Ck(y)]y(8.1)

‖[∆bk(y),∆Ck(y)]ej‖2 ≤ γ̃kn‖B̄k+1ej‖2, j = 1, . . . , k+1; ‖∆Vk‖F ≤ k
1

2 γn‖A‖F ,

‖∆bk(y)‖2≤ γ̃kn‖b‖2, ‖∆Vk+∆Ck(y)‖F ≤ γ̃kn[‖A‖F +‖AṼk‖F ]≤ γ̃′
kn‖A‖F if k<m̂.

This has proven the MGS-GMRES least squares solution ȳk is backward stable for

min
y

‖b − AṼky‖2, for all k < m̂,

which is all we need for this least squares problem. But even if k≥ m̂, it is straight-
forward to show that it still gives a backward stable least squares solution.

8.2. Backward stability of MGS-GMRES for Ax=b in (1.1). Even though
MGS-GMRES always computes a backward stable solution ȳk for the least squares
problem (7.3), see Section 8.1, we still have to prove that V̄kȳk will be a a backward
stable solution for the original system (1.1) for some k (we take this k to be m̂−1 in
(6.1)), and this is exceptionally difficult. Usually we want to show we have a backward
stable solution when we know we have a small residual. The analysis here is different
in that we will first prove that B̄m̂ is numerically rank deficient, see (8.4), but to prove
backward stability, we will then have to prove that our residual will be small, amongst
other things, and this is far from obvious. Fortunately two little known researchers
have studied this arcane area, and we will take ideas from [17], see Theorem 2.4. To
simplify the development and expressions we will absorb all small constants into the
γ̃kn terms below.

In (8.1) set k ≡ m̂−1 ≤ n from (6.1), and write

r̃k(ȳk) = bk − Akȳk, bk ≡ b+∆bk(ȳk), Ak ≡ AṼk+∆Ṽk(ȳk),(8.2)

‖∆bk(ȳk)‖2 ≤ γ̃kn‖b‖2, ∆Ṽk(y) ≡ ∆Vk+∆Ck(y), ‖∆Ṽk(y)‖F ≤ γ̃kn‖A‖F .

We need to take advantage of the scaling invariance of MGS in order to obtain our
results. Here we need only scale b, so write D ≡ diag(φ, Ik) for any scalar φ>0. Since
B̄k+1 ≡ [b, fl(AV̄k)] = [b, AṼk + ∆Vk], from (8.2) with the bounds in (8.1) we have

[bkφ,Ak] = B̄k+1D + ∆BkD, ∆Bk ≡ [∆bk(ȳk),∆Ck(ȳk)],(8.3)

‖∆BkD‖F ≤ γ̃kn‖B̄k+1D‖F ≤ γ̃′
kn‖[bkφ,Ak]‖F ,

‖B̄k+1D‖F ≤ (1−γ̃kn)−1‖[bkφ,Ak]‖F , ‖bk‖2 ≤ (1 + γ̃kn)‖b‖2.
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In addition, k+1 is the first integer such that κ2(Ṽk+1) > 4/3, so Section 6 gives

σmin(B̄k+1D) < 8(k+1)γ̂n‖B̄k+1D‖F ≤ γ̃kn‖[bkφ,Ak]‖F , ∀ φ > 0;(8.4)

κ2(Ṽk), σ−1
min(Ṽk), σmax(Ṽk) ≤ 4/3;

and similarly ‖Ak‖F ≤ ‖AṼk‖F + γ̃kn‖A‖F ≤ (4/3 + γ̃kn)‖A‖F .

We can combine (8.2), (8.3) and (8.4) to give under the condition in (1.1)

σmin(Ak) ≥ σmin(AṼk) − ‖∆Ṽk(ȳk)‖2 ≥ 3σmin(A)/4 − γ̃kn‖A‖F > 0,(8.5)

σmin([bkφ,Ak]) ≤ σmin(B̄k+1D)+‖∆BkD‖2 ≤ γ̃kn‖[bkφ,Ak]‖F .

The above allows us to define and analyze an important scalar, see Theorem 2.4,

δk(φ) ≡ σmin([bkφ,Ak])

σmin(Ak)
≤ 1,(8.6)

where from (8.5) Ak has full column rank. Now ȳk and r̃k(ȳk) solve the linear least
squares problem Aky ≈ bk in (8.2), see (8.1). If [bk, Ak] does not have full column
rank then r̃k(ȳk) = 0, so x̃k ≡ Ṽkȳk is a backward stable solution for (1.1), which
we wanted to show. Next suppose [bk, Ak] has full column rank. We will not seek to
minimize with respect to φ the upper bound on ‖r̂‖2

2 in Theorem 2.4, which would be

unnecessarily complicated, but instead prove that there exists a value φ̂ of φ satisfying
(8.7) below, and use this value:

(8.7) φ̂ > 0, σ2
min(Ak) − σ2

min([bkφ̂, Ak]) = σ2
min(Ak)‖ȳkφ̂‖2

2.

Writing LHS ≡ σ2
min(Ak)− σ2

min([bkφ,Ak]), RHS ≡ σ2
min(Ak)‖ȳkφ‖2

2 we want to find
φ so that LHS=RHS. But φ=0 ⇒ LHS > RHS, while φ=‖ȳk‖−1

2 ⇒ LHS < RHS, so

from continuity ∃ φ̂ ∈ (0, ‖ȳk‖−1
2 ) satisfying (8.7). With (8.6) this shows that

(8.8) δk(φ̂) < 1, φ̂−2 = ‖ȳk‖2
2/[1−δk(φ̂)2], 0 < φ̂ < ‖ȳk‖−1

2 .

It then follows from Theorem 2.4 that with (8.5), (8.8) and (8.4),

‖r̃k(ȳk)‖2
2 ≤ σ2

min([bkφ̂, Ak])(φ̂−2+‖ȳk‖2
2/[1−δk(φ̂)2])(8.9)

≤ γ̃2
kn(‖bkφ̂‖2

2 + ‖Ak‖2
F )2φ̂−2.

But from (8.1) and (8.2) since r̃k(ȳk) = bk − Akȳk, AT
k r̃k(ȳk) = 0, and from (8.8),

‖bkφ̂‖2
2 = ‖r̃k(ȳk)φ̂‖2

2 + ‖Akȳkφ̂‖2
2,

≤ 2γ̃2
kn(‖bkφ̂‖2

2 + ‖Ak‖2
F ) + ‖Ak‖2

2(1−δk(φ̂)2)

≤ 2γ̃2
kn‖bkφ̂‖2

2 + (1 + 2γ̃2
kn)‖Ak‖2

F ,

‖bkφ̂‖2
2 ≤ 1 + 2γ̃2

kn

1 − 2γ̃2
kn

‖Ak‖2
F .(8.10)

This with (8.4) and (8.5) shows that

δk(φ̂) ≡ σmin([bkφ̂, Ak])

σmin(Ak)
≤ γ̃′

kn‖[bkφ̂, Ak]‖F

σmin(A)−γ̃kn‖A‖F

(8.11)

≤ γ̃′′
kn‖Ak‖F

σmin(A)−γ̃kn‖A‖F

≤ γ̃′′′
kn‖A‖F

σmin(A)−γ̃kn‖A‖F

≤ 1

2
under (1.1),
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since this last bound can be rewritten as σmin(A) ≥ (2γ̃′′′
kn+γ̃kn)‖A‖F , which we see

will hold if A satisfies (1.1). This bound on δk(φ̂) shows that φ̂−2 ≤ 4‖ȳk‖2
2/3 in (8.8),

and using this in (8.9) gives the desired bound:

(8.12) ‖r̃k(ȳk)‖2 ≤ γ̃kn(‖b‖2
2 + ‖A‖2

F ‖ȳk‖2
2)

1

2 ≤ γ̃kn(‖b‖2 + ‖A‖F ‖ȳk‖2).

But we compute x̄j = fl(V̄j ȳj), not Ṽj ȳj , so to complete this analysis, we have to
show that x̄k is a backward stable solution for (1.1). Now, see (4.3), x̄k = fl(V̄kȳk) =
(V̄k + ∆V ′

k)ȳk with |∆V ′
k| ≤ γk|V̄k|. With ∆Ṽk(y) in (8.2) define

∆Ak ≡ [∆Ṽk(ȳk) − A(∆V ′
k + V̄k − Ṽk)]ȳk‖x̄k‖−2

2 x̄T
k ,

so that (A + ∆Ak)x̄k = (AṼk + ∆Ṽk(ȳk))ȳk, and, see (8.1), (8.2), (2.2),

‖b+∆bk(ȳk)−(A + ∆Ak)x̄k‖2 = min
y

‖b+∆bk(y)−[AṼk+∆Ṽk(y)]y‖2,(8.13)

‖∆bk(ȳk)‖2 ≤ γ̃kn‖b‖2,

‖∆Ak‖F ≤ [‖∆Ṽk(ȳk)‖F +‖A(∆V ′
k+Ṽk∆k)‖F ]‖ȳk‖2/‖x̄k‖2,(8.14)

where we know from (8.12) that (8.13) is bounded by γ̃kn(‖b‖2 + ‖A‖F ‖ȳk‖2). But

‖∆V ′
k‖F ≤ k

1

2 γk, so from (2.2) ‖A(∆V ′
k + Ṽk∆k)‖F ≤ k

1

2 γ̃n‖A‖2, and from (8.2)

‖∆Ṽk(ȳk)‖F ≤ γ̃kn‖A‖F , so with (2.2) and (8.4)

‖x̄k‖2 = ‖(V̄k + ∆V ′
k)ȳk‖2 ≥ ‖V̄kȳk‖2 − ‖∆V ′

k‖F ‖ȳk‖2 ≥ ‖ȳk‖2(3/4 − k
1

2 γn).

Combining these with (8.1) shows that ‖∆Ak‖F ≤ γ̃kn‖A‖F in (8.14). Summarizing:

r̃k(ȳk) = b+∆bk(ȳk)−(A + ∆Ak)x̄k, ‖r̃k(ȳk)‖2 ≤ γ̃kn(‖b‖2 + ‖A‖F ‖x̄k‖2),(8.15)

‖∆bk(ȳk)‖2 ≤ γ̃kn‖b‖2, ‖∆Ak‖F ≤ γ̃kn‖A‖F .

Using the usual approach of combining (8.15) with the definitions

∆b′k ≡ − ‖b‖2

‖b‖2 + ‖A‖F ‖x̄k‖2
r̃k(ȳk), ∆A′

k ≡ ‖A‖F ‖x̄k‖2

‖b‖2 + ‖A‖F ‖x̄k‖2

r̃k(ȳk)x̄T
k

‖x̄k‖2
2

,

shows (A + ∆Ak + ∆A′
k)x̄k = b + ∆bk(ȳk) + ∆b′k,

‖∆Ak + ∆A′
k‖F ≤ γ̃kn‖A‖F , ‖∆bk(ȳk) + ∆b′k‖2 ≤ γ̃kn‖b‖2,

proving that the MGS-GMRES solution x̄k is backward stable for (1.1).

9. Comments and conclusions. The form of the restriction in (1.1) suggests
that we might be able to ease this restriction somewhat by using κ̃F (A) as defined
in (2.1), instead of ‖A‖F /σmin(A) in (1.1). However κ̃F (Bj) was useful when we
applied MGS to Bj , see for example (5.7), while in MGS-GMRES we apply MGS to
[b, AVj−1], so it looks like we cannot get an a priori restriction involving κ̃F (A) this
way. See also Remark 4.1. Appendix A discusses a possibly superior way of meeting
the restriction in (1.1) for difficult problems.

Now to conclude this. Among many other things, we showed that MGS-GMRES
• gives a backward stable least squares solution at every step, (Section 8.1);
• obtains a backward stable solution to the problem (1.1), (Section 8.2);
• and up until this point κ2(Ṽm) ≤ 4/3, (Section 6).
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Thus we can say that the MGS–GMRES method is backward stable for computing
the solution x to Ax = b for sufficiently nonsingular A, answering an important open
question. Despite loss of orthogonality, it provides an acceptable solution within n+1
MGS steps (n steps of MGS-GMRES). The loss of orthogonality is usually inversely
proportional to the level of convergence. Complete loss of orthogonality implies a
solution exists, and MGS-GMRES necessarily finds this under reasonable restrictions
(1.1) (or more practically but less rigorously (1.2)) on the problem. From this we
see that the numerical behavior is far better than was often thought. This means we
do not have to do anything special to ameliorate the effect of rounding errors — we
certainly do not need reorthogonalization — and need only concentrate on finding
solutions more quickly, mainly by seeking better preconditioning techniques.

The final proof was seen to require an instance of a more general result on the
backward stability of a variant of the MGS algorithm applied to a matrix B in order
to solve a linear least squares problem, see Section 7.1. In Section 5 we showed
more precisely than before how orthogonality could be lost in the MGS algorithm, in
particular by using the condition number κ̃F (B) defined in (2.1).

Acknowledgments. The main approach here was to base the analysis on the
surprising relationship between MGS and the Householder reduction of an augmented
matrix that was discovered by Charles Sheffield and proven and developed by Björck
and Paige in [5], and combine this with the elegant result discovered by Giraud and
Langou in [10] (responding to a request by Mario Arioli). Once we had made that
choice the task was still extremely difficult, and we had to draw on many other works
as well — among these the excellent book by Higham [13] facilitated our work greatly.

This paper is the end result of a long term collaboration of its three authors aimed
at producing a rounding error analysis of the MGS-GMRES method. And although
this is unusual, the second and third authors (alphabetically) would like to thank the
first author for carrying this project to such a satisfying conclusion.

Two referees’ comments added nicely to the history and precision of the paper.

Appendix A. Condition numbers. If κF (A) ≡ ‖A‖F /σmin(A), then (2.1) is

κ̃F (A) ≡ min
diagonal D > 0

κF (AD).

For m×n A, if positive diagonal D̃ is such that in AD̃ all columns have equal 2-norm,
then van der Sluis [21, Thm. 3.5, (b)] showed that κF (AD̃) is no more than a factor√

n away from its minimum (here κ̃F (A)), and this is the first mention of the condition
number κF (A) (and at least by implication, of κ̃F (A)) that we have seen so far. He
also stated in [22, §3.9] that if ‖δAej‖ < ‖Aej‖/κF (A) for j = 1, . . . , n ≤ m, then
A+δA has full rank n. This is easy to see since it ensures that ‖δA‖F < σmin(A). He
also points out that this is in some sense tight, in that if ‖δAej‖ = ‖Aej‖/κF (A) for
j = 1, . . . , n ≤ m is allowed, then for any prescribed value of κF (A) ≥ √

n there exist
A and δA such that A+ δA is rank deficient. Since the backward error bounds in this
paper were obtained column by column, see Lemma 3.2 and for example the column
bounds in (8.1), this suggests that the form of the restriction in (1.1) is optimal, even
down to the factor n2ǫ. See also the first paragraph of Section 4.

Moreover, instead of solving (1.1) we can solve (AD)y = b for some positive

diagonal D, and then form x = Dy. By taking D = D̃ above we see from van der
Sluis’s theory that we can approach the value of κ̃F (A) with κF (AD̃), and perhaps
alter a problem with an ill-conditioned A so that it meets the restriction (1.1). This
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is another justification for using such a D̃ as a basic simple preconditioner when
MGS-GMRES is applied to ill-conditioned problems.
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