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Abstract. The presented work is continuation of the article [7], where the semi-coercive
problem of a beam on a unilateral elastic subsoil and the corresponding problem approxi-
mation have been analysed. Numerical methods and the computational algorithms for the
class of such problems are presented and their uniform converge properties are proved here.
The methods are based on the minimisation of a total energy functional, where the descent
directions of the functional are searched by solving the linear problems with a beam on
bilateral elastic “springs”. The influence of external loads on the convergence properties is
also investigated. The effectiveness of the algorithms is illustrated on numerical examples.

Keywords: non-linear subsoil of Winkler’s type, semi-coercive beam problem, approxi-
mation, iterative methods, convergence, projection, load stability

MSC 2000: 74B20, 74K10, 90C20, 90C31

1. INTRODUCTION

The semi-coercive problem of a beam on a unilateral elastic subsoil means to
minimise a convex, differentiable and non-linear functional. The functional is coercive
only if the additional assumptions on external loads are formulated. There are some
methods how to numerically solve the class of such problems. The methods based on
linear complementarity are presented in [4]. The methods for quadratic programming
can also be used due to the dual formulations of the problems, see [6].

In this article, a total energy functional is minimised such that the descent di-
rections of the functional are searched by solving the linear problems with a beam
on bilateral elastic “springs”. We obtain the so-called “descent direction method
without projection” and prove its uniform convergence properties with respect to
refinement of the partition. Since the problem is only semi-coercive it is also useful
to investigate the influence of the load on convergence. Mainly for “unstable” cases
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of the load, the rate of convergence can be improved by adding of the so-called “pro-
jection” step. We obtain the “descent direction method with projection”, which has
the same convergence properties as the previous method.

In Section 2, the formulations of the problem, its approximation and the basic
results of the article [7] are summarised. Moreover, two useful lemmas are added. In
Section 3, the auxiliary linear problems with bilateral elastic “springs” are defined
and their uniform properties are derived. In Section 4, the descent direction methods
with and without projection are introduced and their uniform convergence properties
are proved. In Section 5, the approximated problem and algorithms are rewritten to
their algebraical forms and the reason of the “projection” step is explained. And in
Section 6, the effectiveness of the algorithms is illustrated on numerical examples.

2. OVERVIEW TO SEMI-COERCIVE BEAM PROBLEM ON UNILATERAL ELASTIC
SUBSOIL

2.1. Notation. We will use the Lebesgue spaces LP()), p = 2,400, Sobolev spaces
H*(Q) = Wk2(Q), k = 0,1,2,3,4, and the spaces of continuously differentiable
functions C*(Q), where € is an open, bounded and non-empty interval in R'. The
spaces are described in the book [1]. Their standard norms are denoted as |.|p.q,
[[-[|%,2,2 and |[.[|cx ), respectively. The é-th seminorms, i = 0,1,..., k, of the spaces
HF(9) are denoted as |.|; 2.0. The space of polynomials of the k-th degree is denoted
as Py.

Since we will mainly use the interval Q := (0, ) in the remaining parts of the article,
we will denote the norms and seminorms of the Sobolev spaces H*(Q2), k = 0,1, 2, 3,4,
without the symbol ) for this concrete choice of the interval.

With respect to the well-known imbedding theorem of the Sobolev space H?(£),
see [1], we will assume that the functions v € H%(Q) also belong to C*(Q) to define
the values v(z),v'(z), x € Q.

2.2. Setting of the Problem. We consider a beam of the length [ with free ends
which is situated in the interval = (0,1), and assume that the beam is supported
by a unilateral elastic subsoil in the interval Qg := (x;,2,), 0 < z; < 2, <![. Such a
subsoil is active only if the beam deflects against it. Let E, I and ¢ denote functions
that represent, respectively, the Young’s modulus of the beam material, the inertia
moment of the cross-section of the beam and the stiffness coefficient of the subsoil.
The aim is to find the deflection w* of the axes of the beam caused by the beam
load. The situation is depicted in Figure 1.

We will assume that the functions F, I, ¢ belong to the Lebesgue space L>(Q)
and there exist positive constants Ey, Iy and g such that

E(x) > Ey, I(x)>1Ip, ae. inQ, and g¢(z)>qy a.e. in ;.

Then we can define the forms

a(vy,vg) = /EIvlllvg dz, wvi,vy € H*(Q),
Q

b(v1,v2) = /qvlvg dr, wvi,vs € H(Q),
Qs



FIGURE 1. Scheme of the subsoiled beam with axes orientation.

to represent the work of the inner forces and the subsoil, respectively. The forms a, b
are bilinear and bounded on the space H?(f2).

The space of all continuous and linear functionals defined on H?(2) will be denoted
V* and its corresponding norm ||.||«. The work of the beam load will be represented
by a functional L € V*.

The total potential energy functional for the problem has the form

2.1) J(v) = % (a(v,0) + b(v™,v7)) — L), v e HYS).

The functional J is Gateaux differentiable and convex on the space H2({). Its
Gateaux’s derivative at any point w € H?(Q2) and direction v € H?(Q) has the form

(2.2) J' (w;v) = a(w,v) + b(w™,v) — L(v).
The variational formulation of the problem can be written as the minimisation
problem
(P) find w* € H*(Q): J(w*) < J(w) Yoe H*(Q),
or equivalently, with respect to (2.2), as the non-linear variational equation
(2.3) a(w*,v) + b((w*)",v) = L(v) Yv € H*(Q).

Notice that for sufficiently smooth data, problem means to solve the non-linear dif-
ferential equation of the fourth order with the homogeneous Neumann boundary
conditions.

2.3. Solvability and Dependence on the Load. Since the beam does not have
fixed ends (it is only laid on the subsoil), the problem solvability depends on the
beam load. The existence and uniqueness of the solution w* of the problem (P) is
ensured by the condition

(2.4) L(p)<0 Vpe P, p>0 in Q,

where the polynomials of the first degree represent the rigid beam motions for which
the subsoil is not active. Notice that the functional J is coercive on H?() if this
condition holds.



For other analyses, it will be usefull to rewrite equivalently the condition (2.4) in
the following way:

(2.5) F<0 and z<T <z,

where F':= L(1) is the load resultant and T := L(x)/L(1) is the balance point of the
load. The condition (2.5) means that the load resultant is situated in Q5 and oriented
against the subsoil, which causes that the beam deflection activates the subsoil on
the set M C Qs with a positive one-dimensional Lebesgue measure, i.e. w* < 0 in
M. In addition, the balance point T lies in the convex closure of the set M.

To determine the dependence of the change of the problem (P) solution on the
change of the load, we will consider the class Ss¢ ,, of the loads L € V* such that
T e[z + 6,2, — 9], F<—=£<0and | L]« <1, with respect to positive parameters
d0,&,m. If we will assume that Ss ¢, is non-empty then there exists a positive constant
¢ which depends on the loads from Ss¢ ., only through the parameters d,§,n such
that

(2.6) |wi — w322 < ¢l|L1 — Lall« VL1, La € S5,

where w} = w}(L;) solves the problem (P) with respect to the load L;, i = 1,2.

The following lemma, which is also important for numerical modelling, describes
dependence of the constant ¢ from the estimate (2.6) on the parameters §,&,n for
the limit cases § — 0 and £ — 0.

Lemma 2.1. Let n > 0 and 0 < §ppaz < (zr —21)/2. Then there exists a positive
constant &y, depending on 1 such that for any sequences {0y}, 0 < 0 < dpmaz, and
{&}k, 0 < & < &nax, k > 0, it holds the following implication: if 6 — 0 or & — 0
then ¢, — +o00, where ¢, = ¢k (0, &k, 1) Is the smallest constant which satisfies (2.6)
for parameters O, k., 7).

Proof. We will construct suitable sequences {L; 1 }x C V*, i = 1,2, to prove the as-
sertion. The corresponding load resultants, their balance points and solutions of the
problems (P) will be respectively denoted F; i, T; ; and w; i, ¢ = 1,2. Subsequences
of these sequences will be denoted in the same way. For the sake of brevity, some
step of the proof will be done more briefly.

Case 1. Let n > 0 and 0 — 0. Then there exists &4 > 0 such that ||L; k]|« < n,
i =1,2, where

Ly k(v) = &o((m +2,)/2),  Lak(v) =& +0k), &k < &maz, k> 0.

We will assume that there exists &, > 0 such that & > &£in, £ > 0, in this first
case. Then Fyy = Foy = &, Thip = (v + 2,)/2 and Ty, = x; + d;. Therefore
Lix € S5y eminm»> © = 1,2. The sequence {wy j} is bounded on H?(2) by Theorem
3.2 in [7]. Suppose for a moment that some subsequence of {ws 1} is bounded on
H?(Q)). Then we can assume with loss of generality that there exists w € H?({2)
such that we  — w in H 1((2) by the Rellich theorem. The functions ws j solve the
equation

(2.7) a(wz ,v) + b(wy ;,,v) = Lo y(v) Vv € H*(Q).



The choice v(z) =2 — x; € Py in (2.7) yields
b(w™,v) = kh_)rr;o b(wy y,v) = klir{)lo Lo i (v) = ;}EEO Fo i (To, — ) = 0.
Hence w > 0 in . Then the choice v(z) =1 € Py in (2.7) yields contradiction:
0= klirrgo b(wik, 1) = klin;o Ly k(1) = klin;o o < —&nmin < 0.
Therefore ||wg k2,2 — oo and by (2.6),

o > 1wk —waklan

= L1k — Lok«
Case 2. Let 1 > 0, 0 < dmin < 0k < Omax < (zr —27)/2 and & — 0. Let us choose

L) = o fote) = 20 (2 ot

Liato) = 20) - o (25,

Loi(v) = Lix(v)—egv(zy),

where ¢, = g—:((xl—i—;m)ﬂ—(xl—i—ék)) > 0 and 1o > 0 is chosen such that || L; k|« < 7,
i = 1,2, for sufficiently large k. Then L(1) = 0, L(z) = 0, F1, = =& — 0,
For=—¢ —ex, iy = (t1 +2)/2, Tog =21 + 0k, Lik € Ss,5n.60m a00d Li p — L
in V*,i=1,2.

By Theorem 3.2 in [7], the sequences {w1 k}k, {wi}r are bounded on H?(Q).
Therefore there exist subsequences {w;}xr and functions w; € H?(Q) such that
wik — w; weakly in H2(Q) and w; — w; in H(Q) (by the Rellich theorem),
1 =1,2. Since the functions w; j solve the equations

a(wj ,v) +b(w; ,,v) = Lik(v) Yo € H*(Q), i=1,2, k>0,
the limit case k — oo yields
a(w;,v) + b(w; ,v) = L(v) Yve H*(Q), i=1,2.
The choice v = 1 yields b(w; ,1) = 0. Thus wy,ws > 0 in Q, and consequently
w1, wo solve the following Neumann problem:
(2.8) a(w;,v) = L(v) Yv € H*(Q), i=1,2.

Hence, there exists a polynomial p € P; such that wy; — ws = p. Notice that if a
function v € H?(Q) is convex and v ¢ P; in Qs then L(v) > 0. From this result
and the equation (2.8), it is possible to prove that w > 0 almost everywhere in €,
i =1,2. It means that the functions w;, wy are strictly convex in 25 and have just
one minimum in Q.

By Lemma 3.5 in [7], there exist sequences {x; i}k, {¥ik}x C Qs and their limits
i, Y, © = 1,2, such that

wik(Tik) <0, wik(yir) <0 and x6 <Tip <yir Vk>0,i=1,2.

Hence w;(x;) = w;(y;) = 0, since w; are non-negative in Qs, ¢ = 1,2. Consequently,

=y = (¥ +x,)/2, T2=1ys= klilgo Tog < (@1 + 2r)/2,



since w; are strictly convex in Qg, i = 1,2. Thus wy ((x;+2,)/2) = 0 and wa(z;+9) =
0 < wy(z; + 6). Therefore w; # we and consequently by (2.6),

o > ok —waklle

L1,k — Lokl
This result holds for any subsequences {w;  } x with weak limits w; € H2(),i = 1,2,
which means that the whole sequence {ci }r converges to co.
Case 3. Let 7> 0,0 — 0, & — 0 and 0 < dpmae < (2 —1)/2. Since S5, .¢1.n C
Ss, ¢, n for sufficiently large k, ¢k (0maz; §k, 1) < ck(0k, &k, ), which follows from the
estimate (2.6). By Case 2, ¢x(0max,Ek,n) — 00. Hence, ¢k, &k, n) — 00. O

Notice that the small change of the load causes the relatively large “rigid” dis-
placement of the beam in Case 2 of the proof.

With respect to Lemma 2.1, the loads, for which the balance point T is closed to
the end points of the subsoil or the size of the load resultant is small with respect to
V*-norm of the load, will be called unstable. Some unstable loads are illustrated in
[8] on numerical examples.

2.4. Approximation of the Problem. Let us define a partition 74,

O=xg<m<...<zany=1, h:= IIllaXN({Ej —Zj—1), hmin = minN(xj —Tj-1)

of the interval Q = [0,1], with the nodal points x;, 5 = 0,1,..., N, and with the
parameters h, h,;, > 0. With respect to a positive parameter 6, we will consider
the system 7y of such partitions 7, for which the inequality 0h < hys holds.

For a partition 7, € 7y with N + 1 nodal points, we will define the function space

Vi C H2(Q)7 Vi = {’Uh € Cl(ﬁ) | vh|(mj,1,wj) €P;, j=12,. '-7N}a

i.e. the space of continuously differentiable and piecewise cubic functions.

For the sake of simplicity, we will assume that the function g, which represents the
stiffness coefficient of the subsoil, is piecewise constant in the interval 25 and that
the considered partition 7;, € 7y take into account the points of discontinuity of g.
Since the evaluation of the term b(w, ,vp), wp,vn € Vj, cannot be computed exactly
due to the non-linear term w),, , an approximation of the form b must be used. The
form b will be approximated by a numerical quadrature on each subsoiled partition
interval. Its approximation has the form

(h)
(29) bh(’l}l,vg) = Z ;U1 (Zi)'UQ(Zi), U1, V2 € HQ(Q),
i=1
where z;, 21 < 22 < ... < Zpy(n), are the points of the numerical quadratures and

r; contains the products of the stiffness coefficients and weights of the numerical
quadrature. With respect to the assumption on 7, € 7y, it holds that there exists
constants ¢y, ca > 0 such that

(2.10) c1q00h <1 < callqlloch, i=1,2,...,m(h).



From a mechanical point of view, the subsoil is substituted by insulated “springs”.
We will assume that the numerical quadrature is exact at least for polynomials of
the first degree.

If we set

V= {UGH2(Q) | Ip < M, 1,92, .., y2p € Qs ¢

C=

{r € Qv (z) =0} = |

2

[y2i—1uy2i]} , M >0,

1

then there exists positive constants ¢1, ¢o and ¢35 = ¢3(M), which are independent of
the choice of 73, such that

(2.11) [bn (u, v)|
(212) |b(v™,u) — bu(v™, u)|
(2.13) ‘b(vf,u) — bh(vf,u)|

il lulli2lvllie  Vu,v e HY(Q),
coh|vl|1llullie Vu,v € HY(RQ),
CghQH’U”Q’QH’UJHQQ Yu € H2(Q), Yo € VM

INIA A

Now, we set the approximated problem. For the sake of simplicity, we will not
consider a numerical quadrature of the forms a¢ and L. The approximated problem
corresponding to the partition 75, € 7y has the form

(Py) find wy € Vi Jh(w;;) < Jh(vh) Yy, € Vi,
" Jn(vn) == 3a(vn,vn) + 3bn(vy, vy ) — L(vg).

Since the functional Jj, is convex and has the Gateaux derivative on the space Vj,,
the problem (P}) can be rewritten equivalently to the nonlinear variational equation

(2.14) a(wy,v) + br((wp) ", vn) = L(vp) Vo, € Vi,
The existence of the problem (P,) solution is ensured by the condition
(2.15) F<0 and 2z <T < zp)-

This condition also ensures the uniqueness of the solution for sufficiently small h. No-
tice that if the condition (2.5) holds and the discretisation parameter h is sufficiently
small, then the condition (2.15) also holds.

It holds that the set

(2.16) Ar={ie {1,...,m(h)} |wi(z) <0},

which represents active “springs” is non-empty. In addition, the balance point T
belongs to the convex closure of the points {z;; i € A} }.
For the approximated problems (FP,), it holds the following estimates and conver-
gence result:
Hw* - w;;||272 < cl(M)h2Hw*||472 w* € H4(Q) NV, VY1, € Ty, h < hy,
[|[w* — wil|2.2 < eahl|w™||3,2 w* € H3(Q), Y, € Ty, h < hy,
(2.17)  JJw* —wj|22—0 w* € H*(Q), h — 0,



where w* and w; are respectively the solutions of the problems (P) and (P},), and ho
is a sufficiently small parameter. The first of these estimates is numerically illustrated
in [8] for some numerical quadratures.

In the end of this section, we add one lemma, which describes when the functionals
Jj, are uniformly coercive on H?(Q2). The lemma will be also useful for the following
analysis.

Lemma 2.2. Let F <0, 2, < T <z, 0 < hg < min{T — 2,z — T}, c € R and

0 > 0. Then there exists a positive constant ¢ such that the following implication
holds:

Jh(uh) <c = ||uh|\2,2 <é V1, € Ty, h < hg, Yup € Vj,.

Proof. Since the proof is similar to the first (existence) part of the proof of Theorem
3.1. in [7], some steps will be done more briefly.

Suppose that the lemma does not hold. Then, by the definition of Jj, there exist
sequences {7, }x and {uk}k, uk € Vi, ||ukll2,2 — +oo such that
(2.18) 0 < a(ug, ur) + bn, (uy, ,uy, ) < 2L(ug) + 2c.

If we divide (2.18) by ||ux|3 5, We obtain

a(vk, vi) + bn,, (v, v, ) = 0, vg = up/||ugl|2,2.
Hence, by the Rellich theorem and (2.11), there exist a subsequence {vj}y (de-
noted in the same way) and a polynomial p € P; such that v, — p in H?*(Q) and
bn, (p~,p~) — 0. By the assumption of hg, (2.10) or eventually (2.12) for hy — 0,
we obtain p > 0 in the neighbourhood of the point T'.
If we divide (2.18) by |Juk||2,2, then 0 < L(p) = Fp(T'). Therefore p = 0, since
F < 0. However, it is in contradiction with [lvg||2,2 = 1. O

3. LINEAR PROBLEMS WITH BILATERAL ELASTIC SPRINGS

In this section, we will define the family of linear problems with bilateral elastic
“springs” and derive their uniform properties with respect to refinement of the par-
tition. Such problems will be solved in each iteration of the algorithms, which will
be presented below, in Section 4.

Let 7, € Ty be a partition of Q and A, C {1,...,m(h)} be a non-empty set of
indices. Let us define the bilinear form
(31) b;?h (’1)1,’1}2) = Z T‘i’Ul(Zi)’UQ(Zi), U1, U2 € HQ(Q),

i€EA
where the coefficients r; and the spring points z; have been described in the previous
section. Let us define the functional

1 1
(3.2) T (vg) == §a(vh,vh) + 5(),‘?" (vn,vn) — L(vp).
The corresponding linear problem (P,‘;lh) with bilateral elastic springs has the form

(3.3) find wy, = wp(Ap) € Vi, 1 Ji (wp) < i (v) Yoy, € Vi,



or equivalently
(3.4) find wy, = wh(Ah) eVy: a(wh,vh) + b?h (wh, vh) = L(’Uh) Yoy, € V.

Lemma 3.1. Let § > 0, 7, € Tp and card(Ay) > 2. Then the problem (P,f‘”’) has
a unique solution.

If the condition (2.15) holds and card(Ay) = 1 then (P{**) has a solution if and
only if z; = T, where i € Ay,. Insuch a case, if wy,(Ay) solves (P then wy,(An) +p,
where p € Py, p(T) = 0, also solves (P,f‘”’).

Proof. If 7, € Ty and card(Ap) > 2 then there exists ¢ > 0 such that the inequality
(3.5) cllvl3.2 < a(v,v) + b (v,v) Yo e H2(Q).

holds. The proof of the inequality (3.5) is quite similar to the proof of the Poincaré
inequality, see [3] and also the proof of Lemma 3.2. Notice that if b,‘?"(l, 1) — 0 for
h — 0, then ¢ — 0.

The inequality (3.5) yields that the functional J;?’" is coercive on V},. Since Jy is
also strictly convex and differentiable on V}, the problem (P,;4 ") has a unique solution
by the well-known theorems of the variational calculus, see for example [2].

Suppose that Ay, = {i}, i € {1,2,...,m(h)}. Then the choices v, =1 and v, =z
in the equation (3.4) and the definitions of T, F' yield that z; = T and wp(z;) = F/r;,
if the problem (P,f‘h) has a solution wy,. Let us define the auxiliary Neumann problem

(3.6) find @y, € Vi, : a(wn,vn) = L(vy) — b (F/ri,vn)  Yop € Vi
Such a problem has a solution, since
L(p) = by" (F/ri,p) =0 Wp e Pr.

If @y, is a solution of the problem (3.6) then the other solutions has the form wy, + p,
p € Py. Therefore, we can assume that there exists a solution wy, of (3.6) such that
wp(z;) = F/r;. Now, it is easy to show that the functions wy + p, where p € Py,
p(T) = 0, also solves (P/*"). O

Corollary 3.1. Let the condition (2.15) hold. Then the solution w} of the prob-
lem (Py) also solves the problem (P,f”'), where A} is defined by (2.16).

To show some uniform properties of the problems (P,;4 ") with respect to 1, € Ty
and Ajp, we introduce the notation

A = U{Ah c{1,...,m(h)} | card(Ap) > 2},
h
A, = U {4n Cc{1,....,m(h)} | card(Ar) > min{m(h), max{2, p/h}}}, p > 0.
h

Notice that the parameter p means the “relative” number of the spring points, since
dey,e0 >0 er/h <m(h) <ca/h V1 € Ty.

If {A}n C A is such a sequence that card(Ay)h — 0, or equivalently b7 (1,1) — 0
(see the estimate (2.10)), then {4} ¢ A, for any p > 0.



Lemma 3.2. Let 6,p > 0. Then there exist positive constants c1, ce depending
on §,p > 0 such that for any 1, € 79 and any Aj, € A, the estimate

(3.7) cl||vh||§72 < a(vp,vp) + b;?”' (vp,vp) < 02||vh|\§12 Yoy, € V.
holds.

Proof. The second inequality in (3.7) follows from (2.11), since bfh (vp,vp) <
bn(vn,vp). Suppose that the first inequality in (3.7) does not hold. Then there
exist sequences {1, }x, {An, }x and {vp, }r such that

'Uhk

a(ug, ug) + bf:k (ug, ug) < k>1, up:=

E )
Hence, by the Rellich theorem and (2.11), we obtain

v, ll2.2°

A
(3.8) Hup i C{uptn: up —pe Py in H*(Q) and bh:/’“' (p,p) — 0.

Since |lug||2,2 = 1, it holds that p # 0, i.e. there exists at most one point z € R
such that p(x) = 0. Therefore, for sufficiently small & > 0, there exist pp > 0 and
0 < p < p such that

Ip| > po in Q, and card(fihk,) > p/hys,
1-, e O}, zf, are the spring

points of the partition 74,,. Then, by the estimate (2.10), there exists a positive
constant ¢ such that

where Q, := O, \ (z —e,v+¢) and Ay, = {i € Ap,,, | 2F

An,, -
b ¥ (p,p) > chiwpd > 1> eppg > 0.
iEAhk,

However, it is in contradiction with (3.8). Therefore the estimate (3.7) holds. O

Corollary 3.2. Let 6,p > 0. Then there exists a positive constant ¢ depending
on §,p > 0 such that for any 1, € Tg and any Aj, € A,

(3.9) wn(Ap)|l2.2 < c|Lll«, wn(Ap) solves (P/*™).

The proof immediately follows from the equation (3.4) and the estimate (3.7).
Let 7, € Tp and v € H?(Q2). Then we can introduce the notation

(3.10) Ap(v) :={ie{l,...,m(h)} | v(z;) < 0}.

Concretely, we will be interested in the relative cardinality of the set A, (wy,), where
wp, solves the problem (P;;‘h) for some Ay, € A.

Lemma 3.3. Let v € H*(Q) and v < 0 in a non-empty open interval (y1,y2) C Q.
Then there exists a positive constant p such that for any 75, € Ty, h < (y2 — y1)/2,
it holds Ap(v) € A,,.

The proof clearly follows from the definition of the partitions 7, € 7y. Notice that
the size of the parameter p depends on the length yo — y;.

10



Lemma 3.4. Let FF < 0 and 6,p > 0. Then there exist positive constants p and
ho such that for any T, € Tg, h < ho, and any A, € A,,

(3.11) Ap 0 Ap(wr) € Ag,
where wy, solves the problem (P,;4 ).

Proof. Suppose that (3.11) does not hold. Then there exist sequences {7, }x, btz — 0
and {Ar}r C A,, A = Ay, , such that

(3.12) hkcard(Ak n Ak(wk)) — 0, Ak(wk) = Ahk (whk)

By Lemma 3.2, there exists ¢; > 0 such that ||wg|22 < ¢ for any & > 0. If we
choose vy, = 1 in the equation (3.4) and denote the coefficients and spring points of
the form by, as r¥ and 2, then by the estimates (2.10) and (3.12), we obtain

F = b;j: (wg,1) > Z rRwg(2F) >
1€ARNAL (wy)
> —cahillwllo@ycard(Ag N Ag(wi)) — 0, c2 > 0.

However, it is in contradiction with F' < 0. Therefore (3.11) holds. O

To show the other uniform properties of the problems (P,;4 "), we will define the
auxiliary problem (P,‘:‘;I) with the “rigid” beam:

(3.13) find p, € P : J,’?’"(ph) < J,’?"(p) Vp € P,
or equivalently
(3.14) find pp € Py : b,‘?" (pn,p) = L(p) Vp € Py.

Notice that the problem (P,;4 ) means to solve the linear system of two equations
with two unknowns.

Lemma 3.5. Let 7, € Ty and Ay, € A. Then py(x) = t1x + to, where

F —-F
(315) tl = @ Z TZ(T - Zl) and tQ = @ Z rlzZ(T — Zi),
i€EAp i€EAp
with
(3.16) det = Z riri(zi —2;)? >0, F=L(1), T=L(z)/F.
1,j€Ap, i<j

Proof. The relations (3.15) can be easily derived if we choose p = 1 and p = x in the
equation (3.14). O

Lemma 3.6. Let F <0 and 8 > 0. Let {7y, }x C Tp and {Ap}r C A, Ax = Ap,
be such sequences that

(3.17) hy — 0 and hgcard(Ag) — 0.
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Then there exists a positive constant ¢, which is independent of the choice of the
above sequences with the property (3.17), such that

—pi(T)
hicard(Ay)’

(3.18) pe(T) = =00, |lprlla2 — +oo and |[|pr[l22 <c
where {py } is the corresponding sequence of the solutions of the problems (P,i k)
Proof. Since the polynomial space P; has a finite dimension and since

p(x) = p(T) + (z = T)p',
there exist ¢y, co > 0 such that

(3.19) c1|[pll2,2 < max{|p(T)|, [p'} < c2llpll22 Vp € Pr.

Let us denote ny := card(Ay) > 2. The coefficients and spring points of the form
b,‘?: will be denoted 7% and zF,i =1,...,ng, 2f < ... < z% . The determinant (3.16)
will be denoted dety, for the problem (P,i’fr). Let

(3.20) df .= zk_H —2F =1, =1, e 2= zf—l—Zd?, 1=2,...,nk.

(3

j<i
Since 73, € 7y, there exists ¢; > 0 such that
(3.21) d¥ > cihy, VE>0, i=1,...,n.
We will also use the notation
2
Nk N Mg
(3.22) of = er, = er de and o = er Z d? ,
i=1 i=1  j<i i=1 j<i

where df := 0. Then

o6(T = 21)* = 20}(T — 21) + 03

.
=Y
—

N

|

N
K
S~—"

(]
Il

=1
1
k __k k\2
> 7(0002 —(o1)7)
i
1 &
_ k ok k ko k
- ok Z T3 Tig Z djl Z djl Z djz
0 i1,ip=1 J1<iy J1<iy Ja<iz
2
1
_ 4 ko k ko k
- ok Z Ti1 g Z djl Z dj2
0 4y ,ia; i1 <ia J1<t1 J2<t2
2
1 1
(3.23) = — E rk ok E d¥ | = —dety,.
Uk 11712 J Uk
0 d1,i0; i1<ia 11 <j<iz 0
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Hence, by Lemma 3.5, the assumption (3.17) and the estimate (2.10), we obtain
ng

F
pi(T) = o > rH(T = 28)? < Flof < cF/(hgeard(Ax)) — —o0, ¢ >0,
=1

which implies ||pg||2,2 — +00. The estimates (3.23), (3.21) and (2.10) also yield
2

ng k k\2 2

2ici i (T —27) > ¢ ﬂ 1
Sk ST P 2

i=1"14 k iy ia; i <ia \ i1 <j<io

1
= Gehii—1), e >0,

Hence, by the Cauchy-Schwarz inequality, Lemma 3.5, and the assumption (3.17),
we obtain

n n —1/2
P} _ 1> iy T?(T_Zf” < disy T?(T_ny
Z?:kl rf

—pi(T) S rH(T = 2F)? ©
, c3>0, cqg=

colhip(nf = 1) <

IN

2
~ s,
V3
which implies (3.18) due to the estimate (3.19). O

Lemma 3.7. Let 8 > 0. Then there exists a positive constant ¢ > 0 such that
the estimate

2 2
pin (vp, 1) pin (vp, )
3.24 clonl? 4 < alvp,vp) + | 22| + | 2—= Yop € V}
320 clunl3a < alon,m) <b§h(1,1) i I
holds for any i, € Ty and Ay, € A.

The proof of Lemma 3.7 is based on the generalised Poincaré inequality, see [3].
The denominators b;" (1,1) in (3.24) keep the limit case b;" (1,1) — 0 for h — 0.

Corollary 3.3. Let 6 > 0. Then there exists a positive constant ¢ > 0 such that
the estimates

(3.25) lwn = phllz2 < ¢| L]l and  a(wp,wn) < cl|L]|3
hold for any 1, € 79 and A, € A, where wy, py respectively solve the problems
(Pm), (P,
Proof. By Lemma 3.7 and the equations (3.4) and (3.14), we obtain
cllwn —prll3s < alwn,wn) < a(wn,wn) + by" (wh — pr, wh — pa)
= L(wn — pn) < [|L[|«[lwn — pall2.2,
which yields the first estimate in (3.25) and consequently the second one. O
Corollary 3.4. Let the assumptions of Lemma 3.6 be fulfilled. Then

T (w
lwellz.2 1 and i (W)

(3.26) Pl (D)

—F/2, k— +oo,
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where {wg }k, {pr i are respectively the corresponding sequences of the solutions of
the problems (P,i’“) and (P,’:;’“T).

Proof. By the estimate (3.25) and the limits (3.18), we obtain

[well22 _ lIPkll22 + llwk = prll22

< — 1
Pk ll2,2 Pk ll2,2
| wi||2,2 llpkll2.2 — lwk — prll2.2 1
pellze [Pk 2,2 ’

i.e. the first limit in (3.26) holds. Notice that due to (3.14),

T —Lw)
pe(T)  2pi(T)
which implies J,ik (pr) — —oo by (3.18). In addition, due to (3.4) and (3.14),

Jik (wy) _ Ji* (pr) — L(wy, — pr)/2 .

=—F/2,

1
T (pr) T (pr)
and by Lemma 3.6 and Corollary 3.3,
wy(T) _wp(T) — pi(T)
3.27 =1+ lim —F———=1.
( ) k—o0 pk(T) k—o0 pk(T)
Therefore N N
M) ) F
lim ———~ = lim —_—-=——.
k—+o00 wk(T) k— o0 pk(T) 2

O

Corollaries 3.3 and 3.4 shows that the problems (P,i *) and (P,ﬁc *,) have many
common properties for the limit case hycard(Ag) — 0. This fact will be used to
prove the following theorems and lemmas.

Theorem 3.1. Let FF < 0, x; < T < z,, and 8 > 0. Then there exist positive
constants p and hg such that for any 1, € Ty, h < hg, and any A, € A,
Ah (wh) S .Ap,
where wy, solves the problem (P,;4 ).

Proof. Suppose that Theorem 3.1 does not hold. Then there exist sequences {7p, } 1,
hi — 0, and {Ax}r C A, Ay = Ap,, such that

(328) hkcard(Ak (wk)) — 0, Ak(wk) = Ahk (whk).
Let us denote py, := pp, as the solutions of the problems (P,i’fr), k> 0.
Suppose that there exists p; > 0 and a subsequence { Ay}, (denoted by the same

way) such that
A, e A,, VE>0.

Then, by Lemma 3.4, there exists po > 0 such that Ay(wy) € A,, for sufficiently
large k, which contradicts with (3.28).

14



Suppose that there exists a subsequence {Ay} such that
hicard(Ay) — 0.
By Lemma 3.6, pi(T) — —oo. Therefore, p, — —oo in [2;,T] or in [T, z,], since
T € Qs = (2, z,). Hence and by Corollary 3.3, there exists sufficiently small £ > 0

such that wy, < 0in [x;, T—¢] or in [T +e¢, 2] for sufficiently large k, which contradicts
with (3.28) due to Lemma 3.3. O

Lemma 3.8. Let F' < 0 and z; < T < z,. Then there exist positive constants p
and hg such that {Ap(w})}h<n, C Ap, where wj, solves the problem (Py).

In addition, if 7, € Ty, Ap € A and Ap(wp) = Ap, where wy, solves the problem
(P**), then wy, also solves the problem (Py).

Proof. Let wj, w* respectively solve the problems (P),) and (P). Since w} — w*
in H%(Q) by (2.17) and since w* is negative somewhere in {2, by Lemma 3.5 in [7],
there exist p, ho > 0 such that Ay (w}) € A, for h < hy by Lemma (3.3).
If Ay (wp) = Ap, and wy, solves the problem (P**) then
L(v) = a(wp,v) + b (wp, v) = a(wp,v) + by(wy, ,v) Vv € H2(Q).
Thus the function wy, also solves the problem (Py). 0
By the following lemma, we estimate the difference between the solution wj, of the

problem (Pp,) and their approximations generated by the algorithms, which will be
presented in Section 4, see the proof of Theorem 4.2.

Lemma 3.9. Let F <0, x; < T < z,, and ¢,0 > 0. Then there exist positive
constants ¢ and hg > 0 such that for any 7, € Ty, h < hg, and any up, € Vj,
[unllz,2 < ¢,

(3.29) &llwy, — unll3 o < a(wy; — up, wj, — up) + bu((wh)™ —uy ,wh —un),
where wj, solves the problem (P},).

Proof. Since the proof is similar to a proof of Theorem 4.5 in [7], some steps will be
done more briefly. By Lemma 3.8 and Corollary 3.2, there exist ¢1,ca > 0 such that
for any 7, € Ty with sufficiently small h,

(330) ||U};;||212 <c and ||w;; - uh||272 < cso.

Suppose that the lemma does not hold. Then there exist sequences {7, }r, bt — 0,
{wy,, }x and {up, }i; such that

(3.31) a(wg — ug, wg — ug) + bp(wy, —uy , wi —ug) — 0,
where
U]* Up
(3.32) Wy = = T gy — ug|2,2 = 1.

Jwh, = tnll2,2” wp;, — un, 2,2

All subsequences of these sequences will be denoted by the same way. By the Rel-
lich theorem, (3.31) and (3.32), there exist subsequences {w}r and {ux}r and a
polynomial p € P;, p # 0, such that wy — ux — p in H2(Q). By Lemma 3.8,

(3.33) Jp1>0:  Ap,(wp, ) € Ap,.
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Suppose that [[w};, — up,[|2,2 — 0. Then
(3.34) 3p2 >0:  Ap, (wy, )N Ap, (un,) € Ap,
for sufficiently large & by (3.33). Since

Ay, (w; Ay, (up
bay (W), — wy wp — ug) = bh:k( A (g — ),
(3.31), (3.34), (2.11) and (2.10) yield that p = 0, which is in contradiction with p # 0.
Therefore we can assume that the sequences {wy}r and {uy}r are bounded due

to (3.30). It means that there exist their subsequences which converge to functions
wand u = w — p in H' () by the Rellich theorem. Then, by (3.31) and (2.12),

(3.35) w”—(w—p)” =0 in Q.

Since wy;, — w* in H*(Q), w* solves the problem (P), by (2.17), and since w* < 0
somewhere in €, also w < 0 somewhere in 5. Therefore, (3.35) yields that p = 0
which contradicts with p # 0. O

4. DESCENT DIRECTION METHODS WITH AND WITHOUT PROJECTION

In this section, two methods are presented as a numerical realization of the problem
(Pp). The methods are based on the minimisation of the total energy functional Jy,
where the descent directions of the functional are searched by solving the linear
problems of type (P,’;"") presented in the previous section. The difference between
the methods is in the “projection step”. The step is useful mainly for unstable loads
as we see in Section 5.

Since the uniform convergence properties of the methods with respect to refinement
of the partition are derived, the corresponding algorithms are firstly described in the
functional form. Their algebraical form will be presented later, in Section 5. We will
assume that the solvability conditions (2.5) hold.

4.1. Descent Direction Method without Projection. Let 7, € 7y be a partition
and z;, i € {1,2,...,m(h)}, be the corresponding set of springs.

Algorithm 1

Initialisation
Wh,0 = 07
Ano=1{1,2,...,m(h)}.

Iteration k = 0,1, ...
Shk € Vi, Wh i + Shk solves (P,?"’k),
ap g =arg min Jy(wnk + aspi),

0<a<1

Wh,k+1 = Wh,k + Qh kSh k)
Ap kg1 = Ap(wh kg1)-

In the remaining part of this subsection, we show that Algorithm 1 is well-defined,

i.e. the problems (P}?h”“) are uniquely solvable and that wy — w* in H*(Q)
uniformly with respect to sufficiently small h.
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Let up, € Vi, Ap(up) € A, wy, € Vj, solves the problem (P,’:‘h(uh)) and s, := wp—up,.
It will be usefull to introduce the notation A := Ay (up, + asp). Then A9 = Ap,(up)
and A}, = Ap(wp). Notice that the equality

(up + asp)(z;) = awp(2;) + (1 — a)up(z;)
yields the inclusion
(4.1) A) N AL C AV N AY Va € 0,1]
and the implication
(4.2) A; CcA) = AYCA) VYaclo1].
Lemma 4.1. Let uj, € Vi, A) = Ap(up) € A, wy, € Vj, solves the problem (P,?(’)‘)

and sp, := wp, — up. Let

ap = arg min Jy(up + asp).
h g i n(un h)

Then
/ A9 A9
(4.3) Jp(unssp) = 2J, " (wn) —2J, " (un)
(4.4) = —a(sn,sn) — b;?(’)‘(sh, sp) <0,

where J; (up; sp) = 0 if and only if uy, solves the problem (P), and

AU
b h
al(sn, 5n) + b Ejh’sh) >0, s 0.

(45) Qp, > 0
a(sn, sn) + thUAh' (Shs5n)

Proof. By Lemma 3.1, the problem (P;:‘ ) has a unique solution wy,. Then the choice

0
h
vp, = Sp, in the variational equation (3.4) yields

Jh(unssp) = alun, sp) +bn(u;, , sn) — L(sp)
0
= a(up,sn) + b:h (un, sn) — L(sp)
= —a(sp,sn) — bﬁg (sn,sn) <0.

The choices v, = up, and vy, = wy, in the variational equation (3.4) yield the equality
(4.3). By the inequality (3.5), Jj,(up,sp) = 0 if and only if s;, = 0, i.e. if up = wy,.
It means that in such a case, u solves the problem (P,) by Lemma 3.8.

Let us denote p(«) := Jp(up + asp) and let s, # 0. Since Jp, is a convex and
differentiable functional on V},, there exists «j, which minimises ¢ in [0,1]. The
inequality (4.4) yields ay, > 0 and ¢'(ap) < 0. If a, = 1, then the inequality (4.5)
holds. Otherwise,

0 = ¢ (an) =alup+ apsn,sn) +bp((up + ansp) ™, sn) — L(sn)
(4.6) = J};(Uh; Sh) + ap [a(sh, Sh) + by, <(Uh + ahjh) — Yn ,Sh>:| .
h
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Notice that

Up + QpSp)~ — Uy A%nASh
bn <( ah) h ,Sh) = b," " (Sh,sn)

AP\ AR
— b (uy, 50) e +

Xh 0
+b;?h A (un + ansn, sn)/an =
0 o
= b;jhUAhh(Sh, s5n)
0 @p
—bﬁh\Ah (uh + apSh, sh)/ah.
Ifi € A7\ A) then up(z;) > 0 and sp(z;) < 0. If i € A9\ A7 then (up+ansp)(2) >
0 and sp,(z;) > 0. Therefore

Ao‘h AO
+b," ) "(un, sn)/on —

ap 0 0 xp
b:”'h\A”' (up,sp) <0 and b:”'\A”'h (up + apsh, sp) > 0.
Hence,
- o e
bn, <(uh + ansh) U 75h> < b;?hUAhh(Sha Sh)
an
and (4.6) yields the estimate (4.5). O

Notice that if A} C A9, then the implication (4.2) and the estimate (4.5) yield
ap = 1.

By the following lemma, we can estimate the relative cardinality of the sets Ay, x,
which are generated by Algorithm 1, see the proof of Theorem 4.1.

Lemma 4.2. Let ¢,0 be positive constants and the solvability condition (2.5)
hold. Then there exist positive constants hg, p such that for any 7, € 7y, h < hy,
and any up, € Vi, ||upll22 < ¢, A) = Ap(up) € A,, it holds

(4.7) AP = Ap(up + ansp) € Ay,

where ap = argming<q<i Jn(un + asy), s, = wp, — up and wy, € Vj solves the
?L).

Proof. Suppose that the lemma does not hold. Then there exist sequences {74, }x,

hie = 0, {pr}r, o — 0, {urte, ux € Vi, lJukllz,2 < ¢, A) = Ap, (ur) € A,,, such
that

(4.8) AV = Ay, (up, + ogsi) € Ay, V>0,

where {a}k, {sk}r and {wy}r are the corresponding sequences for the sequences
{7h, }r and {uy }. For the sake of simplicity, all subsequences of these sequences will
be denoted in the same way. (4.8) implies that

(4.9) card(A*) < card(AY), Vk > 0.

problem (P,’:‘

Suppose that there exists p; > 0 and a subsequence {Ag}k such that Ag € A,.
Then, by Lemma 3.4, there exists p2 > 0 such that AY N A} € A,, for sufficiently
large k. Hence and by (4.1), we obtain A;* € A,,, which contradicts with (4.8).
Therefore, we can assume that

(4.10) hicard(AY) — 0, k — +oo.
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Corollary 3.4, (4.10) and the boundedness of uy, yield

l|skll2,2
Pk l2,2

(4.11) lwill2,2 — 00,  ||skl|l2,2 — oo and

3

0
where pi, € P; solves the problem (P,i "T) defined in Section 3. Consequently by

Corollary 3.3, we obtain
(4.12) a(sk, sk)/||skll3,2 — 0.

Since ||ug||2,2 < ¢, there exists ¢g > 0 such that Jp, (ur) < ¢o for any k& > 0 and
since Jp, (ug) > Jp, (ur + agsk),

(413) dep >0 ||uk + OszkHZQ <c VE>0,
by Lemma 2.2. The boundedness of {uy}x, (4.13) and (4.11) yield
(4.14) deg >0: |lagskll22 <c2 Yk >0 and oy — 0.

Suppose that
(4.15) Jeg > 0: ||ogsSkl|l2,2 > cs Yk > 0.

Then by the Rellich theorem, (4.12), (4.14) and (4.15) there exist a subsequence
{aksk}r and p € Pi, p # 0, such that agsy — p and consequently appr — p in
H?(Q). Since the sequences {ug}x and {uy + axsk . are bounded, there exist their
subsequences with weak limits v and u + p in H?(2). We can also assume that
up — u and ug + oSy — u + p in Hl(Q) by the Rellich theorem. The functions u
and u + p are non-negative in 5 with respect to the assumptions (4.8), (4.10) and
Lemma 3.3.

Due to the assumption F < 0, it holds that A9 N A} # 0, see the proof of Lemma
3.4. Hence and by (4.1), we obtain A} N AY* # 0, i.e. there exists a sequence {ij}
such that i, € AY N AP*. Therefore there exist a subsequence {sz}k and z € Q,
such that sz — z. Non-negativity of v and u + p yield

(4.16) u(z)=0 and p(z)=0
and consequently
:O Z#IE[,CET, :O Z#fl;l,fﬂr,
(4.17) W(z)¢ >0 z=uy, and u'(2)+p'(2){ >0 z=u,
<0 z=ux, <0 z=ux.

Since p # 0, there exists just one such a point z, with respect to (4.16). Moreover,
by (4.17), z = 2; or z = z,. In the both cases, p < 0 in Q, since py(T) — —o0 by
Lemma 3.6.
Let () := Jp, (ur + asg). Since ay — 0, the definition of ay, yields,
0 = ¢} (ar) = alug + axsk, sk) + bn, ((ur + agsk) ™, sk) — L(sk)

for sufficiently large k. If we multiply this equality by ay then for & — oo, we obtain
contradiction 0 = —L(p) = —Fp(T) < 0 by (2.11) and non-negativity of u + p.
Suppose that

(4.18) loaksk|2,2 — 0 for k — oo.
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Then by the estimates (4.5) and (4.3), we obtain
0 < (1- ak)Jh (ug; sk) —i—Ozkb B\ *(Sk, Sk)
_ it it A\AR
— 21— o) (Jhk (wy) — J; (uk)> +anbi M (5, 51).

If we divide this inequality by —wg(T), we obtain by Lemma 3.6, Corollary 3.4,
(2.10), (3.27), (4.9), (4.10), (4.11) and (4.18),

. [pxll22 pi(T) p\ay [ sk Sk
0 < F—l—hm{aksk 2,2 . 2h, kT ,—
Qi lowsel D lpidaa ™ Tl Tl
= F+C4kh—g>lo “h ard AO QZ T
k\AO
< F+ecs klim lakskllz,e = F <0,
which is contradiction. Therefore, (4.7) holds. O

Theorem 4.1. Let the condition (2.5) hold and 6 > 0. Then there exist positive
constants p, ¢ and hy such that for any 1, € Ty, h < hyq,

(4.19) Apr € A, and  |wpll2e <c Vk >0,
where the sets Ay, i, and the functions wy, , are generated by Algorithm 1.

Proof. The theorem will be proved by a mathematical induction. By Lemma 2.2,
there exist ¢ > 0 and hg > 0 such that for any 7, € Ty, h < hg, the implication

(4.20) Jo(un) <0 = |unlze<c  Vup € Vi

holds. Since ||wpoll2,2 = 0 < ¢ and Apo = {1,...,m(h)}, there exist p > 0 and
0 < hq < ho (which depend only on 6 and c¢) such that A1 € A, for any 7, € Ty,
h < hy, by Lemma 4.2. Suppose that

Ah,i EAP Vi, € Tg, h<hy, 1=0,1,...,k.
Since
Jn(wpi) < ..o < Jp(wp1) < Jp(wno) <0, h < h,
also ||wp kll2,2 < ¢ by the implication (4.20), which yields Ap 1 € A, for any
Th € Tg, h < h1, by Lemma 4.2. O

Lemma 4.3. Let the condition (2.5) hold and 6 > 0. Then there exist positive
constants ¢ and hq such that

(4.21) Qp g > C V1, € Tg, h < hg, Yk >0, sp #0,
where the numbers ay, i, and the functions sy i, are generated by Algorithm 1.

Proof. Let sp i, Whk, Qhky Ak, k> 0, be generated by Algorithm 1. By Theorem
4.1, there exist p, ho > 0 such that Ay, € A,, h < hg, for any £ > 0. Hence and by
Lemma 3.2, there exist ¢, c2 > 0 such that

a(v, v) + b, (v,0) = 1 [[vll3 2

)—'—bAh kUAh k+1( VU€H2(Q), kaO.

a(v,v v,v) < e2f[vl3 5
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Then the estimate (4.5) in Lemma 4.1 yields

An ke
a(sn,k, Shk) + 0, (Shk, Shk) a1
A s UAn it >—=>0 Vk>0, spi #£0.

a(Sn,ks Sh,k) + by, (Sh.k, Shk) €2

ap g =

O

Lemma 4.4. Let the condition (2.5) hold and § > 0. Then there exist positive
constants ¢ and hq such that

(4.22) In(Whet1) < Jn(wpi) — cllsnelse  Vmh € T, h < ho, Yk >0,
where the functions sy i, wp,  are generated by Algorithm 1.

Proof. Let s, = Spk, Wg = Wk, Ok = Qpk, A = Apk, k > 0, be generated by
Algorithm 1. Let ¢g () := Jp(wi + asg). By the definition of ay,

0> ¢ (o) = a(wry1, 81) +bn(wyy, s8) — Lsg).

Hence and by the definition of Ay, A1 and wyy1,
1

In(wey1) = JIn(wg) + (o) — §aia(8k= sk) +
1 _ 1 _ _
+§bh(wk+1awk+l) - §bh(wk s W) — abr (w1, Sk)-

Notice that
Son (w1 wie1) — 5bn(wy , we) — awbr (Wi, sk) =
A A
= %bh k+1(wk + Sk, wr + aksk) - %b;jk (wk, wk) - Oékbth(Wk + oSk, Sk)

A A
= —202b, " (sk, sk) + 5bp, " (wi, w) — %bf’“(wk,wk) =

1 23 Akp1NAg 1 27 A1\ Ak
= —zaib, (8K, s1) — 503.by, (sk, sk)+
17 Ak+1\Ak 173 A\Ars1
+3by, (wr, wy) — by, (Wi, wi) <

1 27 Ak+1NAE
< _§akbh (Sk,sk),

since —agsi(z;) > wi(z;) and consequently azsi(z;) > wi(z;) if i € Apy1 \ Ay
Therefore

1
(4.23) Jh(wk+1) < Jh(wk) — §ai (a(sk, sk) + b,?kmA}Hl (Sk, Sk)) .

By Theorem 4.1, there exist p1 > 0 and hy > 0 such that Ay € A, for any & > 0
and any 7, € Ty, h < hy. Therefore, by Lemma 3.4, there exist 0 < p < p1
and 0 < hg < hy such that Ay N Ap(wy + sx) € A, and consequently (see (4.1))
AN Agp € A, for any k> 0 and any 7, € Ty, h < hg. Then, by Lemma 3.2, there
exists ¢ > 0 such that

c||sk||§2 < a(sk, sk) + b,?mAk“(sk, sk) V1 € Ty, h < hy, Yk >0.
Hence, by (4.23) and Lemma 4.3, we obtain (4.22). O
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Theorem 4.2. Let the condition (2.5) hold and 6 > 0. Then there exists hg > 0
such that the sequence {wp, i } 1, generated by Algorithm 1 converges uniformly (with
respect to h) to the function wj solving the problem (Py) in H?(Q) for any 7, € Ty,
h < hy.

In addition, for any fix 7, € Ty, h < hg, there exists an iteration kg = ko(h) > 0
such that wp, ky + sh.k, = Wy,

Proof. Let s, = Spk, Wg = Wik, Ok = Qpk, A = Apk, k > 0, be generated by
Algorithm 1. By Lemma 4.4, there exist ¢; > 0 and hg > 0 such that

k—1
(4.24) Tn(w;) < Jn(wi) < —c1 > _lsil3s Y € To, h < ho, Yk >0.
=0

By (2.17),
Jn(wy) = =L(wy)/2 — =L(w*)/2 = J(w"), h—0,
where w* solves the problem (P). Hence and by (4.24), there exists ¢z > 0 such that

—+oo
(4.25) S llsil3e<ea  Vm €Tp, b < ho,
=0

and consequently ||sx||2,2 — 0 uniformly with respect to h for k — +o0o. Since wy+sk
solves the problem (P;;l’“), the variational equations (2.14) and (3.4) yield

a(wy, —wi, wy, —wg) +bp((wy) ™ —wy , wy, —wy) = a(Sk, wj, —w) —|—bﬁ" (8K, wy, —wg).
Hence, by Theorem 4.1, Lemma 3.9 and (2.11), there exists ¢3 > 0 such that
wp, — will2,2 < eal[skll2,2 — 0 V7 € Tg, h < ho, Yk >0,

which implies the uniform convergence of the sequence {wy, 1} to the function wj
solving the problem (F},).

Since wy — wj, also Ay — A} and consequently Ay(wy + si) — Aj. Since
card(Ag) < m(h) < oo for any fix h < hg, there exists ko > 0, such that Ay, =
Ao (Wiy + Sk, ). Then, by Lemma 3.8, wg, + sg, = w,. |

Remark 4.1. The convergence result of Algorithm 1 holds for parameters h < hy,
for some hg. With respect to analyses in [7], we can assume that the size of hg depends
on the stability of the load, i.e. how much the balance point T is closed to the end
points z;, x, of the subsoil and how much the size of the load resultant F' is relatively
closed to zero.

Remark 4.2. Numerical examples shows that Algorithm 1 converges for almost
all initial choices of Ap, 9. However, the initial choice Apo = {1,...,m(h)} ensures
in the tested examples that oy, = 1 for any k > 0 due to inclusions Ap, p1+1 C Ap k-
These inclusions are shown in [5] for a concrete choice of the load.

Remark 4.3. We can also substitute oy, 1 by

dh,k = m>1% Jh(wh)k + OéSh7k;).
a7
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The corresponding algorithm will be denoted Algorithm 2 and it is shown on numeri-
cal examples that we can expect the same convergence properties as for Algorithm 1.
However, it is necessary to generalise Lemma 4.2 to use Algorithm 2 correctly. The
comparison of the algorithm will be illustrated on numerical examples in Section 6.

There are many numerical methods how to find the values oy, 1, or é, ;, which do
not depend on the parameter h. Here, the regula falsi method has been used.

Algorithms 1,2 can also be used for coercive beam problems with the same con-
vergence result which can be proved without Lemma 4.2 and without the restricted
assumption on the parameter h.

4.2. Descent Direction Method with Projection. First of all, we will define
the class of the auxiliary problems, which are specified by a partition 7, € 7y and
by a function vy, € Vj,:

(Py*)  find pr = pr(vn) € Pr: Jn(vn +pn) < Jn(vn +p) Vp e P,
or equivalently
(4.26) find py, = pp(vp) € P12 bp((vn +pr) " ,p) = L(p) Vpe€ Pr.

The problem (P;") means to solve the system of two non-linear equations with two
unknowns. Similarly as for the problem (Py), it is possible to prove that the condition
(2.15) ensures the existence of the solution and the uniqueness of the solution holds
for sufficiently small parameters h. Notice that if wj solves the problem (P}) then

the problem (P;;U Z) solves the zeroth polynomial.

Lemma 4.5. Let the solvability condition (2.5) hold and ¢,6 > 0. Then there
exist positive constants p > 0 and hg such that for any 7, € Ty, h < hg, and any
v € Vi, |unl22 <,

(4.27) Ap (vn +pn) € Ay,
where py, solves (P,").
Proof. We start with the well-known inequality

(4.28) Je1>0: |3y >a inf lv+pl3s Vo€ H*(Q),
P 1

which can be proved by the Poincaré inequality. Notice that
Vh + P+ Pr(vn +p) = vp +pr(vn) Vp € P,

where py,(vp, 4 p) solves (P 7). Thus Ay, (v + pu(vn)) = An (vh + p + pa(vn + p))-
Therefore, with respect to the assumption |vpl2,2 < ¢ and the inequality (4.28), we
can assume that |lvp|j2,2 < ¢, ¢ > 0, for any vy, € V.

Suppose that Lemma 4.5 does not hold. Then there exist sequences {7, },
hi — 0, and {vg}ti, vk = vn,, ||vgll2,2 < é such that

(4.29) hicard(Ag) — 0,
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where Ay, = Ap, (vk + pr), pr solves (P,*). The choice p = 1 in the equation (4.26)
and the estimate (2.10) yield

F = Z ¥ (v + pr) (2F) > co min (vg, 4+ pr) (2F)hgcard(Ax), c2 > 0.
icA, i€A
Hence, by (4.29) and the boundedness of {vy}, we obtain that there exists a point
z € [z1, @, such that pp(z) — —oo. If z € Qs, then the assumption (4.29) cannot
hold with respect to Lemma 3.3. Therefore, z = z; or z = x,.

Let us consider the first case. For the second one, we obtain similar contradiction.
Then pg(x;) — —oo and pg(z) A~ —oo for z > x;. Hence pi(z) — +oo for z > x;.
It means that zf — xy for all 4 € Ay, since the functions vy are uniformly bounded.
Therefore zF < T for all i € Ay, where k is sufficiently large. If we choose p = x in
the equation (4.26), we obtain

ZieAk T?(Uk +pk)(zf)zf
Diea, T4 (v + pE)(2f
which is contradiction. O

T = gmaxzf<T,

) €A

The descent direction method with projection is obtained from the previous
method by adding of the “projection” step, where the problem of type (P,") is
solved in:

Algorithm 3
Initialisation
wh,0 = pr(0), pr(0) solves (PY),

Apo = Ap(wpo).
Iteration k = 0,1, ...

Shk € Vi, Wh i + Shi solves (P;:"“k),
apk = arg min Jy(wpk + asp k),

’ 0<a<l1
Wh,k = Wh k + 0K kSh k) i
Phk = Pr(Wnk), Pr(Wn k) solves (P;""),
Wh k+1 = Whk + Dh ks
Ap k41 = An(Wh k41)-

Lemma 4.6. Let the condition (2.5) hold and 6 > 0. Then there exist positive
constants p, c1, co and hg such that for any 1, € 79, h < hg, and any k > 0,

(4.30) Ak € Ay,
(4.31) Qpk 2 C1,
(4.32) In(whk1) < Jn(wni) — callsnkll3.o;

where Ap, i, &k, Sh,k and wy, i are generated by Algorithm 3.

The proofs of (4.30)-(4.32) are quite similar to the proofs of (4.19),(4.21) and (4.22)
for Algorithm 1. Only instead of Lemma 4.2, we use Lemma 4.5 and the inequality

Jn(Whkt1) < Jp(Wh k),
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which follows from the definition of the problem (P;D .
In the same way as for Algorithm 1, we obtain the following convergence result
for Algorithm 3.

Theorem 4.3. Let the condition (2.5) hold and 6 > 0. Then there exist hg > 0
such that the sequence {wy, i}, generated by Algorithm 3 converges uniformly (with
respect to h) to the function wj, solving the problem (Py,) for any 1, € Tg, h < hyg.

In addition, for any fix 1, € Ty, h < hg, there exists an iteration kg = ko(h) > 0
such that wp, gy + sh.k, = W},

For an implementation of the “projection” step in Algorithm 3, i.e. for an imple-
mentation of the problem (P;"), we can use the small modification of Algorithm 1
with the same convergence results:

Initialisation
Pho € Pr, bn(vn +pno,p) = L(p) Vpe P,
Apo = Ap(vp + phyo)-
Iteration k =0,1,...
~ Ap ks ~ _
Phi € Pr, b, (vn + phk + Pug,p) = L(p) Vp € P,
Qp = arg 0310%21 Jn(vn + Phk + P k),

DPh,k+1 = Ph,k + Qh,kDh k)
Ap i1 = An(Vn + Phok41)-

Remark 4.4. Due to the projection step, the functions wy, j generated by Algo-
rithm 3 have some common properties with the unknown function wj, as we see in
the end of the next section.

Again, it is possible to substitute oy, i, by

Gp | = arg m>i% Jn (W + ash k)
a7

in Algorithm 3.
The projection step cannot be applied for coercive problems, since the polynomials
of the first degree do not belong between tested functions for such problems.

5. ALGEBRAIC FORMULATION OF THE PROBLEM

5.1. Rewriting of the Approximated Problem. Let 7, € 7y be a partition with
nodal points

O=xo<m1 <..<y=zj1<...<xp =z, <...<zny =1

and let z7 < 29 < ... < z,, be the corresponding points, which are obtained from
the chosen numerical quadrature.

The functions v, € Vj will be standardly represented by the vector v € R™,
n = 2N + 2. The form a and the functional L will be represented by the stiffness
matrix K € R™*"™ and by the load vector f € R". Notice that the matrix K is
symmetric and positive semi-definite.
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Let the polynomials p = 1 and p = x be represented by the vectors py,p, € R™.
Then the matrix R := (p1, p.) € R™*2 represents all polynomials from P; and creates
the kernel of K, i.e. KR =0.

The matrix, which transforms the function values and the values of the first deriva-
tives at the nodal points z;, j = 0,1,..., N, onto the points z;, ¢ = 1,...,m, will
be denoted by B € R™*™. Let D € R™*™ be a diagonal matrix containing the
coefficients r;, i.e. the products of the weights of the numerical quadrature and the
stiffness coefficients of the subsoil.

The Euclidean scalar product and norm in R*, k > 1, will be denoted by (., )k
and ||.||x-

For the sake of simplicity, the corresponding functional and the unknown vector
in the algebraic formulation will be denoted in the same way as in the continuous
problem (P). Then the algebraic formulation of the problem (P) has a form

®) { find w* e R*: J(w*) < J(w) Yw eR",
J(w) := 5(Kw,w), + 5 (D(Bw)~, (Bw)~),, = (f,w)a,
where u~ € R™ is the negative part of u, i.e.
(u™); ;== min{0,u;}, ¢=1,2,...,m.
The problem (P) can be rewritten equivalently as the non-linear system of equations:
(5.1) find w* € R": Kuw* + BT D(Bw*)™ = f.

Let a set Ay, C {1,2,...,m} of indices be represented by the diagonal matrix A €
R™*™ guch that A, = 1if i € Ay, otherwise A;; = 0. The algebraic representation
of a set Ap(vp) will be denoted A(v).

We also introduce the notation

T
(5.2) G:zBRz(le le 8 ZL) , e::RTf:F(%).

Then the auxiliary problems (P,‘:"L) and (P;") have the following algebraical forms:
(5.3) (P4) find w =w(A) eR": (K +BTDAB)w = f.
(5.4) (P*) find ¢ =c(v) €R?*: GTD(Bv+Ge)™ =e.

The corresponding algebraical formulations of Algorithms 1,3 are following:

Algorithm 1 Algorithm 3

Initialisation Initialisation
w® =0, w® = R ¢ solves (PY),
A(O)7 (A(O))u = 1, 7= {1,...,m}. A(O) :A(’LU(O)),

Iteration k =0,1,... Iteration k. =0,1,...
s w) 4 s(F) solves (PA®), sF) w4 s(F) solves (PA®),
Q) = arg Or<notig1 J(w® + as®), Q) = arg O<m;1<11 J(w® 4 ash),
wk+tD) = (k) 4 a(k)s(k), R = k) 4 Oé(k)s(k)7
Afeyr) = A(wFHD), c® e solves (PP,
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WD = ) 4 Re®),
Ayr) = A(w*HD),

5.2. Analysis of the Projection Step. To explain the reason of the “projection
step”, we will consider the set

(5.5) A:={NeR™|X<0, GTD\=¢}.

First of all, we derive some basic properties of the set A. Clearly, the set A is closed
and convex on R™.

Lemma 5.1. Let F < 0 and z1 < T < z,. Then the set A is non-empty and
bounded on R™.

Proof. The assumptions of the lemma ensure that there exists the solution w* of the
problem (P). If we multiply the equation (5.1) by the vectors in the form (Ra)T,
a € R?, we obtain that (Bw*)~ € A by (5.2).
The boundedness follows from the definition of the set A and the estimate (2.10):
—F =—e1=—(G"DN\)1 =Y _71ilAil = c|Mlm, >0
i=1

O
Lemma 5.2. Let FF <0, 21 <T < zp, and A € A. Let
AN ={ie{1,2,...,m} | \; <O}
Then
(5.6) min z; <7T < max z;.
icA(N) i€A(N)
Proof. The equation GT DX = e yields that
DicA(n) TiNi%i
T=—F7—"——.
ZiGA()\) TiXi
Hence we obtain (5.6). O

The following lemma says that the diameter of the set A is small for unstable
loads.

Lemma 5.3. Let {F}}x, {Tx}r be the sequences of the load resultants and their
balance points such that Fj, < 0, 21 < T < z, for any k > 0. Let {Ay}r be the
sequence of the corresponding sets defined by (5.5). If Ty, — z1 or Ty, — zn, or
Fj, — 0 then diam(Ay) — 0.

Proof. Let Ty, — z1. Then by the definition of the set Ag, we obtain

O—Zrl —Ty) = 11\ (21 — T}) +Z” zi—Tp) YAF € Ay, VE> 1.
1=2
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The first term on the right-hand side is non-negative and tends to zero for £ — oc.
The second term is non-positive for sufficiently large k and therefore \¥ — 0, i =
2,...,m. Since it also holds
(5.7) Fp=) _r)f WAM € Ay, VE > 1,

i=1
we obtain

~ 1 ~ ~

k k k k k Yk
— = — E (AT — AF) — 0, \v4 , A
/\1 )\1 - 7”()\Z /\1) 0 AN e k

which means that diam(Ay) — 0.
Similarly, we can prove the assertion for the case Ty — z,,. For the case Fy, — 0,
the assertion also holds, since the equation (5.7) yields A¥ — 0 for any A\* € A,. O

Since A is the closed, convex and non-empty set, we can define uniquely the pro-
jection P of the space R™ onto the set A with respect to the scalar product (D.,.),
in R™:

(5.8) (D(n—Pm),A=Pn)m <0 VAEA.

Let v € R™ and let ¢ = c(v) € R? solve the problem (P?). Then the vector (Bv+Gc)™
belongs to A and

(D(Bv— (Bv+ Gc)™),A— (Bv+ Gc)f)m =
= (D((Bv+Ge)t = Ge), A= (Bv+Ge)™)
= (D(Bv+Ge)t,A) + (¢, G"D((Bv+ Ge)™ — X))
= (D(Bv + Ge)* /\) <0 VAeA.
Therefore, by the definition (5.8) of the projection P,
P(Bv) = (Bv+ Ge)™.

It means that for the vectors w(®), k > 0, generated by the Algorithm 3, and for
the solution w*, we obtain (Bw®)~ (Bw*)~ € A. Thus, these vectors have the
common properties specified by the above lemmas. Mainly, for unstable loads, the
vectors (Bw®))~ are closed to the vector (Bw*)~, which means that the vectors
Bw'®) have the similar set of the active “springs” as the vector Bw*. Therefore we
can expect better convergence properties for Algorithm 3 than for Algorithm 1 for
such loads. It will be also demonstrated on numerical examples in the next section.

The set A is also important for the dual formulation of the problem, see [6], since
the vectors —A, where A € A, can represent admissible Lagrange multipliers.

2

6. NUMERICAL EXAMPLES

In this section, the convergence results of Algorithms 1-3 will be demonstrated on
the numerical examples.

We will consider the beam of the length 1=1m with the parameter EI =
5% 10° Nm?. The subsoil is situated in the interval (21, z,), where 2; = 0.1 m and
z, = 0.9 m, and its stiffness coefficient is ¢ = 5 * 1028 Nm~2. At the end points 0, !
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of the beam, we will consider the point loads Fy and Fj, which will be specified for
the concrete examples. The interval (0,1) will be divided into 1027, j =2,3,...,8,
equidistant parts. The situation is depicted in Figure 2.

Fy le

0 01 T, T 0.9 1m
FIGURE 2. Scheme of the tested problem.

We use the following stopping criterion:
(k)
[ || <e,
£l

where ¢ = 107% and 7(®) is the k-th residuum of these algorithms. For an approxi-
mation of the bilinear form b, the reference numerical quadrature

[ 0(6) dE ~ 6(=V/3/3) + 9(V5/3)

is used. The linear problems with bilateral elastic springs are solved by the Cholesky
factorisation.

Example 1. Let Fy = —5000 N and F; = —5000 N. Such a load fulfils the solvabil-
ity condition (2.5) and is stable, since the balance point T3 = 0.5 m is situated in
the centre of the subsoil interval. The dependence of the number of outer iterations
on the refinement parameter j of the partition is shown in Table 1.

Notice that the number of outer iterations does not depend on j and are practically
the same for all the algorithms. The number of iterations for the ”projected” step
in Algorithm 3 are about four. The approximated solution for j = 8, i.e. for 2560
elements, is depicted in Figure 3.

Example 2. Let Fy = —5000 N and F; = —1000 N. Such a load fulfils the solv-
ability condition (2.5) and is not too stable, since the balance point 75 = 0.1667 m
is closed to the end point x; of the subsoil. The dependence of the number of outer
iterations on the refinement parameter j of the partition is shown in Table 1.

Notice that the number of outer iterations does not depend on j. The number of
outer iterations for Algorithm 3 are smaller than for Algorithms 1,2, which is the
expected result.

The approximated solution for j = 8 is depicted in Figure 3.

r® = f — Kw® — BT D(Bw®)~,

7. CONCLUSION

The descent direction methods with and without projection have been introduced
and analysed. The methods can be generalised for the problems with more parts of
the subsoil and also for two-dimensional models of thin elastic plates.

The methods have been illustrated on numerical examples. Other numerical ex-
amples, which confirm some theoretical results, can be found in [8].
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Bx 1] 2]3]4]5]6]7]8] [Ex2]2]3]a]5]6]|7]s]
ALGl [als]alalalala] [ac16]6][7][s]7]s]s
ALG2 |33 |3 ]3]3]4]4] [aLG2|5]5]6]6]6]6]6
ALGs | 3|33 ]3]3]3]3] [aLgs|2]2]2]2]2]2]2

TABLE 1. Numbers of outer iterations for Examples 1 and 2.

05 05

> -05 > -05F

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FI1GURE 3. Approximated beam deflections w for Examples 1 and 2.
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