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Abstract. The presented work is continuation of the article [7], where the semi-coercive
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also investigated. The effectiveness of the algorithms is illustrated on numerical examples.

Keywords: non-linear subsoil of Winkler’s type, semi-coercive beam problem, approxi-
mation, iterative methods, convergence, projection, load stability

MSC 2000: 74B20, 74K10, 90C20, 90C31

1. Introduction

The semi-coercive problem of a beam on a unilateral elastic subsoil means to
minimise a convex, differentiable and non-linear functional. The functional is coercive
only if the additional assumptions on external loads are formulated. There are some
methods how to numerically solve the class of such problems. The methods based on
linear complementarity are presented in [4]. The methods for quadratic programming
can also be used due to the dual formulations of the problems, see [6].

In this article, a total energy functional is minimised such that the descent di-
rections of the functional are searched by solving the linear problems with a beam
on bilateral elastic “springs”. We obtain the so-called “descent direction method
without projection” and prove its uniform convergence properties with respect to
refinement of the partition. Since the problem is only semi-coercive it is also useful
to investigate the influence of the load on convergence. Mainly for “unstable” cases

1The author would like to thank for the support from the grant 1ET400300415 of the Academy
of Sciences of the Czech Republic.
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of the load, the rate of convergence can be improved by adding of the so-called “pro-
jection” step. We obtain the “descent direction method with projection”, which has
the same convergence properties as the previous method.

In Section 2, the formulations of the problem, its approximation and the basic
results of the article [7] are summarised. Moreover, two useful lemmas are added. In
Section 3, the auxiliary linear problems with bilateral elastic “springs” are defined
and their uniform properties are derived. In Section 4, the descent direction methods
with and without projection are introduced and their uniform convergence properties
are proved. In Section 5, the approximated problem and algorithms are rewritten to
their algebraical forms and the reason of the “projection” step is explained. And in
Section 6, the effectiveness of the algorithms is illustrated on numerical examples.

2. Overview to Semi-coercive Beam Problem on Unilateral Elastic

Subsoil

2.1. Notation. We will use the Lebesgue spaces Lp(Ω), p = 2, +∞, Sobolev spaces
Hk(Ω) ≡ W k,2(Ω), k = 0, 1, 2, 3, 4, and the spaces of continuously differentiable
functions Ck(Ω), where Ω is an open, bounded and non-empty interval in R

1. The
spaces are described in the book [1]. Their standard norms are denoted as ‖.‖p,Ω,
‖.‖k,2,Ω and ‖.‖Ck(Ω), respectively. The i-th seminorms, i = 0, 1, . . . , k, of the spaces

Hk(Ω) are denoted as |.|i,2,Ω. The space of polynomials of the k-th degree is denoted
as Pk.

Since we will mainly use the interval Ω := (0, l) in the remaining parts of the article,
we will denote the norms and seminorms of the Sobolev spaces Hk(Ω), k = 0, 1, 2, 3, 4,
without the symbol Ω for this concrete choice of the interval.

With respect to the well-known imbedding theorem of the Sobolev space H2(Ω),
see [1], we will assume that the functions v ∈ H2(Ω) also belong to C1(Ω) to define
the values v(x), v′(x), x ∈ Ω.

2.2. Setting of the Problem. We consider a beam of the length l with free ends
which is situated in the interval Ω = (0, l), and assume that the beam is supported
by a unilateral elastic subsoil in the interval Ωs := (xl, xr), 0 ≤ xl < xr ≤ l. Such a
subsoil is active only if the beam deflects against it. Let E, I and q denote functions
that represent, respectively, the Young’s modulus of the beam material, the inertia
moment of the cross-section of the beam and the stiffness coefficient of the subsoil.
The aim is to find the deflection w∗ of the axes of the beam caused by the beam
load. The situation is depicted in Figure 1.

We will assume that the functions E, I, q belong to the Lebesgue space L∞(Ω)
and there exist positive constants E0, I0 and q0 such that

E(x) ≥ E0, I(x) ≥ I0, a.e. in Ω, and q(x) ≥ q0 a.e. in Ωs.

Then we can define the forms

a(v1, v2) :=

∫

Ω

EIv′′1 v′′2 dx, v1, v2 ∈ H2(Ω),

b(v1, v2) :=

∫

Ωs

qv1v2 dx, v1, v2 ∈ H1(Ω),
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Figure 1. Scheme of the subsoiled beam with axes orientation.

to represent the work of the inner forces and the subsoil, respectively. The forms a, b
are bilinear and bounded on the space H2(Ω).

The space of all continuous and linear functionals defined on H2(Ω) will be denoted
V ∗ and its corresponding norm ‖.‖∗. The work of the beam load will be represented
by a functional L ∈ V ∗.

The total potential energy functional for the problem has the form

(2.1) J(v) :=
1

2

(

a(v, v) + b(v−, v−)
)

− L(v), v ∈ H2(Ω).

The functional J is Gâteaux differentiable and convex on the space H2(Ω). Its
Gâteaux’s derivative at any point w ∈ H2(Ω) and direction v ∈ H2(Ω) has the form

(2.2) J ′(w; v) = a(w, v) + b(w−, v) − L(v).

The variational formulation of the problem can be written as the minimisation
problem

(P ) find w∗ ∈ H2(Ω) : J(w∗) ≤ J(v) ∀v ∈ H2(Ω),

or equivalently, with respect to (2.2), as the non-linear variational equation

(2.3) a(w∗, v) + b((w∗)−, v) = L(v) ∀v ∈ H2(Ω).

Notice that for sufficiently smooth data, problem means to solve the non-linear dif-
ferential equation of the fourth order with the homogeneous Neumann boundary
conditions.

2.3. Solvability and Dependence on the Load. Since the beam does not have
fixed ends (it is only laid on the subsoil), the problem solvability depends on the
beam load. The existence and uniqueness of the solution w∗ of the problem (P ) is
ensured by the condition

(2.4) L(p) < 0 ∀p ∈ P1, p > 0 in Ωs,

where the polynomials of the first degree represent the rigid beam motions for which
the subsoil is not active. Notice that the functional J is coercive on H2(Ω) if this
condition holds.
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For other analyses, it will be usefull to rewrite equivalently the condition (2.4) in
the following way:

(2.5) F < 0 and xl < T < xr,

where F := L(1) is the load resultant and T := L(x)/L(1) is the balance point of the
load. The condition (2.5) means that the load resultant is situated in Ωs and oriented
against the subsoil, which causes that the beam deflection activates the subsoil on
the set M ⊂ Ωs with a positive one-dimensional Lebesgue measure, i.e. w∗ < 0 in
M . In addition, the balance point T lies in the convex closure of the set M .

To determine the dependence of the change of the problem (P ) solution on the
change of the load, we will consider the class Sδ,ξ,η of the loads L ∈ V ∗ such that
T ∈ [xl + δ, xr − δ], F ≤ −ξ < 0 and ‖L‖∗ ≤ η, with respect to positive parameters
δ, ξ, η. If we will assume that Sδ,ξ,η is non-empty then there exists a positive constant
c which depends on the loads from Sδ,ξ,η only through the parameters δ, ξ, η such
that

(2.6) ‖w∗
1 − w∗

2‖2,2 ≤ c‖L1 − L2‖∗ ∀L1, L2 ∈ Sδ,ξ,η,

where w∗
i = w∗

i (Li) solves the problem (P ) with respect to the load Li, i = 1, 2.
The following lemma, which is also important for numerical modelling, describes

dependence of the constant c from the estimate (2.6) on the parameters δ, ξ, η for
the limit cases δ → 0 and ξ → 0.

Lemma 2.1. Let η > 0 and 0 < δmax < (xr − xl)/2. Then there exists a positive
constant ξmax depending on η such that for any sequences {δk}k, 0 < δk ≤ δmax, and
{ξk}k, 0 < ξk ≤ ξmax, k ≥ 0, it holds the following implication: if δk → 0 or ξk → 0
then ck → +∞, where ck = ck(δk, ξk, η) is the smallest constant which satisfies (2.6)
for parameters δk, ξk, η.

Proof. We will construct suitable sequences {Li,k}k ⊂ V ∗, i = 1, 2, to prove the as-
sertion. The corresponding load resultants, their balance points and solutions of the
problems (P ) will be respectively denoted Fi,k, Ti,k and wi,k, i = 1, 2. Subsequences
of these sequences will be denoted in the same way. For the sake of brevity, some
step of the proof will be done more briefly.

Case 1. Let η > 0 and δk → 0. Then there exists ξmax > 0 such that ‖Li,k‖∗ ≤ η,
i = 1, 2, where

L1,k(v) := ξkv((xl + xr)/2), L2,k(v) := ξkv(xl + δk), ξk ≤ ξmax, k ≥ 0.

We will assume that there exists ξmin > 0 such that ξk ≥ ξmin, k ≥ 0, in this first
case. Then F1,k = F2,k = ξk, T1,k = (xl + xr)/2 and T2,k = xl + δk. Therefore
Li,k ∈ Sδk,ξmin,η, i = 1, 2. The sequence {w1,k}k is bounded on H2(Ω) by Theorem
3.2 in [7]. Suppose for a moment that some subsequence of {w2,k}k is bounded on
H2(Ω). Then we can assume with loss of generality that there exists w ∈ H2(Ω)
such that w2,k → w in H1(Ω) by the Rellich theorem. The functions w2,k solve the
equation

(2.7) a(w2,k, v) + b(w−
2,k, v) = L2,k(v) ∀v ∈ H2(Ω).
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The choice v(x) = x − xl ∈ P1 in (2.7) yields

b(w−, v) = lim
k→∞

b(w−
2,k, v) = lim

k→∞
L2,k(v) = lim

k→∞
F2,k(T2,k − xl) = 0.

Hence w ≥ 0 in Ωs. Then the choice v(x) = 1 ∈ P1 in (2.7) yields contradiction:

0 = lim
k→∞

b(w−
2,k, 1) = lim

k→∞
L2,k(1) = lim

k→∞
F2,k ≤ −ξmin < 0.

Therefore ‖w2,k‖2,2 → ∞ and by (2.6),

ck ≥ ‖w1,k − w2,k‖2,2

‖L1,k − L2,k‖∗
→ ∞.

Case 2. Let η > 0, 0 < δmin ≤ δk ≤ δmax < (xr −xl)/2 and ξk → 0. Let us choose

L(v) := η0

[

v(xl) − 2v

(

xl + xr

2

)

+ v(xr)

]

,

L1,k(v) := L(v) − ξkv

(

xl + xr

2

)

,

L2,k(v) := L1,k(v) − εkv(xl),

where εk = ξk

δk
((xl +xr)/2−(xl+δk)) > 0 and η0 > 0 is chosen such that ‖Li,k‖∗ ≤ η,

i = 1, 2, for sufficiently large k. Then L(1) = 0, L(x) = 0, F1,k = −ξk → 0,
F2,k = −ξk − εk, T1,k = (xl + xr)/2, T2,k = xl + δk, Li,k ∈ Sδmin,ξk,η and Li,k → L
in V ∗, i = 1, 2.

By Theorem 3.2 in [7], the sequences {w1,k}k, {w1,k}k are bounded on H2(Ω).
Therefore there exist subsequences {wi,k}k and functions wi ∈ H2(Ω) such that
wi,k ⇀ wi weakly in H2(Ω) and wi,k → wi in H1(Ω) (by the Rellich theorem),
i = 1, 2. Since the functions wi,k solve the equations

a(wi,k, v) + b(w−
i,k, v) = Li,k(v) ∀v ∈ H2(Ω), i = 1, 2, k ≥ 0,

the limit case k → ∞ yields

a(wi, v) + b(w−
i , v) = L(v) ∀v ∈ H2(Ω), i = 1, 2.

The choice v = 1 yields b(w−
i , 1) = 0. Thus w1, w2 ≥ 0 in Ωs and consequently

w1, w2 solve the following Neumann problem:

(2.8) a(wi, v) = L(v) ∀v ∈ H2(Ω), i = 1, 2.

Hence, there exists a polynomial p ∈ P1 such that w1 − w2 = p. Notice that if a
function v ∈ H2(Ω) is convex and v 6∈ P1 in Ωs then L(v) > 0. From this result
and the equation (2.8), it is possible to prove that w′′

i > 0 almost everywhere in Ωs,
i = 1, 2. It means that the functions w1, w2 are strictly convex in Ωs and have just
one minimum in Ωs.

By Lemma 3.5 in [7], there exist sequences {xi,k}k, {yi,k}k ⊂ Ωs and their limits
xi, yi, i = 1, 2, such that

wi,k(xi,k) ≤ 0, wi,k(yi,k) ≤ 0 and xi,k ≤ Ti,k ≤ yi,k ∀k ≥ 0, i = 1, 2.

Hence wi(xi) = wi(yi) = 0, since wi are non-negative in Ωs, i = 1, 2. Consequently,

x1 = y1 = (xl + xr)/2, x2 = y2 = lim
k→∞

T2,k < (xl + xr)/2,
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since wi are strictly convex in Ωs, i = 1, 2. Thus w1((xl+xr)/2) = 0 and w2(xl+δ) =
0 < w1(xl + δ). Therefore w1 6= w2 and consequently by (2.6),

ck ≥ ‖w1,k − w2,k‖2,2

‖L1,k − L2,k‖∗
→ ∞.

This result holds for any subsequences {wi,k}k with weak limits wi ∈ H2(Ω), i = 1, 2,
which means that the whole sequence {ck}k converges to ∞.

Case 3. Let η > 0, δk → 0, ξk → 0 and 0 < δmax < (xr −xl)/2. Since Sδmax,ξk,η ⊂
Sδk,ξk,η for sufficiently large k, ck(δmax, ξk, η) ≤ ck(δk, ξk, η), which follows from the
estimate (2.6). By Case 2, ck(δmax, ξk, η) → ∞. Hence, ck(δk, ξk, η) → ∞. �

Notice that the small change of the load causes the relatively large “rigid” dis-
placement of the beam in Case 2 of the proof.

With respect to Lemma 2.1, the loads, for which the balance point T is closed to
the end points of the subsoil or the size of the load resultant is small with respect to
V ∗-norm of the load, will be called unstable. Some unstable loads are illustrated in
[8] on numerical examples.

2.4. Approximation of the Problem. Let us define a partition τh,

0 = x0 < x1 < . . . < xN = l, h := max
j=1,...,N

(xj − xj−1), hmin := min
j=1,...,N

(xj − xj−1)

of the interval Ω = [0, l], with the nodal points xj , j = 0, 1, . . . , N , and with the
parameters h, hmin > 0. With respect to a positive parameter θ, we will consider
the system Tθ of such partitions τh for which the inequality θh ≤ hmin holds.

For a partition τh ∈ Tθ with N + 1 nodal points, we will define the function space

Vh ⊂ H2(Ω), Vh := {vh ∈ C1(Ω) | vh|(xj−1,xj) ∈ P3, j = 1, 2, . . . , N},
i.e. the space of continuously differentiable and piecewise cubic functions.

For the sake of simplicity, we will assume that the function q, which represents the
stiffness coefficient of the subsoil, is piecewise constant in the interval Ωs and that
the considered partition τh ∈ Tθ take into account the points of discontinuity of q.
Since the evaluation of the term b(w−

h , vh), wh, vh ∈ Vh, cannot be computed exactly

due to the non-linear term w−
h , an approximation of the form b must be used. The

form b will be approximated by a numerical quadrature on each subsoiled partition
interval. Its approximation has the form

(2.9) bh(v1, v2) :=

m(h)
∑

i=1

riv1(zi)v2(zi), v1, v2 ∈ H2(Ω),

where zi, z1 < z2 < . . . < zm(h), are the points of the numerical quadratures and
ri contains the products of the stiffness coefficients and weights of the numerical
quadrature. With respect to the assumption on τh ∈ Tθ, it holds that there exists
constants c1, c2 > 0 such that

(2.10) c1q0θh ≤ ri ≤ c2‖q‖∞h, i = 1, 2, . . . , m(h).
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From a mechanical point of view, the subsoil is substituted by insulated “springs”.
We will assume that the numerical quadrature is exact at least for polynomials of
the first degree.

If we set

VM :=

{

v ∈ H2(Ω) | ∃p ≤ M, ∃y1, y2, . . . , y2p ∈ Ωs :

{x ∈ Ωs| v−(x) = 0} =

p
⋃

i=1

[y2i−1, y2i]

}

, M > 0,

then there exists positive constants c1, c2 and c3 = c3(M), which are independent of
the choice of τh, such that

|bh(u, v)| ≤ c1‖q‖∞,Ωs
‖u‖1,2‖v‖1,2 ∀u, v ∈ H1(Ω),(2.11)

∣

∣b(v−, u) − bh(v−, u)
∣

∣ ≤ c2h‖v‖1,2‖u‖1,2 ∀u, v ∈ H1(Ω),(2.12)
∣

∣b(v−, u) − bh(v−, u)
∣

∣ ≤ c3h
2‖v‖2,2‖u‖2,2 ∀u ∈ H2(Ω), ∀v ∈ VM .(2.13)

Now, we set the approximated problem. For the sake of simplicity, we will not
consider a numerical quadrature of the forms a and L. The approximated problem
corresponding to the partition τh ∈ Tθ has the form

(Ph)

{

find w∗
h ∈ Vh : Jh(w∗

h) ≤ Jh(vh) ∀vh ∈ Vh,

Jh(vh) := 1
2a(vh, vh) + 1

2bh(v−h , v−h ) − L(vh).

Since the functional Jh is convex and has the Gâteaux derivative on the space Vh,
the problem (Ph) can be rewritten equivalently to the nonlinear variational equation

(2.14) a(w∗
h, vh) + bh((w∗

h)−, vh) = L(vh) ∀vh ∈ Vh.

The existence of the problem (Ph) solution is ensured by the condition

(2.15) F < 0 and z1 < T < zm(h).

This condition also ensures the uniqueness of the solution for sufficiently small h. No-
tice that if the condition (2.5) holds and the discretisation parameter h is sufficiently
small, then the condition (2.15) also holds.

It holds that the set

(2.16) A∗
h := {i ∈ {1, . . . , m(h)} | w∗

h(zi) < 0} ,

which represents active “springs” is non-empty. In addition, the balance point T
belongs to the convex closure of the points {zi; i ∈ A∗

h}.
For the approximated problems (Ph), it holds the following estimates and conver-

gence result:

‖w∗ − w∗
h‖2,2 ≤ c1(M)h2‖w∗‖4,2 w∗ ∈ H4(Ω) ∩ VM , ∀τh ∈ Tθ, h ≤ h0,

‖w∗ − w∗
h‖2,2 ≤ c2h‖w∗‖3,2 w∗ ∈ H3(Ω), ∀τh ∈ Tθ, h ≤ h0,

‖w∗ − w∗
h‖2,2 → 0 w∗ ∈ H2(Ω), h → 0,(2.17)
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where w∗ and w∗
h are respectively the solutions of the problems (P ) and (Ph), and h0

is a sufficiently small parameter. The first of these estimates is numerically illustrated
in [8] for some numerical quadratures.

In the end of this section, we add one lemma, which describes when the functionals
Jh are uniformly coercive on H2(Ω). The lemma will be also useful for the following
analysis.

Lemma 2.2. Let F < 0, xl < T < xr, 0 < h0 < min{T − xl, xr − T }, c ∈ R and
θ > 0. Then there exists a positive constant c̃ such that the following implication
holds:

Jh(uh) ≤ c =⇒ ‖uh‖2,2 ≤ c̃ ∀τh ∈ Tθ, h ≤ h0, ∀uh ∈ Vh.

Proof. Since the proof is similar to the first (existence) part of the proof of Theorem
3.1. in [7], some steps will be done more briefly.

Suppose that the lemma does not hold. Then, by the definition of Jh, there exist
sequences {τhk

}k and {uk}k, uk ∈ Vhk
, ‖uk‖2,2 → +∞ such that

(2.18) 0 ≤ a(uk, uk) + bhk
(u−

k , u−
k ) ≤ 2L(uk) + 2c.

If we divide (2.18) by ‖uk‖2
2,2, we obtain

a(vk, vk) + bhk
(v−k , v−k ) → 0, vk := uk/‖uk‖2,2.

Hence, by the Rellich theorem and (2.11), there exist a subsequence {vk}k (de-
noted in the same way) and a polynomial p ∈ P1 such that vk → p in H2(Ω) and
bhk

(p−, p−) → 0. By the assumption of h0, (2.10) or eventually (2.12) for hk → 0,
we obtain p ≥ 0 in the neighbourhood of the point T .

If we divide (2.18) by ‖uk‖2,2, then 0 ≤ L(p) = Fp(T ). Therefore p = 0, since
F < 0. However, it is in contradiction with ‖vk‖2,2 = 1. �

3. Linear problems with bilateral elastic springs

In this section, we will define the family of linear problems with bilateral elastic
“springs” and derive their uniform properties with respect to refinement of the par-
tition. Such problems will be solved in each iteration of the algorithms, which will
be presented below, in Section 4.

Let τh ∈ Tθ be a partition of Ω and Ah ⊂ {1, . . . , m(h)} be a non-empty set of
indices. Let us define the bilinear form

(3.1) bAh

h (v1, v2) :=
∑

i∈Ah

riv1(zi)v2(zi), v1, v2 ∈ H2(Ω),

where the coefficients ri and the spring points zi have been described in the previous
section. Let us define the functional

(3.2) JAh

h (vh) :=
1

2
a(vh, vh) +

1

2
bAh

h (vh, vh) − L(vh).

The corresponding linear problem (PAh

h ) with bilateral elastic springs has the form

(3.3) find wh = wh(Ah) ∈ Vh : JAh

h (wh) ≤ JAh

h (vh) ∀vh ∈ Vh,
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or equivalently

(3.4) find wh = wh(Ah) ∈ Vh : a(wh, vh) + bAh

h (wh, vh) = L(vh) ∀vh ∈ Vh.

Lemma 3.1. Let θ > 0, τh ∈ Tθ and card(Ah) ≥ 2. Then the problem (PAh

h ) has
a unique solution.

If the condition (2.15) holds and card(Ah) = 1 then (PAh

h ) has a solution if and

only if zi = T , where i ∈ Ah. In such a case, if wh(Ah) solves (PAh

h ) then wh(Ah)+p,

where p ∈ P1, p(T ) = 0, also solves (PAh

h ).

Proof. If τh ∈ Tθ and card(Ah) ≥ 2 then there exists c > 0 such that the inequality

(3.5) c‖v‖2
2,2 ≤ a(v, v) + bAh

h (v, v) ∀v ∈ H2(Ω).

holds. The proof of the inequality (3.5) is quite similar to the proof of the Poincaré

inequality, see [3] and also the proof of Lemma 3.2. Notice that if bAh

h (1, 1) → 0 for
h → 0, then c → 0.

The inequality (3.5) yields that the functional JAh

h is coercive on Vh. Since Jh is

also strictly convex and differentiable on Vh, the problem (PAh

h ) has a unique solution
by the well-known theorems of the variational calculus, see for example [2].

Suppose that Ah = {i}, i ∈ {1, 2, . . . , m(h)}. Then the choices vh = 1 and vh = x
in the equation (3.4) and the definitions of T, F yield that zi = T and wh(zi) = F/ri,

if the problem (PAh

h ) has a solution wh. Let us define the auxiliary Neumann problem

(3.6) find w̃h ∈ Vh : a(w̃h, vh) = L(vh) − bAh

h (F/ri, vh) ∀vh ∈ Vh.

Such a problem has a solution, since

L(p) − bAh

h (F/ri, p) = 0 ∀p ∈ P1.

If w̃h is a solution of the problem (3.6) then the other solutions has the form w̃h + p,
p ∈ P1. Therefore, we can assume that there exists a solution wh of (3.6) such that
wh(zi) = F/ri. Now, it is easy to show that the functions wh + p, where p ∈ P1,

p(T ) = 0, also solves (PAh

h ). �

Corollary 3.1. Let the condition (2.15) hold. Then the solution w∗
h of the prob-

lem (Ph) also solves the problem (P
A∗

h

h ), where A∗
h is defined by (2.16).

To show some uniform properties of the problems (PAh

h ) with respect to τh ∈ Tθ

and Ah, we introduce the notation

A :=
⋃

h

{Ah ⊂ {1, . . . , m(h)} | card(Ah) ≥ 2} ,

Aρ :=
⋃

h

{Ah ⊂ {1, . . . , m(h)} | card(Ah) ≥ min{m(h), max{2, ρ/h}}} , ρ > 0.

Notice that the parameter ρ means the “relative” number of the spring points, since

∃c1, c2 > 0 : c1/h ≤ m(h) ≤ c2/h ∀τh ∈ Tθ.

If {Ah}h ⊂ A is such a sequence that card(Ah)h → 0, or equivalently bAh

h (1, 1) → 0
(see the estimate (2.10)), then {Ah}h 6⊂ Aρ for any ρ > 0.
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Lemma 3.2. Let θ, ρ > 0. Then there exist positive constants c1, c2 depending
on θ, ρ > 0 such that for any τh ∈ Tθ and any Ah ∈ Aρ the estimate

(3.7) c1‖vh‖2
2,2 ≤ a(vh, vh) + bAh

h (vh, vh) ≤ c2‖vh‖2
2,2 ∀vh ∈ Vh.

holds.

Proof. The second inequality in (3.7) follows from (2.11), since bAh

h (vh, vh) ≤
bh(vh, vh). Suppose that the first inequality in (3.7) does not hold. Then there
exist sequences {τhk

}k, {Ahk
}k and {vhk

}k such that

a(uk, uk) + b
Ahk

hk
(uk, uk) <

1

k
, k ≥ 1, uk :=

vhk

‖vhk
‖2,2

.

Hence, by the Rellich theorem and (2.11), we obtain

(3.8) ∃{uk′}k′ ⊂ {uk}k : uk′ → p ∈ P1 in H2(Ω) and b
Ah

k′

hk′
(p, p) → 0.

Since ‖uk′‖2,2 = 1, it holds that p 6= 0, i.e. there exists at most one point x ∈ R

such that p(x) = 0. Therefore, for sufficiently small ε > 0, there exist p0 > 0 and
0 < ρ̃ ≤ ρ such that

|p| ≥ p0 in Ω̃s and card(Ãhk′
) ≥ ρ̃/hk′ ,

where Ω̃s := Ωs \ (x − ε, x + ε) and Ãhk′
:= {i ∈ Ahk′

| zk′

i ∈ Ω̃s}, zk′

i are the spring
points of the partition τhk′

. Then, by the estimate (2.10), there exists a positive
constant c such that

b
Ah

k′

hk′
(p, p) ≥ chk′p2

0

∑

i∈Ãh
k′

1 ≥ cρ̃p2
0 > 0.

However, it is in contradiction with (3.8). Therefore the estimate (3.7) holds. �

Corollary 3.2. Let θ, ρ > 0. Then there exists a positive constant c depending
on θ, ρ > 0 such that for any τh ∈ Tθ and any Ah ∈ Aρ

(3.9) ‖wh(Ah)‖2,2 ≤ c‖L‖∗, wh(Ah) solves (PAh

h ).

The proof immediately follows from the equation (3.4) and the estimate (3.7).
Let τh ∈ Tθ and v ∈ H2(Ω). Then we can introduce the notation

(3.10) Ah(v) := {i ∈ {1, . . . , m(h)} | v(zi) < 0}.
Concretely, we will be interested in the relative cardinality of the set Ah(wh), where

wh solves the problem (PAh

h ) for some Ah ∈ A.

Lemma 3.3. Let v ∈ H2(Ω) and v < 0 in a non-empty open interval (y1, y2) ⊂ Ωs.
Then there exists a positive constant ρ such that for any τh ∈ Tθ, h ≤ (y2 − y1)/2,
it holds Ah(v) ∈ Aρ.

The proof clearly follows from the definition of the partitions τh ∈ Tθ. Notice that
the size of the parameter ρ depends on the length y2 − y1.
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Lemma 3.4. Let F < 0 and θ, ρ > 0. Then there exist positive constants ρ̃ and
h0 such that for any τh ∈ Tθ, h ≤ h0, and any Ah ∈ Aρ,

(3.11) Ah ∩ Ah(wh) ∈ Aρ̃,

where wh solves the problem (PAh

h ).

Proof. Suppose that (3.11) does not hold. Then there exist sequences {τhk
}k, hk → 0

and {Ak}k ⊂ Aρ, Ak ≡ Ahk
, such that

(3.12) hkcard(Ak ∩ Ak(wk)) → 0, Ak(wk) ≡ Ahk
(whk

)

By Lemma 3.2, there exists c1 > 0 such that ‖wk‖2,2 ≤ c1 for any k ≥ 0. If we
choose vh = 1 in the equation (3.4) and denote the coefficients and spring points of
the form bhk

as rk
i and zk

i , then by the estimates (2.10) and (3.12), we obtain

F = bAk

hk
(wk, 1) ≥

∑

i∈Ak∩Ak(wk)

rk
i wk(zk

i ) ≥

≥ −c2hk‖wk‖C(Ω)card(Ak ∩ Ak(wk)) → 0, c2 > 0.

However, it is in contradiction with F < 0. Therefore (3.11) holds. �

To show the other uniform properties of the problems (PAh

h ), we will define the

auxiliary problem (PAh

h,r ) with the “rigid” beam:

(3.13) find ph ∈ P1 : JAh

h (ph) ≤ JAh

h (p) ∀p ∈ P1,

or equivalently

(3.14) find ph ∈ P1 : bAh

h (ph, p) = L(p) ∀p ∈ P1.

Notice that the problem (PAh

h,r ) means to solve the linear system of two equations
with two unknowns.

Lemma 3.5. Let τh ∈ Tθ and Ah ∈ A. Then ph(x) = t1x + t2, where

(3.15) t1 =
F

det

∑

i∈Ah

ri(T − zi) and t2 =
−F

det

∑

i∈Ah

rizi(T − zi),

with

(3.16) det =
∑

i,j∈Ah, i<j

rirj(zi − zj)
2 > 0, F = L(1), T = L(x)/F.

Proof. The relations (3.15) can be easily derived if we choose p = 1 and p = x in the
equation (3.14). �

Lemma 3.6. Let F < 0 and θ > 0. Let {τhk
}k ⊂ Tθ and {Ak}k ⊂ A, Ak ≡ Ahk

be such sequences that

(3.17) hk → 0 and hkcard(Ak) → 0.
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Then there exists a positive constant c, which is independent of the choice of the
above sequences with the property (3.17), such that

(3.18) pk(T ) → −∞, ‖pk‖2,2 → +∞ and ‖pk‖2,2 ≤ c
−pk(T )

hkcard(Ak)
,

where {pk}k is the corresponding sequence of the solutions of the problems (P Ak

hk,r).

Proof. Since the polynomial space P1 has a finite dimension and since

p(x) = p(T ) + (x − T )p′,

there exist c1, c2 > 0 such that

(3.19) c1‖p‖2,2 ≤ max{|p(T )|, |p′|} ≤ c2‖p‖2,2 ∀p ∈ P1.

Let us denote nk := card(Ak) ≥ 2. The coefficients and spring points of the form

bAk

hk
will be denoted rk

i and zk
i , i = 1, . . . , nk, zk

1 < . . . < zk
nk

. The determinant (3.16)

will be denoted detk for the problem (PAk

hk,r). Let

(3.20) dk
i := zk

i+1 − zk
i , i = 1, . . . , nk − 1, i.e. zk

i = zk
1 +

∑

j<i

dk
j , i = 2, . . . , nk.

Since τhk
∈ Tθ, there exists c1 > 0 such that

(3.21) dk
i ≥ c1hk, ∀k ≥ 0, i = 1, . . . , nk.

We will also use the notation

(3.22) σk
0 :=

nk
∑

i=1

rk
i , σk

1 :=

nk
∑

i=1

rk
i

∑

j<i

dk
j and σk

2 :=

nk
∑

i=1

rk
i





∑

j<i

dk
j





2

,

where dk
0 := 0. Then

nk
∑

i=1

rk
i (T − zk

i )2 = σk
0 (T − zk

1 )2 − 2σk
1 (T − zk

1 ) + σk
2

≥ 1

σk
0

(σk
0σk

2 − (σk
1 )2)

=
1

σk
0

nk
∑

i1,i2=1

rk
i1r

k
i2





∑

j1<i1

dk
j1









∑

j1<i1

dk
j1 −

∑

j2<i2

dk
j2





=
1

σk
0

∑

i1,i2; i1<i2

rk
i1r

k
i2





∑

j1<i1

dk
j1 −

∑

j2<i2

dk
j2





2

=
1

σk
0

∑

i1,i2; i1<i2

rk
i1r

k
i2





∑

i1≤j<i2

dk
j





2

=
1

σk
0

detk.(3.23)
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Hence, by Lemma 3.5, the assumption (3.17) and the estimate (2.10), we obtain

pk(T ) =
F

detk

nk
∑

i=1

rk
i (T − zk

i )2 ≤ F/σk
0 ≤ cF/(hkcard(Ak)) → −∞, c > 0,

which implies ‖pk‖2,2 → +∞. The estimates (3.23), (3.21) and (2.10) also yield

∑nk

i=1 rk
i (T − zk

i )2
∑nk

i=1 rk
i

≥ c2
h2

k

n2
k

∑

i1,i2; i1<i2





∑

i1≤j<i2

1





2

=
1

12
c2h

2
k(n2

k − 1), c2 > 0.

Hence, by the Cauchy-Schwarz inequality, Lemma 3.5, and the assumption (3.17),
we obtain

|p′k|
−pk(T )

=
|∑nk

i=1 rk
i (T − zk

i )|
∑nk

i=1 rk
i (T − zk

i )2
≤
(∑nk

i=1 rk
i (T − zk

i )2
∑nk

i=1 rk
i

)−1/2

≤ c3(h
2
k(n2

k − 1))−1/2 ≤ c4

hknk
, c3 > 0, c4 =

2√
3
c3,

which implies (3.18) due to the estimate (3.19). �

Lemma 3.7. Let θ > 0. Then there exists a positive constant c > 0 such that
the estimate

(3.24) c‖vh‖2
2,2 ≤ a(vh, vh) +

(

bAh

h (vh, 1)

bAh

h (1, 1)

)2

+

(

bAh

h (vh, x)

bAh

h (1, 1)

)2

∀vh ∈ Vh

holds for any τh ∈ Tθ and Ah ∈ A.

The proof of Lemma 3.7 is based on the generalised Poincaré inequality, see [3].

The denominators bAh

h (1, 1) in (3.24) keep the limit case bAh

h (1, 1) → 0 for h → 0.

Corollary 3.3. Let θ > 0. Then there exists a positive constant c > 0 such that
the estimates

(3.25) ‖wh − ph‖2,2 ≤ c‖L‖∗ and a(wh, wh) ≤ c‖L‖2
∗

hold for any τh ∈ Tθ and Ah ∈ A, where wh, ph respectively solve the problems
(PAh

h ), (PAh

h,r ).

Proof. By Lemma 3.7 and the equations (3.4) and (3.14), we obtain

c‖wh − ph‖2
2,2 ≤ a(wh, wh) ≤ a(wh, wh) + bAh

h (wh − ph, wh − ph)

= L(wh − ph) ≤ ‖L‖∗‖wh − ph‖2,2,

which yields the first estimate in (3.25) and consequently the second one. �

Corollary 3.4. Let the assumptions of Lemma 3.6 be fulfilled. Then

(3.26)
‖wk‖2,2

‖pk‖2,2
→ 1 and

JAk

hk
(wk)

wk(T )
→ −F/2, k → +∞,
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where {wk}k, {pk}k are respectively the corresponding sequences of the solutions of

the problems (PAk

hk
) and (PAk

hk,r).

Proof. By the estimate (3.25) and the limits (3.18), we obtain

‖wk‖2,2

‖pk‖2,2
≤ ‖pk‖2,2 + ‖wk − pk‖2,2

‖pk‖2,2
→ 1

‖wk‖2,2

‖pk‖2,2
≥ ‖pk‖2,2 − ‖wk − pk‖2,2

‖pk‖2,2
→ 1,

i.e. the first limit in (3.26) holds. Notice that due to (3.14),

JAk

hk
(pk)

pk(T )
=

−L(pk)

2pk(T )
= −F/2,

which implies JAk

hk
(pk) → −∞ by (3.18). In addition, due to (3.4) and (3.14),

JAk

hk
(wk)

JAk

hk
(pk)

=
JAk

hk
(pk) − L(wk − pk)/2

JAk

hk
(pk)

→ 1

and by Lemma 3.6 and Corollary 3.3,

(3.27) lim
k→∞

wk(T )

pk(T )
= 1 + lim

k→∞

wk(T ) − pk(T )

pk(T )
= 1.

Therefore

lim
k→+∞

JAk

hk
(wk)

wk(T )
= lim

k→+∞

JAk

hk
(pk)

pk(T )
= −F

2
.

�

Corollaries 3.3 and 3.4 shows that the problems (PAk

hk
) and (PAk

hk,r) have many

common properties for the limit case hkcard(Ak) → 0. This fact will be used to
prove the following theorems and lemmas.

Theorem 3.1. Let F < 0, xl < T < xr, and θ > 0. Then there exist positive
constants ρ and h0 such that for any τh ∈ Tθ, h ≤ h0, and any Ah ∈ A,

Ah(wh) ∈ Aρ,

where wh solves the problem (PAh

h ).

Proof. Suppose that Theorem 3.1 does not hold. Then there exist sequences {τhk
}k,

hk → 0, and {Ak}k ⊂ A, Ak ≡ Ahk
, such that

(3.28) hkcard(Ak(wk)) → 0, Ak(wk) ≡ Ahk
(whk

).

Let us denote pk := phk
as the solutions of the problems (PAk

hk,r), k ≥ 0.

Suppose that there exists ρ1 > 0 and a subsequence {Ak}k (denoted by the same
way) such that

Ak ∈ Aρ1 , ∀k ≥ 0.

Then, by Lemma 3.4, there exists ρ2 > 0 such that Ak(wk) ∈ Aρ2 for sufficiently
large k, which contradicts with (3.28).
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Suppose that there exists a subsequence {Ak}k such that

hkcard(Ak) → 0.

By Lemma 3.6, pk(T ) → −∞. Therefore, pk → −∞ in [xl, T ] or in [T, xr], since
T ∈ Ωs = (xl, xr). Hence and by Corollary 3.3, there exists sufficiently small ε > 0
such that wk < 0 in [xl, T−ε] or in [T +ε, xr] for sufficiently large k, which contradicts
with (3.28) due to Lemma 3.3. �

Lemma 3.8. Let F < 0 and xl < T < xr. Then there exist positive constants ρ
and h0 such that {Ah(w∗

h)}h≤h0 ⊂ Aρ, where w∗
h solves the problem (Ph).

In addition, if τh ∈ Tθ, Ah ∈ A and Ah(wh) = Ah, where wh solves the problem

(PAh

h ), then wh also solves the problem (Ph).

Proof. Let w∗
h, w∗ respectively solve the problems (Ph) and (P ). Since w∗

h → w∗

in H2(Ω) by (2.17) and since w∗ is negative somewhere in Ωs by Lemma 3.5 in [7],
there exist ρ, h0 > 0 such that Ah(w∗

h) ∈ Aρ for h ≤ h0 by Lemma (3.3).

If Ah(wh) = Ah and wh solves the problem (PAh

h ) then

L(v) = a(wh, v) + bAh

h (wh, v) = a(wh, v) + bh(w−
h , v) ∀v ∈ H2(Ω).

Thus the function wh also solves the problem (Ph). �

By the following lemma, we estimate the difference between the solution w∗
h of the

problem (Ph) and their approximations generated by the algorithms, which will be
presented in Section 4, see the proof of Theorem 4.2.

Lemma 3.9. Let F < 0, xl < T < xr, and c, θ > 0. Then there exist positive
constants c̃ and h0 > 0 such that for any τh ∈ Tθ, h ≤ h0, and any uh ∈ Vh,
‖uh‖2,2 ≤ c,

(3.29) c̃‖w∗
h − uh‖2

2,2 ≤ a(w∗
h − uh, w∗

h − uh) + bh((w∗
h)− − u−

h , w∗
h − uh),

where w∗
h solves the problem (Ph).

Proof. Since the proof is similar to a proof of Theorem 4.5 in [7], some steps will be
done more briefly. By Lemma 3.8 and Corollary 3.2, there exist c1, c2 > 0 such that
for any τh ∈ Tθ with sufficiently small h,

(3.30) ‖w∗
h‖2,2 ≤ c1 and ‖w∗

h − uh‖2,2 ≤ c2.

Suppose that the lemma does not hold. Then there exist sequences {τhk
}k, hk → 0,

{w∗
hk
}k and {uhk

}k such that

(3.31) a(wk − uk, wk − uk) + bh(w−
k − u−

k , wk − uk) → 0,

where

(3.32) wk :=
w∗

hk

‖w∗
hk

− uhk
‖2,2

, uk :=
uhk

‖w∗
hk

− uhk
‖2,2

, ‖wk − uk‖2,2 = 1.

All subsequences of these sequences will be denoted by the same way. By the Rel-
lich theorem, (3.31) and (3.32), there exist subsequences {wk}k and {uk}k and a
polynomial p ∈ P1, p 6= 0, such that wk − uk → p in H2(Ω). By Lemma 3.8,

(3.33) ∃ρ1 > 0 : Ahk
(w∗

hk
) ∈ Aρ1 .
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Suppose that ‖w∗
hk

− uhk
‖2,2 → 0. Then

(3.34) ∃ρ2 > 0 : Ahk
(w∗

hk
) ∩ Ahk

(uhk
) ∈ Aρ2

for sufficiently large k by (3.33). Since

bhk
(w−

k − u−
k , wk − uk) ≥ b

Ahk
(w∗

hk
)∩Ahk

(uhk
)

hk
(wk − uk, wk − uk),

(3.31), (3.34), (2.11) and (2.10) yield that p = 0, which is in contradiction with p 6= 0.
Therefore we can assume that the sequences {wk}k and {uk}k are bounded due

to (3.30). It means that there exist their subsequences which converge to functions
w and u = w − p in H1(Ω) by the Rellich theorem. Then, by (3.31) and (2.12),

(3.35) w− − (w − p)− = 0 in Ωs.

Since w∗
hk

→ w∗ in H2(Ω), w∗ solves the problem (P ), by (2.17), and since w∗ < 0
somewhere in Ωs, also w < 0 somewhere in Ωs. Therefore, (3.35) yields that p = 0
which contradicts with p 6= 0. �

4. Descent Direction Methods with and without Projection

In this section, two methods are presented as a numerical realization of the problem
(Ph). The methods are based on the minimisation of the total energy functional Jh,
where the descent directions of the functional are searched by solving the linear
problems of type (PAh

h ) presented in the previous section. The difference between
the methods is in the “projection step”. The step is useful mainly for unstable loads
as we see in Section 5.

Since the uniform convergence properties of the methods with respect to refinement
of the partition are derived, the corresponding algorithms are firstly described in the
functional form. Their algebraical form will be presented later, in Section 5. We will
assume that the solvability conditions (2.5) hold.

4.1. Descent Direction Method without Projection. Let τh ∈ Tθ be a partition
and zi, i ∈ {1, 2, . . . , m(h)}, be the corresponding set of springs.

Algorithm 1

Initialisation

wh,0 = 0,
Ah,0 = {1, 2, . . . , m(h)}.

Iteration k = 0, 1, . . .

sh,k ∈ Vh, wh,k + sh,k solves (P
Ah,k

h ),
αh,k = arg min

0≤α≤1
Jh(wh,k + αsh,k),

wh,k+1 = wh,k + αh,ksh,k,
Ah,k+1 = Ah(wh,k+1).

In the remaining part of this subsection, we show that Algorithm 1 is well-defined,

i.e. the problems (P
Ah,k

h ) are uniquely solvable and that wh,k → w∗ in H2(Ω)
uniformly with respect to sufficiently small h.
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Let uh ∈ Vh, Ah(uh) ∈ A, wh ∈ Vh solves the problem (P
Ah(uh)
h ) and sh := wh−uh.

It will be usefull to introduce the notation Aα
h := Ah(uh + αsh). Then A0

h = Ah(uh)
and A1

h = Ah(wh). Notice that the equality

(uh + αsh)(zi) = αwh(zi) + (1 − α)uh(zi)

yields the inclusion

(4.1) A0
h ∩ A1

h ⊂ A0
h ∩ Aα

h ∀α ∈ [0, 1]

and the implication

(4.2) A1
h ⊂ A0

h =⇒ Aα
h ⊂ A0

h ∀α ∈ [0, 1].

Lemma 4.1. Let uh ∈ Vh, A0
h ≡ Ah(uh) ∈ A, wh ∈ Vh solves the problem (P

A0
h

h )
and sh := wh − uh. Let

αh := arg min
0≤α≤1

Jh(uh + αsh).

Then

J ′
h(uh; sh) = 2J

A0
h

h (wh) − 2J
A0

h

h (uh)(4.3)

= −a(sh, sh) − b
A0

h

h (sh, sh) ≤ 0,(4.4)

where J ′
h(uh; sh) = 0 if and only if uh solves the problem (Ph), and

(4.5) αh ≥ a(sh, sh) + b
A0

h

h (sh, sh)

a(sh, sh) + b
A0

h
∪A

αh
h

h (sh, sh)
> 0, sh 6= 0.

Proof. By Lemma 3.1, the problem (P
A0

h

h ) has a unique solution wh. Then the choice
vh = sh in the variational equation (3.4) yields

J ′
h(uh; sh) = a(uh, sh) + bh(u−

h , sh) − L(sh)

= a(uh, sh) + b
A0

h

h (uh, sh) − L(sh)

= −a(sh, sh) − b
A0

h

h (sh, sh) ≤ 0.

The choices vh = uh and vh = wh in the variational equation (3.4) yield the equality
(4.3). By the inequality (3.5), J ′

h(uh, sh) = 0 if and only if sh = 0, i.e. if uh = wh.
It means that in such a case, uh solves the problem (Ph) by Lemma 3.8.

Let us denote ϕ(α) := Jh(uh + αsh) and let sh 6= 0. Since Jh is a convex and
differentiable functional on Vh, there exists αh, which minimises ϕ in [0, 1]. The
inequality (4.4) yields αh > 0 and ϕ′(αh) ≤ 0. If αh = 1, then the inequality (4.5)
holds. Otherwise,

0 = ϕ′(αh) = a(uh + αhsh, sh) + bh((uh + αhsh)−, sh) − L(sh)

= J ′
h(uh; sh) + αh

[

a(sh, sh) + bh

(

(uh + αhsh)− − u−
h

αh
, sh

)]

.(4.6)
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Notice that

bh

(

(uh + αhsh)− − u−
h

αh
, sh

)

= b
A0

h∩A
αh
h

h (sh, sh) − b
A0

h\A
αh
h

h (uh, sh)/αh +

+b
A

αh
h

\A0
h

h (uh + αhsh, sh)/αh =

= b
A0

h∪A
αh
h

h (sh, sh) + b
A

αh
h

\A0
h

h (uh, sh)/αh −
−b

A0
h\A

αh
h

h (uh + αhsh, sh)/αh.

If i ∈ Aαh

h \A0
h then uh(zi) ≥ 0 and sh(zi) < 0. If i ∈ A0

h\Aαh

h then (uh+αhsh)(zi) ≥
0 and sh(zi) > 0. Therefore

b
A

αh
h

\A0
h

h (uh, sh) ≤ 0 and b
A0

h\A
αh
h

h (uh + αhsh, sh) ≥ 0.

Hence,

bh

(

(uh + αhsh)− − u−
h

αh
, sh

)

≤ b
A0

h∪A
αh
h

h (sh, sh)

and (4.6) yields the estimate (4.5). �

Notice that if A1
h ⊂ A0

h, then the implication (4.2) and the estimate (4.5) yield
αh = 1.

By the following lemma, we can estimate the relative cardinality of the sets Ah,k,
which are generated by Algorithm 1, see the proof of Theorem 4.1.

Lemma 4.2. Let c, θ be positive constants and the solvability condition (2.5)
hold. Then there exist positive constants h0, ρ such that for any τh ∈ Tθ, h ≤ h0,
and any uh ∈ Vh, ‖uh‖2,2 ≤ c, A0

h ≡ Ah(uh) ∈ Aρ, it holds

(4.7) Aαh

h ≡ Ah(uh + αhsh) ∈ Aρ,

where αh = arg min0≤α≤1 Jh(uh + αsh), sh = wh − uh and wh ∈ Vh solves the

problem (P
A0

h

h ).

Proof. Suppose that the lemma does not hold. Then there exist sequences {τhk
}k,

hk → 0, {ρk}k, ρk → 0, {uk}k, uk ∈ Vhk
, ‖uk‖2,2 ≤ c, A0

k ≡ Ahk
(uk) ∈ Aρk

, such
that

(4.8) Aαk

k ≡ Ahk
(uk + αksk) 6∈ Aρk

∀k ≥ 0,

where {αk}k, {sk}k and {wk}k are the corresponding sequences for the sequences
{τhk

}k and {uk}k. For the sake of simplicity, all subsequences of these sequences will
be denoted in the same way. (4.8) implies that

(4.9) card(Aαk

k ) < card(A0
k), ∀k ≥ 0.

Suppose that there exists ρ1 > 0 and a subsequence {A0
k}k such that A0

k ∈ Aρ1 .
Then, by Lemma 3.4, there exists ρ2 > 0 such that A0

k ∩ A1
k ∈ Aρ2 for sufficiently

large k. Hence and by (4.1), we obtain Aαk

k ∈ Aρ2 , which contradicts with (4.8).
Therefore, we can assume that

(4.10) hkcard(A0
k) → 0, k → +∞.
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Corollary 3.4, (4.10) and the boundedness of uk yield

(4.11) ‖wk‖2,2 → ∞, ‖sk‖2,2 → ∞ and
‖sk‖2,2

‖pk‖2,2
→ 1,

where pk ∈ P1 solves the problem (P
A0

k

hk,r) defined in Section 3. Consequently by
Corollary 3.3, we obtain

(4.12) a(sk, sk)/‖sk‖2
2,2 → 0.

Since ‖uk‖2,2 ≤ c, there exists c0 > 0 such that Jhk
(uk) ≤ c0 for any k ≥ 0 and

since Jhk
(uk) ≥ Jhk

(uk + αksk),

(4.13) ∃c1 > 0 : ‖uk + αksk‖2,2 ≤ c1 ∀k ≥ 0,

by Lemma 2.2. The boundedness of {uk}k, (4.13) and (4.11) yield

(4.14) ∃c2 > 0 : ‖αksk‖2,2 ≤ c2 ∀k ≥ 0 and αk → 0.

Suppose that

(4.15) ∃c3 > 0 : ‖αksk‖2,2 ≥ c3 ∀k ≥ 0.

Then by the Rellich theorem, (4.12), (4.14) and (4.15) there exist a subsequence
{αksk}k and p ∈ P1, p 6= 0, such that αksk → p and consequently αkpk → p in
H2(Ω). Since the sequences {uk}k and {uk + αksk}k are bounded, there exist their
subsequences with weak limits u and u + p in H2(Ω). We can also assume that
uk → u and uk + αksk → u + p in H1(Ω) by the Rellich theorem. The functions u
and u + p are non-negative in Ωs with respect to the assumptions (4.8), (4.10) and
Lemma 3.3.

Due to the assumption F < 0, it holds that A0
k ∩A1

k 6= ∅, see the proof of Lemma
3.4. Hence and by (4.1), we obtain A0

k ∩ Aαk

k 6= ∅, i.e. there exists a sequence {ik}k

such that ik ∈ A0
k ∩ Aαk

k . Therefore there exist a subsequence {zk
ik
}k and z ∈ Ωs

such that zk
ik

→ z. Non-negativity of u and u + p yield

(4.16) u(z) = 0 and p(z) = 0

and consequently

(4.17) u′(z)







= 0 z 6= xl, xr,
≥ 0 z = xl,
≤ 0 z = xr,

and u′(z) + p′(z)







= 0 z 6= xl, xr,
≥ 0 z = xl,
≤ 0 z = xr.

Since p 6= 0, there exists just one such a point z, with respect to (4.16). Moreover,
by (4.17), z = xl or z = xr. In the both cases, p < 0 in Ωs, since pk(T ) → −∞ by
Lemma 3.6.

Let ϕk(α) := Jhk
(uk + αsk). Since αk → 0, the definition of αk yields,

0 = ϕ′
k(αk) = a(uk + αksk, sk) + bhk

((uk + αksk)−, sk) − L(sk)

for sufficiently large k. If we multiply this equality by αk then for k → ∞, we obtain
contradiction 0 = −L(p) = −Fp(T ) < 0 by (2.11) and non-negativity of u + p.

Suppose that

(4.18) ‖αksk‖2,2 → 0 for k → ∞.
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Then by the estimates (4.5) and (4.3), we obtain

0 ≤ (1 − αk)J ′
hk

(uk; sk) + αkb
A

αk
k

\A0
k

hk
(sk, sk)

= 2(1 − αk)
(

J
A0

k

hk
(wk) − J

A0
k

hk
(uk)

)

+ αkb
A

αk
k

\A0
k

hk
(sk, sk).

If we divide this inequality by −wk(T ), we obtain by Lemma 3.6, Corollary 3.4,
(2.10), (3.27), (4.9), (4.10), (4.11) and (4.18),

0 ≤ F + lim
k→∞

{

‖αksk‖2,2
‖pk‖2,2

−pk(T )

pk(T )

wk(T )

‖sk‖2,2

‖pk‖2,2
b
A

αk
k

\A0
k

hk

(

sk

‖sk‖2,2
,

sk

‖sk‖2,2

)}

≤ F + c4 lim
k→∞

‖αksk‖2,2
1

hkcard(A0
k)

∑

A
αk
k

\A0
k

rk
i

≤ F + c5 lim
k→∞

‖αksk‖2,2 = F < 0,

which is contradiction. Therefore, (4.7) holds. �

Theorem 4.1. Let the condition (2.5) hold and θ > 0. Then there exist positive
constants ρ, c and h1 such that for any τh ∈ Tθ, h ≤ h1,

(4.19) Ah,k ∈ Aρ and ‖wh,k‖2,2 ≤ c ∀k ≥ 0,

where the sets Ah,k and the functions wh,k are generated by Algorithm 1.

Proof. The theorem will be proved by a mathematical induction. By Lemma 2.2,
there exist c > 0 and h0 > 0 such that for any τh ∈ Tθ, h ≤ h0, the implication

(4.20) Jh(uh) ≤ 0 =⇒ ‖uh‖2,2 ≤ c ∀uh ∈ Vh

holds. Since ‖wh,0‖2,2 = 0 ≤ c and Ah,0 = {1, . . . , m(h)}, there exist ρ > 0 and
0 < h1 ≤ h0 (which depend only on θ and c) such that Ah,1 ∈ Aρ for any τh ∈ Tθ,
h ≤ h1, by Lemma 4.2. Suppose that

Ah,i ∈ Aρ ∀τh ∈ Tθ, h ≤ h1, i = 0, 1, . . . , k.

Since
Jh(wh,k) ≤ . . . ≤ Jh(wh,1) ≤ Jh(wh,0) ≤ 0, h ≤ h1,

also ‖wh,k‖2,2 ≤ c by the implication (4.20), which yields Ah,k+1 ∈ Aρ for any
τh ∈ Tθ, h ≤ h1, by Lemma 4.2. �

Lemma 4.3. Let the condition (2.5) hold and θ > 0. Then there exist positive
constants c and h0 such that

(4.21) αh,k ≥ c ∀τh ∈ Tθ, h ≤ h0, ∀k ≥ 0, sh,k 6= 0,

where the numbers αh,k and the functions sh,k are generated by Algorithm 1.

Proof. Let sh,k, wh,k, αh,k, Ah,k, k ≥ 0, be generated by Algorithm 1. By Theorem
4.1, there exist ρ, h0 > 0 such that Ah,k ∈ Aρ, h ≤ h0, for any k ≥ 0. Hence and by
Lemma 3.2, there exist c1, c2 > 0 such that

a(v, v) + b
Ah,k

h (v, v) ≥ c1‖v‖2
2,2

a(v, v) + b
Ah,k∪Ah,k+1

h (v, v) ≤ c2‖v‖2
2,2

∀v ∈ H2(Ω), ∀k ≥ 0.

20



Then the estimate (4.5) in Lemma 4.1 yields

αh,k ≥ a(sh,k, sh,k) + b
Ah,k

h (sh,k, sh,k)

a(sh,k, sh,k) + b
Ah,k∪Ah,k+1

h (sh,k, sh,k)
≥ c1

c2
> 0 ∀k ≥ 0, sh,k 6= 0.

�

Lemma 4.4. Let the condition (2.5) hold and θ > 0. Then there exist positive
constants c and h0 such that

(4.22) Jh(wh,k+1) ≤ Jh(wh,k) − c‖sh,k‖2
2,2 ∀τh ∈ Tθ, h ≤ h0, ∀k ≥ 0,

where the functions sh,k, wh,k are generated by Algorithm 1.

Proof. Let sk ≡ sh,k, wk ≡ wh,k, αk ≡ αh,k, Ak ≡ Ah,k, k ≥ 0, be generated by
Algorithm 1. Let ϕk(α) := Jh(wk + αsk). By the definition of αk,

0 ≥ ϕ′
k(αk) = a(wk+1, sk) + bh(w−

k+1, sk) − L(sk).

Hence and by the definition of Ak, Ak+1 and wk+1,

Jh(wk+1) = Jh(wk) + αkϕ′
k(αk) − 1

2
α2

ka(sk, sk) +

+
1

2
bh(w−

k+1, wk+1) −
1

2
bh(w−

k , wk) − αkbh(w−
k+1, sk).

Notice that
1
2bh(w−

k+1, wk+1) − 1
2bh(w−

k , wk) − αkbh(w−
k+1, sk) =

= 1
2 b

Ak+1

h (wk + αksk, wk + αksk) − 1
2bAk

h (wk, wk) − αkb
Ak+1

h (wk + αksk, sk)

= − 1
2α2

kb
Ak+1

h (sk, sk) + 1
2b

Ak+1

h (wk, wk) − 1
2bAk

h (wk, wk) =

= − 1
2α2

kb
Ak+1∩Ak

h (sk, sk) − 1
2α2

kb
Ak+1\Ak

h (sk, sk)+

+ 1
2 b

Ak+1\Ak

h (wk, wk) − 1
2b

Ak\Ak+1

h (wk, wk) ≤

≤ − 1
2α2

kb
Ak+1∩Ak

h (sk, sk),

since −αksk(zi) > wk(zi) and consequently α2
ks2

k(zi) > w2
k(zi) if i ∈ Ak+1 \ Ak.

Therefore

(4.23) Jh(wk+1) ≤ Jh(wk) − 1

2
α2

k

(

a(sk, sk) + b
Ak∩Ak+1

h (sk, sk)
)

.

By Theorem 4.1, there exist ρ1 > 0 and h1 > 0 such that Ak ∈ Aρ1 for any k ≥ 0
and any τh ∈ Tθ, h ≤ h1. Therefore, by Lemma 3.4, there exist 0 < ρ ≤ ρ1

and 0 < h0 ≤ h1 such that Ak ∩ Ak(wk + sk) ∈ Aρ and consequently (see (4.1))
Ak ∩Ak+1 ∈ Aρ for any k ≥ 0 and any τh ∈ Tθ, h ≤ h0. Then, by Lemma 3.2, there
exists c > 0 such that

c‖sk‖2
2,2 ≤ a(sk, sk) + b

Ak∩Ak+1

h (sk, sk) ∀τh ∈ Tθ, h ≤ h0, ∀k ≥ 0.

Hence, by (4.23) and Lemma 4.3, we obtain (4.22). �
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Theorem 4.2. Let the condition (2.5) hold and θ > 0. Then there exists h0 > 0
such that the sequence {wh,k}k generated by Algorithm 1 converges uniformly (with
respect to h) to the function w∗

h solving the problem (Ph) in H2(Ω) for any τh ∈ Tθ,
h ≤ h0.

In addition, for any fix τh ∈ Tθ, h ≤ h0, there exists an iteration k0 = k0(h) ≥ 0
such that wh,k0 + sh,k0 = w∗

h.

Proof. Let sk ≡ sh,k, wk ≡ wh,k, αk ≡ αh,k, Ak ≡ Ah,k, k ≥ 0, be generated by
Algorithm 1. By Lemma 4.4, there exist c1 > 0 and h0 > 0 such that

(4.24) Jh(w∗
h) ≤ Jh(wk) ≤ −c1

k−1
∑

i=0

‖si‖2
2,2 ∀τh ∈ Tθ, h ≤ h0, ∀k ≥ 0.

By (2.17),

Jh(w∗
h) = −L(w∗

h)/2 → −L(w∗)/2 = J(w∗), h → 0,

where w∗ solves the problem (P ). Hence and by (4.24), there exists c2 > 0 such that

(4.25)

+∞
∑

i=0

‖si‖2
2,2 ≤ c2 ∀τh ∈ Tθ, h ≤ h0,

and consequently ‖sk‖2,2 → 0 uniformly with respect to h for k → +∞. Since wk+sk

solves the problem (PAk

h ), the variational equations (2.14) and (3.4) yield

a(w∗
h−wk, w∗

h−wk)+ bh((w∗
h)−−w−

k , w∗
h −wk) = a(sk, w∗

h −wk)+ bAk

h (sk, w∗
h −wk).

Hence, by Theorem 4.1, Lemma 3.9 and (2.11), there exists c3 > 0 such that

‖w∗
h − wk‖2,2 ≤ c3‖sk‖2,2 → 0 ∀τh ∈ Tθ, h ≤ h0, ∀k ≥ 0,

which implies the uniform convergence of the sequence {wh,k}k to the function w∗
h

solving the problem (Ph).
Since wk → w∗

h, also Ak → A∗
h and consequently Ak(wk + sk) → A∗

h. Since
card(Ak) ≤ m(h) < ∞ for any fix h ≤ h0, there exists k0 ≥ 0, such that Ak0 =
Ak0(wk0 + sk0). Then, by Lemma 3.8, wk0 + sk0 = w∗

h. �

Remark 4.1. The convergence result of Algorithm 1 holds for parameters h ≤ h0,
for some h0. With respect to analyses in [7], we can assume that the size of h0 depends
on the stability of the load, i.e. how much the balance point T is closed to the end
points xl, xr of the subsoil and how much the size of the load resultant F is relatively
closed to zero.

Remark 4.2. Numerical examples shows that Algorithm 1 converges for almost
all initial choices of Ah,0. However, the initial choice Ah,0 = {1, . . . , m(h)} ensures
in the tested examples that αh,k = 1 for any k ≥ 0 due to inclusions Ah,k+1 ⊂ Ah,k.
These inclusions are shown in [5] for a concrete choice of the load.

Remark 4.3. We can also substitute αh,k by

α̃h,k := min
α≥0

Jh(wh,k + αsh,k).
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The corresponding algorithm will be denoted Algorithm 2 and it is shown on numeri-
cal examples that we can expect the same convergence properties as for Algorithm 1.
However, it is necessary to generalise Lemma 4.2 to use Algorithm 2 correctly. The
comparison of the algorithm will be illustrated on numerical examples in Section 6.

There are many numerical methods how to find the values αh,k or α̃h,k which do
not depend on the parameter h. Here, the regula falsi method has been used.

Algorithms 1,2 can also be used for coercive beam problems with the same con-
vergence result which can be proved without Lemma 4.2 and without the restricted
assumption on the parameter h.

4.2. Descent Direction Method with Projection. First of all, we will define
the class of the auxiliary problems, which are specified by a partition τh ∈ Tθ and
by a function vh ∈ Vh:

(P vh

h ) find ph = ph(vh) ∈ P1 : Jh(vh + ph) ≤ Jh(vh + p) ∀p ∈ P1,

or equivalently

(4.26) find ph = ph(vh) ∈ P1 : bh((vh + ph)−, p) = L(p) ∀p ∈ P1.

The problem (P vh

h ) means to solve the system of two non-linear equations with two
unknowns. Similarly as for the problem (Ph), it is possible to prove that the condition
(2.15) ensures the existence of the solution and the uniqueness of the solution holds
for sufficiently small parameters h. Notice that if w∗

h solves the problem (Ph) then

the problem (P
w∗

h

h ) solves the zeroth polynomial.

Lemma 4.5. Let the solvability condition (2.5) hold and c, θ > 0. Then there
exist positive constants ρ > 0 and h0 such that for any τh ∈ Tθ, h ≤ h0, and any
vh ∈ Vh, |vh|2,2 ≤ c,

(4.27) Ah (vh + ph) ∈ Aρ,

where ph solves (P vh

h ).

Proof. We start with the well-known inequality

(4.28) ∃c1 > 0 : |v|22,2 ≥ c1 inf
p∈P1

‖v + p‖2
2,2 ∀v ∈ H2(Ω),

which can be proved by the Poincaré inequality. Notice that

vh + p + ph(vh + p) = vh + ph(vh) ∀p ∈ P1,

where ph(vh + p) solves (P vh+p
h ). Thus Ah (vh + ph(vh)) = Ah (vh + p + ph(vh + p)).

Therefore, with respect to the assumption |vh|2,2 ≤ c and the inequality (4.28), we
can assume that ‖vh‖2,2 ≤ c̃, c̃ > 0, for any vh ∈ Vh.

Suppose that Lemma 4.5 does not hold. Then there exist sequences {τhk
}k,

hk → 0, and {vk}k, vk ≡ vhk
, ‖vk‖2,2 ≤ c̃, such that

(4.29) hkcard(Ak) → 0,
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where Ak ≡ Ahk
(vk + pk), pk solves (P vk

hk
). The choice p = 1 in the equation (4.26)

and the estimate (2.10) yield

F =
∑

i∈Ak

rk
i (vk + pk)(zk

i ) ≥ c2 min
i∈Ak

(vk + pk)(zk
i )hkcard(Ak), c2 > 0.

Hence, by (4.29) and the boundedness of {vk}, we obtain that there exists a point
z ∈ [xl, xr] such that pk(z) → −∞. If z ∈ Ωs, then the assumption (4.29) cannot
hold with respect to Lemma 3.3. Therefore, z = xl or z = xr.

Let us consider the first case. For the second one, we obtain similar contradiction.
Then pk(xl) → −∞ and pk(z) 6→ −∞ for z > xl. Hence pk(z) → +∞ for z > xl.
It means that zk

i → xl for all i ∈ Ak, since the functions vk are uniformly bounded.
Therefore zk

i < T for all i ∈ Ak, where k is sufficiently large. If we choose p = x in
the equation (4.26), we obtain

T =

∑

i∈Ak
rk
i (vk + pk)(zk

i )zk
i

∑

i∈Ak
rk
i (vk + pk)(zk

i )
≤ max

i∈Ak

zk
i < T,

which is contradiction. �

The descent direction method with projection is obtained from the previous
method by adding of the “projection” step, where the problem of type (P vh

h ) is
solved in:

Algorithm 3

Initialisation

wh,0 = ph(0), ph(0) solves (P 0
h ),

Ah,0 = Ah(wh,0).
Iteration k = 0, 1, . . .

sh,k ∈ Vh, wh,k + sh,k solves (P
Ah,k

h ),
αh,k = arg min

0≤α≤1
Jh(wh,k + αsh,k),

w̃h,k = wh,k + αh,ksh,k,

ph,k = ph(w̃h,k), ph(w̃h,k) solves (P
w̃h,k

h ),
wh,k+1 = w̃h,k + ph,k,
Ah,k+1 = Ah(wh,k+1).

Lemma 4.6. Let the condition (2.5) hold and θ > 0. Then there exist positive
constants ρ, c1, c2 and h0 such that for any τh ∈ Tθ, h ≤ h0, and any k ≥ 0,

Ah,k ∈ Aρ,(4.30)

αh,k ≥ c1,(4.31)

Jh(wh,k+1) ≤ Jh(wh,k) − c2‖sh,k‖2
2,2,(4.32)

where Ah,k, αh,k, sh,k and wh,k are generated by Algorithm 3.

The proofs of (4.30)-(4.32) are quite similar to the proofs of (4.19),(4.21) and (4.22)
for Algorithm 1. Only instead of Lemma 4.2, we use Lemma 4.5 and the inequality

Jh(wh,k+1) ≤ Jh(w̃h,k),
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which follows from the definition of the problem (P
w̃h,k

h ).
In the same way as for Algorithm 1, we obtain the following convergence result

for Algorithm 3.

Theorem 4.3. Let the condition (2.5) hold and θ > 0. Then there exist h0 > 0
such that the sequence {wh,k}k generated by Algorithm 3 converges uniformly (with
respect to h) to the function w∗

h solving the problem (Ph) for any τh ∈ Tθ, h ≤ h0.
In addition, for any fix τh ∈ Tθ, h ≤ h0, there exists an iteration k0 = k0(h) ≥ 0

such that wh,k0 + sh,k0 = w∗
h.

For an implementation of the “projection” step in Algorithm 3, i.e. for an imple-
mentation of the problem (P vh

h ), we can use the small modification of Algorithm 1
with the same convergence results:

Initialisation

ph,0 ∈ P1, bh(vh + ph,0, p) = L(p) ∀p ∈ P1,
Ah,0 = Ah(vh + ph,0).

Iteration k = 0, 1, . . .

p̃h,k ∈ P1, b
Ah,k

h (vh + ph,k + p̃h,k, p) = L(p) ∀p ∈ P1,
αh,k = arg min

0≤α≤1
Jh(vh + ph,k + αp̃h,k),

ph,k+1 = ph,k + αh,kp̃h,k,
Ah,k+1 = Ah(vh + ph,k+1).

Remark 4.4. Due to the projection step, the functions wh,k generated by Algo-
rithm 3 have some common properties with the unknown function w∗

h as we see in
the end of the next section.

Again, it is possible to substitute αh,k by

α̃h,k = arg min
α≥0

Jh(wh,k + αsh,k)

in Algorithm 3.
The projection step cannot be applied for coercive problems, since the polynomials

of the first degree do not belong between tested functions for such problems.

5. Algebraic Formulation of the Problem

5.1. Rewriting of the Approximated Problem. Let τh ∈ Tθ be a partition with
nodal points

0 = x0 < x1 < . . . < xl = xjl−1 < . . . < xr = xjr
< . . . < xN = l

and let z1 < z2 < . . . < zm be the corresponding points, which are obtained from
the chosen numerical quadrature.

The functions vh ∈ Vh will be standardly represented by the vector v ∈ R
n,

n = 2N + 2. The form a and the functional L will be represented by the stiffness
matrix K ∈ R

n×n and by the load vector f ∈ R
n. Notice that the matrix K is

symmetric and positive semi-definite.
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Let the polynomials p = 1 and p = x be represented by the vectors p1, px ∈ R
n.

Then the matrix R := (p1, px) ∈ R
n×2 represents all polynomials from P1 and creates

the kernel of K, i.e. KR = 0.
The matrix, which transforms the function values and the values of the first deriva-

tives at the nodal points xj , j = 0, 1, . . . , N , onto the points zi, i = 1, . . . , m, will
be denoted by B ∈ R

m×n. Let D ∈ R
m×m be a diagonal matrix containing the

coefficients ri, i.e. the products of the weights of the numerical quadrature and the
stiffness coefficients of the subsoil.

The Euclidean scalar product and norm in R
k, k ≥ 1, will be denoted by (., .)k

and ‖.‖k.
For the sake of simplicity, the corresponding functional and the unknown vector

in the algebraic formulation will be denoted in the same way as in the continuous
problem (P ). Then the algebraic formulation of the problem (Ph) has a form

(P)

{

find w∗ ∈ R
n : J(w∗) ≤ J(w) ∀w ∈ R

n,

J(w) := 1
2 (Kw, w)n + 1

2 (D(Bw)−, (Bw)−)m − (f, w)n,

where u− ∈ R
m is the negative part of u, i.e.

(u−)i := min{0, ui}, i = 1, 2, . . . , m.

The problem (P) can be rewritten equivalently as the non-linear system of equations:

(5.1) find w∗ ∈ R
n : Kw∗ + BT D(Bw∗)− = f.

Let a set Ah ⊂ {1, 2, . . . , m} of indices be represented by the diagonal matrix A ∈
R

m×m such that Aii = 1 if i ∈ Ah, otherwise Aii = 0. The algebraic representation
of a set Ah(vh) will be denoted A(v).

We also introduce the notation

(5.2) G := BR =

(

1 1 . . . 1
z1 z2 . . . zm

)T

, e := RT f = F

(

1
T

)

.

Then the auxiliary problems (PAh

h ) and (P vh

h ) have the following algebraical forms:

(5.3) (PA) find w = w(A) ∈ R
n : (K + BT DAB)w = f.

(5.4) (Pv) find c = c(v) ∈ R
2 : GT D(Bv + Gc)− = e.

The corresponding algebraical formulations of Algorithms 1,3 are following:

Algorithm 1

Initialisation

w(0) = 0,
A(0), (A(0))ii = 1, i = {1, . . . , m}.

Iteration k = 0, 1, . . .

s(k), w(k) + s(k) solves (PA(k)),

α(k) = arg min
0≤α≤1

J(w(k) + αs(k)),

w(k+1) = w(k) + α(k)s
(k),

A(k+1) = A(w(k+1)).

Algorithm 3

Initialisation

w(0) = Rc(0), c(0) solves (P0),

A(0) = A(w(0)),
Iteration k = 0, 1, . . .

s(k), w(k) + s(k) solves (PA(k)),
α(k) = arg min

0≤α≤1
J(w(k) + αs(k)),

w̃(k) = w(k) + α(k)s
(k),

c(k), c(k) solves (Pw̃(k)

),
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w(k+1) = w̃(k) + Rc(k),

A(k+1) = A(w(k+1)).

5.2. Analysis of the Projection Step. To explain the reason of the “projection
step”, we will consider the set

(5.5) Λ := {λ ∈ R
m | λ ≤ 0, GT Dλ = e}.

First of all, we derive some basic properties of the set Λ. Clearly, the set Λ is closed
and convex on R

m.

Lemma 5.1. Let F < 0 and z1 < T < zm. Then the set Λ is non-empty and
bounded on R

m.

Proof. The assumptions of the lemma ensure that there exists the solution w∗ of the
problem (P). If we multiply the equation (5.1) by the vectors in the form (Ra)T ,
a ∈ R

2, we obtain that (Bw∗)− ∈ Λ by (5.2).
The boundedness follows from the definition of the set Λ and the estimate (2.10):

−F = −e1 = −(GT Dλ)1 =

m
∑

i=1

ri|λi| ≥ c‖λ‖m, c > 0.

�

Lemma 5.2. Let F < 0, z1 < T < zm and λ ∈ Λ. Let

A(λ) := {i ∈ {1, 2, . . . , m} | λi < 0}.
Then

(5.6) min
i∈A(λ)

zi ≤ T ≤ max
i∈A(λ)

zi.

Proof. The equation GT Dλ = e yields that

T =

∑

i∈A(λ) riλizi
∑

i∈A(λ) riλi
.

Hence we obtain (5.6). �

The following lemma says that the diameter of the set Λ is small for unstable
loads.

Lemma 5.3. Let {Fk}k, {Tk}k be the sequences of the load resultants and their
balance points such that Fk < 0, z1 < Tk < zm for any k ≥ 0. Let {Λk}k be the
sequence of the corresponding sets defined by (5.5). If Tk → z1 or Tk → zm or
Fk → 0 then diam(Λk) → 0.

Proof. Let Tk → z1. Then by the definition of the set Λk, we obtain

0 =
m
∑

i=1

riλ
k
i (zi − Tk) = r1λ

k
1(z1 − Tk) +

m
∑

i=2

riλ
k
i (zi − Tk) ∀λk ∈ Λk, ∀k ≥ 1.
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The first term on the right-hand side is non-negative and tends to zero for k → ∞.
The second term is non-positive for sufficiently large k and therefore λk

i → 0, i =
2, . . . , m. Since it also holds

(5.7) Fk =

m
∑

i=1

riλ
k
i ∀λk ∈ Λk, ∀k ≥ 1,

we obtain

λk
1 − λ̃k

1 = − 1

r1

m
∑

i=2

ri(λ
k
i − λ̃k

i ) → 0, ∀λk, λ̃k ∈ Λk

which means that diam(Λk) → 0.
Similarly, we can prove the assertion for the case Tk → zm. For the case Fk → 0,

the assertion also holds, since the equation (5.7) yields λk → 0 for any λk ∈ Λk. �

Since λ is the closed, convex and non-empty set, we can define uniquely the pro-
jection P of the space R

m onto the set Λ with respect to the scalar product (D., .)m

in R
m:

(5.8) (D(η − P (η)), λ − P (η))m ≤ 0 ∀λ ∈ Λ.

Let v ∈ R
n and let c = c(v) ∈ R

2 solve the problem (Pv). Then the vector (Bv+Gc)−

belongs to Λ and
(

D(Bv − (Bv + Gc)−), λ − (Bv + Gc)−
)

m
=

=
(

D((Bv + Gc)+ − Gc), λ − (Bv + Gc)−
)

m

=
(

D(Bv + Gc)+, λ
)

m
+
(

c, GT D((Bv + Gc)− − λ)
)

2

=
(

D(Bv + Gc)+, λ
)

m
≤ 0 ∀λ ∈ Λ.

Therefore, by the definition (5.8) of the projection P ,

P (Bv) = (Bv + Gc)−.

It means that for the vectors w(k), k ≥ 0, generated by the Algorithm 3, and for
the solution w∗, we obtain (Bw(k))−, (Bw∗)− ∈ Λ. Thus, these vectors have the
common properties specified by the above lemmas. Mainly, for unstable loads, the
vectors (Bw(k))− are closed to the vector (Bw∗)−, which means that the vectors
Bw(k) have the similar set of the active “springs” as the vector Bw∗. Therefore we
can expect better convergence properties for Algorithm 3 than for Algorithm 1 for
such loads. It will be also demonstrated on numerical examples in the next section.

The set Λ is also important for the dual formulation of the problem, see [6], since
the vectors −λ, where λ ∈ Λ, can represent admissible Lagrange multipliers.

6. Numerical Examples

In this section, the convergence results of Algorithms 1-3 will be demonstrated on
the numerical examples.

We will consider the beam of the length l=1m with the parameter EI =
5 ∗ 105 Nm2. The subsoil is situated in the interval (xl, xr), where xl = 0.1 m and
xr = 0.9 m, and its stiffness coefficient is q = 5 ∗ 108 Nm−2. At the end points 0, l
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of the beam, we will consider the point loads F0 and Fl, which will be specified for
the concrete examples. The interval (0, l) will be divided into 10 ∗ 2j, j = 2, 3, . . . , 8,
equidistant parts. The situation is depicted in Figure 2.

0 1m0.1 T1T2 0.9

F0 Fl

?
?

Figure 2. Scheme of the tested problem.

We use the following stopping criterion:

‖r(k)‖n

‖f‖n
≤ ε, r(k) := f − Kw(k) − BT D(Bw(k))−,

where ε = 10−6 and r(k) is the k-th residuum of these algorithms. For an approxi-
mation of the bilinear form b, the reference numerical quadrature

∫ 1

−1

φ(ξ) dξ ≈ φ(−
√

3/3) + φ(
√

3/3)

is used. The linear problems with bilateral elastic springs are solved by the Cholesky
factorisation.

Example 1. Let F0 = −5000 N and Fl = −5000 N . Such a load fulfils the solvabil-
ity condition (2.5) and is stable, since the balance point T1 = 0.5 m is situated in
the centre of the subsoil interval. The dependence of the number of outer iterations
on the refinement parameter j of the partition is shown in Table 1.

Notice that the number of outer iterations does not depend on j and are practically
the same for all the algorithms. The number of iterations for the ”projected” step
in Algorithm 3 are about four. The approximated solution for j = 8, i.e. for 2560
elements, is depicted in Figure 3.

Example 2. Let F0 = −5000 N and Fl = −1000 N . Such a load fulfils the solv-
ability condition (2.5) and is not too stable, since the balance point T2 = 0.1667 m
is closed to the end point xl of the subsoil. The dependence of the number of outer
iterations on the refinement parameter j of the partition is shown in Table 1.

Notice that the number of outer iterations does not depend on j. The number of
outer iterations for Algorithm 3 are smaller than for Algorithms 1,2, which is the
expected result.

The approximated solution for j = 8 is depicted in Figure 3.

7. Conclusion

The descent direction methods with and without projection have been introduced
and analysed. The methods can be generalised for the problems with more parts of
the subsoil and also for two-dimensional models of thin elastic plates.

The methods have been illustrated on numerical examples. Other numerical ex-
amples, which confirm some theoretical results, can be found in [8].
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Ex. 1 2 3 4 5 6 7 8

ALG1 4 3 4 4 4 4 4

ALG2 3 3 3 3 3 4 4

ALG3 3 3 3 3 3 3 3

Ex. 2 2 3 4 5 6 7 8

ALG1 6 6 7 8 7 8 8

ALG2 5 5 6 6 6 6 6

ALG3 2 2 2 2 2 2 2

Table 1. Numbers of outer iterations for Examples 1 and 2.
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Figure 3. Approximated beam deflections w for Examples 1 and 2.
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