Matrix computations with applications

Iveta Hnětynková

Institute of Computer Science, Czech Academy of Sciences

Faculty of Mathematics and Physics, Charles University in Prague

Visegrad Group Academies Young Researcher Award 14.10.2014

Main collaborators

- Marie Kubínová (Emory University, USA)
- Martin Plešinger (Technical University of Liberec)
- Rosemary Renaut (Arizona State University, USA)
- ► Maria Diana Sima (Katholieke Universiteit Leuven, Belgium)
- Zdeněk Strakoš (Charles University in Prague)
- ► Sabine Van Huffel (Katholieke Universiteit Leuven, Belgium)

Problems of interest

- ▶ Linear algebraic systems Ax = b, $A \in \mathbb{R}^{n \times n}$ nonsingular: discretization of differential or integral equations from modelling, e.g., in material science, continuum mechanics
- ▶ Linear approximation problems $Ax \approx B, A \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{n \times d}$: errors-in-variables modeling, e.g, in statistical applications
- ► Linear ill-posed problem $Ax \approx b$: image processing (medical, radar, sonar imaging, astronomical observations), bioelectrical inversion problems, seismology

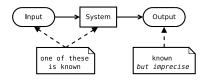
Often, A (representing a model) is large and sparse, thus Krylov subspace iterative methods are used to solve them,

$$A_k x_k = b_k$$

$$\mathcal{K}_k(A,b) = Span\{b, Ab, \ldots, A^{k-1}b\}.$$

Inverse problems in image processing

Inverse Problem

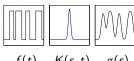


Inverse problems are often modeled by a Fredholm integral of the first kind with a kernel K(s, t) having a smoothing property,

$$g(s) = \int_I K(s,t)f(t)dt.$$

Example: barcode reading

kernel blurred sharp

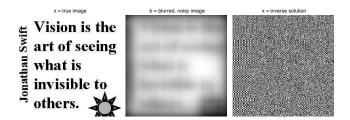


Naive solution

Discretization leads to complicated noise contaminated problems

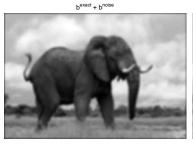
$$b \approx Ax + e$$
.

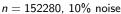
The presence of noise in the measured data and the properties of the problem result in "naive" solution $x := A^{\dagger}b$ that is meaningless.



Regularization and denoising

Theoretical analysis of Krylov subspace method – Golub-Kahan iterative bidiagonalization led to cheap estimator of the unknown noise. This allows to denoise the problem.





reconstruction

Research projects

- ► Image Processing in Jewellery Industry with Emphasize on Defect Analysis: financed by Preciosa a.s. (2014 - 15)
 → image processing methods in detection of defects in the produced stones
- ► Iterative Methods in Numerical Mathematics: Analysis, Preconditioning, and Applications: GAČR grant (2013 - 17) → fundamental research of Krylov subspace methods
- University Center for Mathematical Modeling, Applied Analysis and Computational Mathematics: University Center of Excellence (2012 - 17)
 - ightarrow apply state-of-art mathematical tools in applied sciences
- Necas Center for Mathematical Modeling: (2013 ?)
 → theoretical and applied math in continuum mechanics

Thank you for your kind attention.