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The quest for basic fuzzy logic was initiated by Petr Hájek when he proposed his basic fuzzy logic BL,
complete with respect to the semantics given by all continuous t-norms. Later weaker systems, such as
MTL, UL or psMTLr, complete with respect to broader (but still meaningful for fuzzy logics) semantics,
have been introduced and disputed the throne of the basic fuzzy logic. We contribute to the quest with our
own proposal of a basic fuzzy logic. Indeed, we put forth a very weak logic called SL`, introduced and
studied in [4, 3], and propose it as a base of a new framework which allows to work in a uniform way with
both propositional and first-order fuzzy logics.

1 T-norm based fuzzy logics and core fuzzy logics
Mathematical Fuzzy Logic (MFL) started as the study of logics based on particular continuous t-norms,
most prominently Łukasiewicz logic �, Gödel–Dummett logic G and Product logic Π. These logics are
rendered in a language with the truth-constant 0 (falsum) and binary connectives → (implication) and &
(fusion, residuated/strong conjunction). They are complete with respect to the standard semantics, which
has the real-unit interval [0, 1] as the set of truth degrees and interprets falsum ⊥ by 0, fusion & by the
corresponding t-norm, and the implication→ by its residuum, which always exists for continuous t-norms.
On the other hand, these systems are also complete with respect to an algebraic semantics and with respect
to the subclass of their linearly ordered members. In this context, Petr Hájek introduced a natural question:
is it possible to see �, G and Π (and, in general, any fuzzy logic with a continuous t-norm-based semantics)
as extensions of the same fuzzy logic? In other words: is there a basic fuzzy logic underlying all (by then)
known fuzzy logic systems? As an answer to this question, he introduced in his monograph [8] a system,
weaker than �, G and Π, which he named BL (for basic logic). Nowadays the logic is called in his honor
Hájek Logic HL.

Hájek proved completeness of HL with respect to the corresponding class of the so-called HL-algebras
and even HL-chains and conjectured that it should be also complete with respect to the standard HL-
algebras (i.e., algebras whose lattice reduct in the real unit interval with the usual order); the conjecture
was later proved true in [2]. Therefore, HL could really be seen, at that time, as a basic fuzzy logic.
Indeed, it was a genuine fuzzy logic because it retained what was then seen as the defining property of
fuzzy logics: completeness with respect to a semantics based on continuous t-norms. And it was also basic
in the following two senses:

1. it could not be made weaker without losing essential properties and

2. it provided a base for the study of all fuzzy logics.

The first item followed from the completeness of HL w.r.t. the semantics given by all continuous t-
norms; thus, in a context of continuous t-norm based logics one could not possibly take a weaker system.
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The second meaning relied on the fact that the three main fuzzy logics (�, G, and Π) are all axiomatic
extensions of HL and, in fact, the methods used by Hájek to introduce, algebraize, and study HL could
be utilized for any other logic based on continuous t-norms. Actually, already in [8], Hájek developed a
uniform mathematical theory for MFL. He considered all axiomatic extensions of HL (not just the three
prominent ones) as fuzzy logics (he called them schematic extensions) and systematically studied their
first-order extensions, extensions with modalities, complexity issues, etc.

However, the later development of MFL has shown that HL was actually not basic enough. That is, HL
was indeed a good basic logic for the initial framework in which it was formulated, but the active research
area that Hájek helped creating soon expanded its horizons to broader frameworks. Therefore, Hájek had
not settled but only initiated the quest for the basic fuzzy logic. The first step towards a broader point of
view was taken by Esteva and Godo, who noticed that the necessary and sufficient condition for a t-norm to
have a residuum is not continuity, but left-continuity. Inspired by this fact they introduced in [5] the logic
MTL. Similarly to the previous cases, Esteva and Godo proved that MTL is complete both w.r.t. the seman-
tics given by all MTL-algebras and w.r.t. MTL-chains. Moreover, in [13], Jenei and Montagna proved MTL
to be complete with respect to the standard semantics given by all left-continuous t-norms. Thus it was a
better candidate than HL for a basic fuzzy logic: again it was a genuine fuzzy logic enjoying a standard
completeness theorem, it could not be made weaker without losing this property, and all known fuzzy logics
could be obtained as extensions of MTL, thus providing a good base for a new systematical study of MFL.

In fact, Petr Hájek saluted MTL as the new basic fuzzy logic and defined (in a joint work with Petr Cin-
tula [11]) a precise general framework taking MTL as the basic system and not restricting to its axiomatic
extensions (i.e. logics in the same language as MTL) but rather to its axiomatic expansions (by allowing
new additional connectives). In particular they introduced two classes of logics large enough to cover the
most of then studied fuzzy logics. The rough idea was to capture, by simple syntactic means, a class of
logics which share many desirable properties with MTL.

Definition 1. A logic L in a language L is a core fuzzy logic if it an axiomatic expansion of MTL such
that for all L-formulae ϕ, ψ, χ the following holds:

ϕ↔ ψ `L χ↔ χ′, (Cong)

where χ′ is a formula resulting from χ by replacing some occurrences of its subformula ϕ by the formula ψ.

An important logic, which does not fall under the scope of the previous definition, is the logic MTL4:
the expansion of MTL with the Monteiro–Baaz projection connective 4. Taking MTL4 as an alternative
basic logic, Hájek and Cintula defined another class of fuzzy logics, the 4-core fuzzy logics.

Core and 4-core fuzzy logics are all finitary and well-behaved from several points of view. In particular,
for every such logic L one can define in a natural way a corresponding class of algebraic structures, L-
algebras, which provide a complete semantics as in the case of MTL or the previously mentioned logics
and, more importantly, the completeness theorem is preserved if we restrict ourselves to linearly ordered
L-algebras. However, there are logics expanding MTL studied in the literature which are not core or 4-
core because they need some additional deduction rules, the prominent examples being the logic PL′ (the
extension of Łukasiewicz logic with an additional product-like conjunction which has no zero-divisors
[12]) or logics with truth-hedges [6].

2 The quest goes on . . .
The quest for the basic fuzzy logic did not end with MTL (or MTL4). Indeed, MTL has been further
weakened in two different directions beyond the framework of core fuzzy logics:

(a) by dropping commutativity of conjunction Petr Hájek obtained a system, psMTLr [9], which Jenei
and Montagna proved to be complete with respect to the semantics on non-commutative residuated
t-norms [14],

(b) by removing integrality (i.e. not requiring the neutral element of conjunction to be maximum of the
order) Metcalfe and Montagna proposed the logic UL which is, in turn, complete with respect to
left-continuous uninorms [15].
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Petr Hájek liked to describe this process of successive weakening of fuzzy logics by telling the joke of
the crazy scientist that studied fleas by removing their legs one by one and checking whether they could still
jump [10].1 Namely, if HL was the original flea, it lost the ‘right-continuity leg’ when it was substituted by
MTL, and then psMTLr and UL respectively lost the ‘commutativity and the integrality leg’ while retaining
the ability to ‘jump’ (i.e., the completeness w.r.t. intended semantics based on reals).

These weaker fuzzy logics can be fruitfully studied in the context of substructural logics. Recall the
bounded full Lambek logic FL, a basic substructural logic which does not satisfy any of the usual three
structural rules: exchange, weakening, and contraction. This logic can be given an algebraic semantics of
the variety of bounded pointed lattice-ordered residuated monoids (usually referred to as bounded pointed
residuated lattices or FL-algebras). Intuitionistic logic together with logics FLe, FLw, and FLew are among
the most prominent extensions of FL. Actually, many fuzzy logics have been shown to be axiomatic exten-
sions of some of these prominent substructural logics by adding some axioms that enforce completeness
with respect to some class of linearly ordered residuated lattices (or chains). For instance, Gödel–Dummett
logic is the logic of linearly ordered Heyting algebras (FLewc-chains), MTL is the logic of FLew-chains, UL
is the logic FL`

e of FLe-chains, etc.
This common feature, completeness with respect to their corresponding linearly ordered algebraic

structures, has motivated the methodological paper [1] where the authors postulate that fuzzy logics are
the logics of chains, in the sense that they are logics complete with respect to a semantics of chains. How-
ever, all the fuzzy logics mentioned so far do enjoy a stronger property: the standard completeness theorem,
i.e. completeness with respect to a semantics of algebras defined on the real unit interval [0, 1] which Petr
Hájek and many others have considered to be the intended semantics for fuzzy logics. Following Hájek’s
flea joke, we could say that those fleas are fuzzy logics that jump well provided that they satisfy standard
completeness. Actually, many authors regard standard completeness as an essential requirement for fuzzy
logics. It is, thus, reasonable to expect any candidate for the basic fuzzy logic to satisfy this stronger re-
quirement. But, although they fulfill that, neither UL nor psMTLr can be taken as basic because they are
not comparable and hence do not satisfy our second meaning of basic. A reasonable candidate could be
the logic of FL-chains. But, interestingly enough, this logic does not enjoy the standard completeness (as
proved in [16]). Moreover, one can also argue that it is still not basic enough (in the first meaning) because
it satisfies a remaining structural rule: associativity. Hence, in the context of substructural logics, it could
still be made weaker by removing associativity.

The logic SL, a non-associative version of the bounded Full Lambek calculus, was introduced by
Galatos and Ono in [7] with its algebraic semantics being the variety of bounded lattice-ordered residuated
unital groupoids. The logic SL` of bounded linearly ordered residuated unital groupoids, was axiomatized
in [3], where we have also show that it enjoys the standard completeness.

3 SL` and core semilinear logics
The main goal of our talk is to propose SL` as a new basic fuzzy logic and a framework analogous to (and
encompassing) that of (4-)core fuzzy logics.

Definition 2. A logic L is a core semilinear logic if if satisfies the condition Cong and expands SL` by
some sets of axioms Ax and rules R such that for each 〈Γ, ϕ〉 ∈ R and every formula ψ we have:

Γ ∨ ψ `L ϕ ∨ ψ,

where by Γ ∨ ψ we denote the set {χ ∨ ψ | χ ∈ Γ}.

The class of core semilinear logics is a natural extension of (4-)core fuzzy logics, and we show that it
shares many of its nice properties, mainly that its logics are complete w.r.t. linearly ordered algebras and
it provides a suitable base to study not only propositional but also first-order logics. Thus one could argue

1A prominent biologist conducted a very important experiment. He trained a flea to jump upon giving her a verbal command
(“Jump!”). In a first stage of the experiment he removed a flea’s leg, told her to jump, and the flea jumped. So he wrote in his
scientific notebook: “Upon removing one leg all flea organs function properly.” So, he removed the second leg, asked the flea to jump,
she obeyed, so he wrote again: “Upon removing the second leg all flea organs function properly.” Thereafter he removed the last leg.
Told flea to jump, and nothing happened. So he wrote the conclusion: “Upon removing the last leg the flea loses sense of hearing.”
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that SL` is a good basic fuzzy logic in the second sense mentioned above. As regards the first sense, we
have already seen that SL` enjoys the standard completeness theorem; therefore our flea still jumps (and
jumps very well, even in the first-order case!). Moreover SL` is the weakest possible logic one could take
in the context of substructural logics in a language with lattice connectives, a conjunction which is not
required to satisfy any property corresponding to the usual structural rules and its left and right residua.

Thus we can arguably say that the quest for the basic fuzzy logic initiated by Petr Hájek so far seems
to culminate with SL`. We do not know whether Mathematical Fuzzy Logic will require an even weaker
system to serve as the basic fuzzy logic in the future. Only time will tell. What we can say is that, at the
moment, we do not see any remaining legs to be pulled.
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[11] P. Hájek and P. Cintula. On theories and models in fuzzy predicate logics. Journal of Symbolic Logic,
71(3):863–880, 2006.

[12] R. Horčı́k and P. Cintula. Product Łukasiewicz logic. Archive for Mathematical Logic, 43(4):477–
503, 2004.

[13] S. Jenei and F. Montagna. A proof of standard completeness for Esteva and Godo’s logic MTL. Studia
Logica, 70(2):183–192, 2002.

[14] S. Jenei and F. Montagna. A proof of standard completeness for non-commutative monoidal t-norm
logic. Neural Network World, 13(5):481–489, 2003.

[15] G. Metcalfe and F. Montagna. Substructural fuzzy logics. Journal of Symbolic Logic, 72(3):834–864,
2007.

[16] S. Wang and B. Zhao. HpsUL is not the logic of pseudo-uninorms and their residua. Logic Journal
of the Interest Group of Pure and Applied Logic, 17(4):413–419, 2009.

4


