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The modal mu-calculus was defined by Kozen [6] and is obtained by adding to the basic modal logic the least and
greatest fixed point operators. (For an overview of mu-calculus see the chapter by Bradfield and Stirling [2].) The corre-
spondence and completeness of logics with fixed point operators has been the subject of recent studies by Bezhanishvili
and Hodkinson [1] and Conradie et al. [3]. Both of these works aim to develop a Sahlqvist-like theory for their respective
fixed point settings.

Sahlqvist theory is one of the most important and powerful ideas in the study of modal and related logics. The theory
consists of two parts: canonicity and correspondence. The Sahlqvist formulas are a recursively defined class of modal
formulas with a particular syntactic shape. Any modal logic axiomatized by Sahlqvist formulas is strongly complete (via
canonicity) with respect to its class of Kripke frames, and the latter is moreover guaranteed to be an elementary class. The
work in [1] looks at both of these aspects, obtaining a syntactic class which allows for limited use of fixed point operators
and for which a modified version of canonicity is proved. By contrast, [3] looks at only correspondence, and using an
algorithmic approach obtains results for a much broader class of formulas. This algorithmic approach builds on work by
Conradie and Palmigiano [4] on canonicity and correspondence for distributive modal logic.

In this work we prove that the members of a certain class of intuitionistic mu-formulas are canonical, in the sense of [1];
that is, they are preserved under certain modified canonical extensions. Our methods use a variation of the ALBA algo-
rithm (Ackermann Lemma Based Algorithm) developed in [4]. We show that all mu-inequalities that can be successfully
processed by our algorithm, µ∗-ALBA, are canonical. This is done via a “U-shaped argument” (see Figure 1), a generic
version of which we now outline.

Let A be a bounded lattice with additional operations, and L a language interpretable in A. We denote by Aδ the
canonical extension of A; this is a dense and compact completion of A with the additional operations extended to the
completion as defined by Gehrke and Harding [5]. Note that Aδ is a perfect lattice, i.e., it is a complete lattice which is
join-generated by its completely join-irreducible elements (J∞(Aδ)) and meet-generated by its completely meet-irreducible
elements (M∞(Aδ)). In Aδ we can interpret an extended language L+ which adds special variables called nominals and
co-nominals which range over J∞(Aδ) and M∞(Aδ) respectively, and also possibly operations corresponding to the adjoints
and residuals of those of L. An L+ formula is pure if it contains no ordinary (propositional) variables but only, possibly,
nominals and co-nominals.

An assignment on Aδ sends propositional variables to elements of Aδ, nominals into J∞(Aδ) and co-nominals into
M∞(Aδ). An admissible assignment on Aδ is one which takes all propositional variables to elements of A. AnL+ inequality
α ≤ β is admissibly valid on Aδ, denoted Aδ |=A α ≤ β, if it holds under all admissible assignments.

The aim is to “purify” an inequality α ≤ β by rewriting it as a (set of) pure (quasi-)inequalities, denoted pure(α ≤ β)
in Figure 1. The fact that admissible and ordinary validity coincide for pure inequalities is the lynchpin for the transition
from validity in A (simulated as admissible validity in Aδ) to validity in Aδ, i.e., canonicity.

1 Language and interpretation

A bi-Heyting algebra is an algebra (A,∧,∨,→,−,>,⊥) such that both (A,∧,∨,→,>,⊥) and (A,∧,∨,−,>,⊥)∂ are Heyting
algebras. A modal bi-Heyting algebra is an algebra (A,∧,∨,→,−,>,⊥,�,^) such that (A,∧,∨,→,−,>,⊥) is bi-Heyting

1



A |= α ≤ β

⇔

Aδ |=A α ≤ β

⇔

Aδ |=A pure(α ≤ β) Aδ |= pure(α ≤ β)

⇐
⇒

⇐⇒

Aδ |= α ≤ β

Figure 1: The U-shaped argument for canonicity of inequalities interpreted on a lattice-based algebra A.

algebra and � and ^ preserve finite meets and joins, respectively. A perfect bi-Heyting algebra is a bi-Heyting algebra the
lattice reduct of which is a perfect distributive lattice. A perfect modal bi-Heyting algebra is a modal bi-Heyting algebra
the bi-Heyting reduct of which is a perfect bi-Heyting algebra, and moreover such that � and ^ preserve arbitrary meets
and joins, respectively. The canonical extension Aδ of any modal bi-Heyting algebra is perfect.

Formulas in the basic language L of modal bi-Heyting algebras are defined recursively by

ϕ ::= ⊥ | > | p | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ − ψ | ^ϕ | �ϕ

where p ∈ PROP. Formulas in the extended language L+ are defined by

ϕ ::= ⊥ | > | p | j | m | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ − ψ | ^ϕ | �ϕ | �ϕ | _ϕ

where p ∈ PROP, j ∈ NOM and m ∈ CO-NOM. On perfect modal bi-Heyting algebras � and _ are interpreted as the right
and left adjoints of ^ and �, respectively. We will use the terms ‘formula’ and ‘term’ interchangeably, and also denote the
set of all terms in L by Term and the terms of L+ by Term+. We now describe two extensions of Term obtained by adding
fixed point operators. The distinction between the two extensions will become clear when we define their interpretations
on distributive lattices with operators.

We define Term1 to be the set of terms which extends Term by allowing terms µx.t(x) and νx.t(x) where t ∈ Term1
and t(x) is positive in x. The second extension is denoted Term2 and extends Term by allowing construction of the terms
LFP2x.t(x) and GFP2x.t(x) where t ∈ Term2 and t(x) is positive in x.

The terms of Term, Term1 and Term2 are interpreted on modal bi-Heyting algebras as follows: Suppose t(x1, x2, . . . , xn) ∈
Term1 and a1, . . . , an ∈ A. Then µx1.t(x1, a2, . . . , an) :=

∧
{a ∈ A | t(a, a2, . . . , an) ≤ a} if this meet exists, otherwise

µx1.t(x1, a2, . . . , an) is undefined. Similarly, νx1.t(x1, a2, . . . , an) :=
∨
{a ∈ A | a ≤ t(a, a2, . . . , an)} if this join exists,

otherwise νx1.t(x1, a2, . . . , an) is undefined. For each ordinal α we define tα(⊥, a2, . . . , an) as follows:

t0(⊥, a1, . . . , an) = ⊥, tα+1(⊥, a1, . . . , an) = t
(
tα(⊥, a1, . . . , an), a2, . . . , an

)
,

tλ(⊥, a1, . . . , an) =
∨
α<λ

tα(⊥, a2, . . . , an) for limit ordinals λ;

t0(>, a1, . . . , an) = >, tα+1(>, a1, . . . , an) = t
(
tα(>, a1, . . . , an), a2, . . . , an

)
,

tλ(>, a1, . . . , an) =
∧
α<λ

tα(>, a2, . . . , an) for limit ordinals λ.

We then define LFP2x.t(x, a2, . . . , an) :=
∨
α≥0 tα(⊥, a2, . . . , an) and GFP2x.t(x, a2, . . . , an) :=

∧
α≥0 tα(>, a2, . . . , an) if

this join and this meet exist, and they are undefined otherwise.

A modal bi-Heyting algebra A is called a µ-algebra of type 1 (of type 2) if tA(a1, . . . , an) is defined for all a1, . . . , an ∈ A
and all t ∈ Term1 (t ∈ Term2).

Lemma 1.1. If A is a µ-algebra of type 2, then it is also a µ-algebra of type 1.
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The final sets of terms, Term∗ (resp., Term+∗ ), are obtained as an extension of L (resp., L+) by allowing µ∗x.t(x) and
ν∗x.t(x) whenever t ∈ Term∗ (resp., t ∈ Term+∗ ). Terms in Term∗ and Term+∗ are only interpreted in the canonical extensions
Aδ of modal bi-Heyting algebras A. If t(x1, x2, . . . , xn) ∈ Term∗ ∪ Term+∗ and a1, . . . , an ∈ Aδ, then µ∗x1.t(x1, a2, . . . , an) :=∧
{a ∈ A | t(a, a2, . . . , an) ≤ a} and ν∗x1.t(x1, a2, . . . , an) :=

∨
{a ∈ A | a ≤ t(a, a2, . . . , an)}. Given a term ϕ ∈ Term+1 we

write ϕ∗ for the Term+∗ term obtained from ϕ by replacing all occurrences of µ and ν with µ∗ and ν∗, respectively.

2 µ∗-ALBA

The restricted version of µ-ALBA, called µ∗-ALBA, is based on a calculus consisting of the following derivation rules:

First approximation rule.

ϕ ≤ ψ
(FA)

∀j∀m[(j ≤ ϕ & ψ ≤ m)⇒ i ≤ m]

Approximation and adjunction rules for connectives.

ϕ ∨ χ ≤ ψ
(∨LA)

ϕ ≤ ψ χ ≤ ψ

ϕ ≤ χ ∨ ψ
(∨RR)

ϕ − χ ≤ ψ

ψ ≤ ϕ ∧ χ
(∧RA)

ψ ≤ ϕ ψ ≤ χ

χ ∧ ψ ≤ ϕ
(∧LR)

χ ≤ ψ→ ϕ

^ϕ ≤ ψ
(^LA)

ϕ ≤ �ψ

ϕ ≤ �ψ
(�RA)

_ϕ ≤ ψ

�ψ ≤ m
(�Appr)

∃n(�n ≤ m & ψ ≤ n)
ϕ ≤ χ→ ψ

(→RR)
ϕ ∧ χ ≤ ψ

χ − ψ ≤ ϕ
(−LR)

χ ≤ ψ ∨ ϕ

j ≤ ^ψ
(^Appr)

∃i(j ≤ ^i & i ≤ ψ)
χ→ ϕ ≤ m

(→Appr)
∃j∃n(j→ n ≤ m & j ≤ χ & ϕ ≤ n)

i ≤ χ − ϕ
(−Appr)

∃j∃n(i ≤ j − n & j ≤ χ& ϕ ≤ n)

Restricted approximation rules for fixed point binders.

i ≤ µ∗X.ψ(ϕ/x, X)
(µε∗-A-R)

O
n
i=1(∃jεi [i ≤ µ∗X.ψ(ji

ε
/x, X) & jεi ≤εi ϕi])

ν∗X.ϕ(ψ/x, X) ≤ m
(νε∗-A-R)

O
n
i=1(∃nεi [ν∗X.ϕ(ni

ε/x, X) ≤ m & ψi ≤
εi nεi ])

where

1. in each rule, the variables x ∈ Var do not occur in any formula in ψ or in ϕ;

2. all propositional variables and free fixed point variables in ψ(x, X) and ϕ(x, X) are among x and X.

3. in (µε-A) we have µ∗X.ψ(ϕ/x, X) ∈ Term∗ and the associated term function of ψ(x, X) is completely
∨

-preserving in
(x, X) ∈ Aε × A; in particular we require that ψ(x, X) is positive (negative) in xi if εi = 1 (εi = ∂);

4. in (νε-A) we have ν∗X.ϕ(ψ/x, X) ∈ Term∗ and the associated term function of ϕ(x, X) is completely
∧

-preserving in
(x, X) ∈ Aε × A; in particular we require that ϕ(x, X) is positive (negative) in xi if εi = 1 (εi = ∂).
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Recursive Ackermann rules. These are the key rules used to eliminate propositional variables form inequalities. The
formulation of these rules require the notions of syntactically open and closed formulas. Informally, a Term+∗ -formula is
syntactically closed if, in it, all occurrences of nominals, _ and µ∗ are positive, while all occurrences of co-nominals, �
and ν∗ are negative. Similarly, an Term+∗ -formula is syntactically open if, in it all occurrences of nominals, _, and µ∗ are
negative, while all occurrences of co-nominals, � and ν∗ are positive. We are now ready to formulate the right and left
hand Ackermann rules, (RArec) and (LArec):

∃p[&n
i=1 αi(p) ≤ p & &m

j=1 β j(p) ≤ γ j(p)]
(RArec)

&m
j=1 β j(µ∗p.[

∨n
i=1 αi(p)]/p) ≤ γ j(µ∗p.[

∨n
i=1 αi(p)]/p)

subject to the restrictions that the αi and β j are positive in p and syntactically closed, while the γ j are negative in p and
syntactically open.

∃p[&n
i=1 p ≤ αi(p) & &m

j=1 γ j(p) ≤ β j(p)]
(LArec)

&m
j=1 γ j(ν∗p.[

∧n
i=1 αi(p)]/p) ≤ β j(ν∗p.[

∧n
i=1 αi(p)]/p)

subject to the restrictions that the αi and β j are positive in p and syntactically open, while the γ j are negative in p and
syntactically closed.

3 Canonicity

Theorem 3.1. All µ∗-ALBA rules preserve admissible validity of Term+∗ (quasi-)inequalities on the canonical extensions
Aδ of modal bi-Heyting algebras A of type 2.

This theorem allows us to instantiate the U-shaped argument of Figure 1 and derive the following corollary:

Corollary 3.2 (Canonicity). Let ϕ ≤ ψ be a Term1 inequality which can be reduced to (set of) pure (quasi-)inequalities by
means of µ∗-ALBA rules. Then, for any modal bi-Heyting algebra A of type 2, it holds that

A |= ϕ ≤ ψ iff Aδ |= ϕ∗ ≤ ψ∗.
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