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Every deductive system (or logic) S has an associated canonical class of algebras1,
denoted AlgS , and deductive systems are classified according to the relations they have
with the algebras in AlgS . A deductive system S has the congruence property if the
interderivability relation aS` is a congruence of the algebra of formulas. Two formulas
ϕ and ψ are related by aS` if and only if they belong to the same theories of S . When
this property lifts to every algebra S is said to be congruential2, that is, when for every
algebra A in the language of S the relation ΛA

S on A, defined by 〈a, b〉 ∈ ΛA
S if and only if

a, b belong to the same S-filters3, is a congruence of A. This is equivalent to saying that
for every A ∈ AlgS , ΛA

S is the identity relation.

The results gathered in next theorem were proved in [3] and discussed and proved with
different methods in [6, 7].

teor:starting Theorem 1. Every finitary deductive system S with the congruence property and the property of
conjunction (with PC) or with a binary term x → y for which Modus Ponens and the deduction
theorem hold (with DDT), is congruential and its canonical class of algebras AlgS is a variety.

If S is a finitary deductive system with the congruence property and (PC) for a binary
term x ∧ y, then every algebra A ∈ AlgS has an equationally definable order ≤∧A, defined
by the equation x ∧ y ≈ x. Then the deductive system S satisfies that Γ `S ϕ if and only if

(1)(1) (1) ∀A ∈ AlgS ∀v ∈ Hom(Fm, A) ∀a ∈ A((∀ψ ∈ Γ, a ≤∧A v(ψ)) =⇒ a ≤∧A v(ϕ)),

for every set of formulas Γ and every formula ϕ. The algebras A ∈ AlgS of finitary
deductive systems S with the congruence property and (DDT) for a binary term x → y
also have an equationally definable order ≤→A , now defined by the equation x → y ≈ 1.
In this case S may not satisfy the condition above, but it satisfies that for every set of
formulas Γ and every formula ϕ, Γ `S ϕ if and only if

(2)(2) (2) ∀A ∈ AlgS ∀v ∈ Hom(Fm, A)v(ϕ) = v(1) or

∃ϕ0, . . . , ϕn ∈ Γ ∀A ∈ AlgS ∀v ∈ Hom(Fm, A) v(ϕ0 → (ϕ1 → . . . (ϕn → ϕ) . . .)) = v(1).

Condition (1) can be used to associate a finitary deductive system with every equation-
ally orderable (by a finite set of equations) quasivariety. Let L be an algebraic language,
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1The definitions of the concepts used, but not defined, in this abstract can be found in [4].
2In [3] these deductive systems are called strongly selfextensional and in fully selfextensional.
3A set F ⊆ A, is an S-filter of A if for every set of formulas Γ, every formula ϕ and every homomorphism v

from the algebra of formulas to A, if Γ `S ϕ and v[Γ] ⊆ F, then v(ϕ) ∈ F.
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µ(x, y) a finite set of L-equations in two variables and Q a quasivariety of L-algebras. We
say that Q is µ-equationally orderable if for every algebra A ∈ Q the relation defined on A by
the set of equations µ, that is,

≤µ
A:= {〈a, b〉 ∈ A2 : A |= µ(x, y)[a, b]},

is a partial order of A. The deductive system S≤
µ

Q is then defined as follows:

Γ `S≤µ

Q

ϕ iff ∀A ∈ Q ∀v ∈ Hom(Fm, A) ∀a ∈ A((∀ψ ∈ Γ) a ≤µ
A v(ψ)) =⇒ a ≤µ

A v(ϕ)).

Since Q is a quasivariety and µ is finite, this deductive system is finitary. Moreover it is
easily seen to have the congruence property. We refer to S≤

µ

Q as the deductive system of the µ-
order for Q. When Q is a quasivariety of algebras with a binary term x∧ y such that in every
algebra in Q its interpretation gives a meet-semilattice, then Q is {x ∧ y ≈ x}-equationally
orderable and the deductive system S≤

µ

Q (with µ(x, y) = {x ∧ y ≈ x}) has (PC). Thus, by

Theorem 1, S≤
µ

Q is congruential and from [6] follows that AlgS≤
µ

Q is the variety generated

by Q. In particular, when Q is a variety of residuated lattices, the deductive system S≤
µ

Q is
the deductive system that in [1] is called the logic of Q that preserves degrees of truth and
in this case we have AlgS≤

µ

Q = Q.

In [7] the quasivarieties Q with a binary term x → y satisfying that 1) x → x is a
constant term, whose interpretation on every A ∈ Q we denote by 1A, and that 2) for
every algebra A ∈ Q, the algebra 〈A,→A, 1A〉 is a Hilbert algebra are called Hilbert-based.
These quasivarieties are {x → y ≈ 1}-equationally orderable and therefore for each one of
them Q the deductive system of the {x → y ≈ 1}-order for Q. But for those quasivarieties
condition (2) above can also be used to associate a finitary deductive system. Given a
Hilbert-based quasivariety Q we denote the deductive system defined by condition (2) by
S→Q .

When a µ-equationally orderable quasivariety Q has a constant term 1 such that for
every A ∈ Q, 1A is the greatest element of the order ≤µ

A, we can also consider the 1-
assertional logic S1

Q of Q. If Q is 1-regular, then S1
Q is algebraizable. This happens, for

example, for all Hilbert-based quasivarieties. Recall that the 1-assertional logic of Q is
defined by

Γ `S1
Q

ϕ iff ∀A ∈ Q ∀v ∈ Hom(Fm, A) (∀ψ ∈ Γ) v(ψ) = 1A) =⇒ v(ϕ) = 1A).

If Q is a µ-equationally orderable variety, we do not need that S≤
µ

Q has (PC) to conclude

that it is congruential and with AlgS≤
µ

Q = Q. In the talk we will present the following
general result.

teor:2 Theorem 2. Let Q be a µ-equationally orderable variety. The deductive system S≤
µ

Q is congruential

and AlgS≤
µ

Q = Q.

We will also discuss other results on deductive systems associated with a µ-equationally
orderable quasivariety Q and the example of deductive systems associated with quasiva-
rieties of BCK-algebras, BCK-meet-semilattices and BCK-join-semilattices, possibly with
other operations apart form the implication. The quasivariety BCK of BCK-algebras is
{x → y ≈ 1}-equationally orderable and so are the quasivarieties of algebras with a BCK
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reduct. We will show that the 1-assertional logic of BCK is different from S≤
µ

BCK (where
µ = {x → y ≈ 1}). This also holds for the quasivariety of BCK-meet-semilattices, denoted
BCK∧, the quasivariety of BCK-join-semilattices, denoted BCK∨, and the quasivariety
of BCK-lattices, denoted BCKL. Since these quasivarieties are indeed a variety (see [5]),
S≤

µ

BCK∧
, S≤

µ

BCK∨
and S≤

µ

BCKL are congruential. Note that S≤
µ

BCK∨
is not encompassed by

Theorem 1.

In the particular case of the variety Hi of Hilbert algebras we find the same situation
as for BCK-algebras: S1

Hi is different from S≤
µ

BCK. In this case both logics are congruential.
For the first it follows form Theorem 1 and for the second from Theorem 2, since Hi is
a variety. Moreover S1

Hi = S
→
Hi . When we move to the variety Hi∧ of Hilbert algebras

with infimum (i.e. BCK-meet-semilattices whose BCK-reduct is a Hilbert algebra), the
situation changes dramatically, the three deductive systems S1

Hi, S
→
Hi and S≤

µ

Hi are different.
Moreover it holds that for a subvariety K ⊆ Hi∧, the three deductive systems S1

K, S→K and
S≤

µ

Hi are equal if and only if K is a variety of implicative semilattices.

In [3] it is also shown that for every finitary deductive system S with theorems, the
congruence property and (PC) for a binary term x ∧ y, the Gentzen system GS defined by
the structural rules (identity, weakening, exchange, contraction, cut), the congruence rules
for every n-ary connective ?,

ϕi � ψi, ψi � ϕi : i < n
?(ϕ0 . . . ϕn−1)� ?(ψ0 . . . ψn−1)

, and the axiom rules
Γ � ϕ

for every finite set of formulas Γ and every formula ϕ such that Γ `S ϕ, and where Γ is any
finite sequence of all the formulas in Γ, is algebraizable with equivalent algebraic semantics
AlgS , translation s from equations to sequents given by s(ϕ ≈ ψ) := {ϕ � ψ, ψ � ϕ} and
translation ρ from sequents to equations defined by

ρ(� ϕ) := {ϕ ≈ 1}, ρ(ϕ0, . . . , ϕn � ϕ) := {ϕ0 ∧ . . . ∧ ϕn ∧ ϕ ≈ ϕ0 ∧ . . . ∧ ϕn},

where 1 is a fixed theorem of S . Moreover it holds that S is the internal deductive system
of GS

4. Therefore, if Q is a {x ∧ y ≈ x}-equationally orderable quasivariety, then the
Gentzen system GS≤Q

is algebraizable with equivalent algebraic semantics the variety

generated by Q and S≤Q is the internal deductive system of GS≤Q
.

In [3] it is also shown that every deductive system S with the congruence property
and a binary term x → y for which Modus Ponens and the deduction theorem hold, the
Gentzen system G→S defined by the rules above together with the rule

Π, ϕ � ψ

Π � ϕ→ ψ
,

is algebraizable with equivalent algebraic semantics AlgS , the translation s from equations
to sequents defined as before and the translation η from sequents to equations defined by

η(� ϕ) := ϕ ≈ 1, η(ϕ0, . . . , ϕn � ϕ) := ϕ0 → (ϕ1 → . . . (ϕn → ϕ) . . .) ≈ 1,

4Given sequent calculus G with all the structural rules, its internal deductive system SG is defined by Γ `SG ϕ

if and only if there is a finite set ∆ ⊆ Γ such that for every finite sequence ∆ of all the formulas in ∆ the sequent
∆� ϕ is derivable in GS .
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where again 1 is a fixed theorem, for example x → x, and S is the internal deductive
system of G→S .

If time permits, we will also discuss the relations of the deductive systems discussed for
quasivarieties of BCK-algebras and Hilbert algebras (perhaps with additional operations)
with the corresponding Gentzen systems associated to them according to [3].
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