Every deductive system (or logic) S has an associated canonical class of algebras1, denoted $\text{Alg} S$, and deductive systems are classified according to the relations they have with the algebras in $\text{Alg} S$. A deductive system S has the congruence property if the interderivability relation \vdash_S is a congruence of the algebra of formulas. Two formulas φ and ψ are related by \vdash_S if and only if they belong to the same theories of S. When this property lifts to every algebra A is said to be congruential2, that is, when for every algebra A in the language of S the relation Λ_A^S on A, defined by $\langle a, b \rangle \in \Lambda_A^S$ if and only if a, b belong to the same S-filters3, is a congruence of A. This is equivalent to saying that for every $A \in \text{Alg} S$, Λ_A^S is the identity relation.

The results gathered in next theorem were proved in [3] and discussed and proved with different methods in [6, 7].

Theorem 1. Every finitary deductive system S with the congruence property and the property of conjunction (with PC) or with a binary term $x \to y$ for which Modus Ponens and the deduction theorem hold (with DDT), is congruential and its canonical class of algebras $\text{Alg} S$ is a variety.

If S is a finitary deductive system with the congruence property and (PC) for a binary term $x \land y$, then every algebra $A \in \text{Alg} S$ has an equationally definable order \leq_A^S, defined by the equation $x \land y \approx x$. Then the deductive system S satisfies that $\Gamma \vdash_S \varphi$ if and only if

\begin{align}
(1) & \quad \forall A \in \text{Alg} S \forall \nu \in \text{Hom}(\text{Fm}, A) \forall a \in A((\forall \psi \in \Gamma, \ a \leq_A^S \nu(\psi)) \implies a \leq_A^S \nu(\varphi)), \\
(2) & \quad \forall A \in \text{Alg} S \forall \nu \in \text{Hom}(\text{Fm}, A) \nu(\varphi) = \nu(1) \text{ or} \\
& \quad \exists \varphi_0, \ldots, \varphi_n \in \Gamma \forall A \in \text{Alg} S \forall \nu \in \text{Hom}(\text{Fm}, A) \nu(\varphi_0 \to (\varphi_1 \to \ldots (\varphi_n \to \varphi) \ldots)) = \nu(1).
\end{align}

Condition (1) can be used to associate a finitary deductive system with every equationally-orderable (by a finite set of equations) quasivariety. Let L be an algebraic language,

1The definitions of the concepts used, but not defined, in this abstract can be found in [4].
2In [3] these deductive systems are called strongly selfextensional and in fully selfextensional.
3A set $F \subseteq A$, is an S-filter of A if for every set of formulas Γ, every formula φ and every homomorphism ν from the algebra of formulas to A, if $\Gamma \vdash_S \varphi$ and $\nu(\Gamma) \subseteq F$, then $\nu(\varphi) \in F$.

\begin{flushright}
RAMON JANSANA
\end{flushright}

This research has been partially supported by 2009SGR1433 research grant of the research funding agency AGAUR of the Generalitat de Catalunya and by the MTM2011-25747 research grant of the Spanish Ministry of Science and Innovation.
\(\mu(x, y) \) a finite set of \(L \)-equations in two variables and \(Q \) a quasivariety of \(L \)-algebras. We say that \(Q \) is \(\mu \)-equationally orderable if for every algebra \(A \in Q \) the relation defined on \(A \) by the set of equations \(\mu \), that is,

\[
\leq^\mu_A := \{(a, b) \in A^2 : A \models \mu(x, y)[a, b]\},
\]

is a partial order of \(A \). The deductive system \(S^\mu_Q \) is then defined as follows:

\[
\Gamma \vdash_{S^\mu_Q} \varphi \iff \forall A \in Q \forall v \in \text{Hom}(\text{Fm}, A) \forall a \in A((\forall \psi \in \Gamma) a \leq^\mu_A v(\psi)) \implies a \leq^\mu_A v(\varphi).
\]

Since \(Q \) is a quasivariety and \(\mu \) is finite, this deductive system is finitary. Moreover it is easily seen to have the congruence property. We refer to \(S^\mu_Q \) as the deductive system of the \(\mu \)-order for \(Q \). When \(Q \) is a quasivariety of algebras with a binary term \(x \wedge y \) such that in every algebra in \(Q \) its interpretation gives a meet-semilattice, then \(Q \) is \(\{x \wedge y \approx x\} \)-equationally orderable and the deductive system \(S^\mu_Q \) (with \(\mu(x, y) = \{x \wedge y \approx x\} \)) has (PC). Thus, by Theorem 1, \(S^\mu_Q \) is congruential and from [6] follows that \(\text{Alg}S^\mu_Q \) is the variety generated by \(Q \). In particular, when \(Q \) is a variety of residuated lattices, the deductive system \(S^\mu_Q \) is the deductive system that in [1] is called the logic of \(Q \) that preserves degrees of truth and in this case we have \(\text{Alg}S^\mu_Q = Q \).

In [7] the quasivarieties \(Q \) with a binary term \(x \rightarrow y \) satisfying that 1) \(x \rightarrow x \) is a constant term, whose interpretation on every \(A \in Q \) we denote by \(1^A \), and that 2) for every algebra \(A \in Q \), the algebra \(\langle A, \rightarrow^A, 1^A \rangle \) is a Hilbert algebra are called Hilbert-based. These quasivarieties are \(\{x \rightarrow y \approx 1\} \)-equationally orderable and therefore for each one of them \(Q \) the deductive system of the \(\{x \rightarrow y \approx 1\} \)-order for \(Q \). But for those quasivarieties condition (2) above can also be used to associate a finitary deductive system. Given a Hilbert-based quasivariety \(Q \) we denote the deductive system defined by condition (2) by \(S^\mu_Q \).

When a \(\mu \)-equationally orderable quasivariety \(Q \) has a constant term 1 such that for every \(A \in Q \), \(1^A \) is the greatest element of the order \(\leq^\mu_A \), we can also consider the 1-assertional logic \(S^1_Q \) of \(Q \). If \(Q \) is 1-regular, then \(S^1_Q \) is algebraizable. This happens, for example, for all Hilbert-based quasivarieties. Recall that the 1-assertional logic of \(Q \) is defined by

\[
\Gamma \vdash_{S^1_Q} \varphi \iff \forall A \in Q \forall v \in \text{Hom}(\text{Fm}, A) \forall \psi \in \Gamma \forall a \in A((\forall v(\psi) = 1^A) \implies v(\varphi) = 1^A).
\]

If \(Q \) is a \(\mu \)-equationally orderable variety, we do not need that \(S^\mu_Q \) has (PC) to conclude that it is congruential and with \(\text{Alg}S^\mu_Q = Q \). In the talk we will present the following general result.

Theorem 2. Let \(Q \) be a \(\mu \)-equationally orderable variety. The deductive system \(S^\mu_Q \) is congruential and \(\text{Alg}S^\mu_Q = Q \).

We will also discuss other results on deductive systems associated with a \(\mu \)-equationally orderable quasivariety \(Q \) and the example of deductive systems associated with quasivarieties of BCK-algebras, BCK-meet-semilattices and BCK-join-semilattices, possibly with other operations apart form the implication. The quasivariety BCK of BCK-algebras is \(\{x \rightarrow y \approx 1\} \)-equationally orderable and so are the quasivarieties of algebras with a BCK
reduct. We will show that the 1-assertional logic of BCK differs from S^{\leq}_{BCK} (where $\mu = \{ x \to y \approx 1 \}$). This also holds for the quasivariety of BCK-meet-semilattices, denoted BCK^\wedge, the quasivariety of BCK-join-semilattices, denoted BCK^\vee, and the quasivariety of BCK-lattices, denoted BCK^ℓ. Since these quasivarieties are indeed a variety (see [5]), $S^{\leq}_{BCK^\wedge}$, $S^{\leq}_{BCK^\vee}$ and $S^{\leq}_{BCK^\ell}$ are congruential. Note that $S^{\leq}_{BCK^\wedge}$ is not encompassed by Theorem 1.

In the particular case of the variety Hi of Hilbert algebras we find the same situation as for BCK-algebras: S^{1}_{Hi} is different from S^{\leq}_{BCK}. In this case both logics are congruential. For the first it follows from Theorem 1 and for the second from Theorem 2, since Hi is a variety. Moreover $S^{1}_{Hi} = S^{\leq}_{Hi}$. When we move to the variety Hi^\wedge of Hilbert algebras with infimum (i.e. BCK-meet-semilattices whose BCK-reduct is a Hilbert algebra), the situation changes dramatically, the three deductive systems $S^{1}_{Hi^\wedge}$, $S^{\leq}_{Hi^\wedge}$ and $S^{\leq}_{Hi^\wedge}$ are different. Moreover it holds that for a subvariety $K \subseteq Hi^\wedge$, the three deductive systems $S^{1}_{K^\wedge}$, $S^{\leq}_{K^\wedge}$ and $S^{\leq}_{Hi^\wedge}$ are equal if and only if K is a variety of implicational semilattices.

In [3] it is also shown that for every finitary deductive system S with theorems, the congruence property and (PC) for a binary term $x \land y$, the Gentzen system G_{S} defined by the structural rules (identity, weakening, exchange, contraction, cut), the congruence rules for every n-ary connective *$
abla$
,

$$\frac{\varphi_{1}, \ldots, \varphi_{n} \vdash \psi_{1}, \ldots, \psi_{n} : i < n}{\ast(\varphi_{0}, \ldots, \varphi_{n-1}) \vdash \ast(\psi_{0}, \ldots, \psi_{n-1})}$$

and the axioms rules $\Gamma \vdash \varphi$ for every finite set of formulas Γ and every formula φ such that $\Gamma \vdash_{S} \varphi$, and where Γ is any finite sequence of the formulas in Γ, is algebraizable with equivalent algebraic semantics Alg_{S}, translation s from equations to sequents given by $s(\varphi \approx \psi) := \{ \varphi \vdash \psi, \psi \vdash \varphi \}$ and translation ρ from sequents to equations defined by

$$\rho(\varphi) := \{ \varphi \approx 1 \}, \quad \rho(\varphi_{0}, \ldots, \varphi_{n} \vdash \varphi) := \{ \varphi_{0} \land \ldots \land \varphi_{n} \land \varphi \approx \varphi_{0} \land \ldots \land \varphi_{n} \},$$

where 1 is a fixed theorem of S. Moreover it holds that S is the internal deductive system of G_{S}.

Therefore, if Q is a $\{ x \land y \approx x \}$-equationally orderable quasivariety, then the Gentzen system $G_{S^{\leq}_{Q}}$ is algebraizable with equivalent algebraic semantics the variety generated by Q and S^{\leq}_{Q} is the internal deductive system of $G_{S^{\leq}_{Q}}$.

In [3] it is also shown that every deductive system S with the congruence property and a binary term $x \to y$ for which Modus Ponens and the deduction theorem hold, the Gentzen system $G_{S^{\leq}_{Q}}$ defined by the rules above together with the rule

$$\frac{\Pi_{i}, \varphi \vdash \psi}{\Pi \vdash \varphi \to \psi'}$$

is algebraizable with equivalent algebraic semantics Alg_{S}, the translation s from equations to sequents defined as before and the translation η from sequents to equations defined by

$$\eta(\varphi) := \varphi \approx 1, \quad \eta(\varphi_{0}, \ldots, \varphi_{n} \vdash \varphi) := \varphi_{0} \to (\varphi_{1} \to \ldots (\varphi_{n} \to \varphi) \ldots) \approx 1,$$

\[4\]Given sequent calculus G with all the structural rules, its internal deductive system S_{G} is defined by $\Gamma \vdash_{S_{G}} \varphi$ if and only if there is a finite set $\Delta \subseteq \Gamma$ such that for every finite sequence Δ of all the formulas in Δ the sequent $\Delta \vdash \varphi$ is derivable in G_{S}.
where again 1 is a fixed theorem, for example \(x \to x \), and \(\mathcal{S} \) is the internal deductive system of \(G_{\mathcal{S}} \).

If time permits, we will also discuss the relations of the deductive systems discussed for quasivarieties of BCK-algebras and Hilbert algebras (perhaps with additional operations) with the corresponding Gentzen systems associated to them according to [3].

References

E-mail address: jansana@ub.edu