ON DEDUCTIVE SYSTEMS ASSOCIATED WITH EQUATIONALLY ORDERABLE QUASIVARIETIES

RAMON JANSANA

Every deductive system (or logic) $\mathcal S$ has an associated canonical class of algebras¹, denoted $\mathbf{Alg}\mathcal S$, and deductive systems are classified according to the relations they have with the algebras in $\mathbf{Alg}\mathcal S$. A deductive system $\mathcal S$ has the *congruence property* if the interderivability relation $\dashv_{\mathcal S} \vdash$ is a congruence of the algebra of formulas. Two formulas φ and ψ are related by $\dashv_{\mathcal S} \vdash$ if and only if they belong to the same theories of $\mathcal S$. When this property lifts to every algebra $\mathcal S$ is said to be *congruential*², that is, when for every algebra $\mathbf A$ in the language of $\mathcal S$ the relation $\Lambda_{\mathcal S}^{\mathbf A}$ on A, defined by $\langle a,b\rangle\in\Lambda_{\mathcal S}^{\mathbf A}$ if and only if a,b belong to the same $\mathcal S$ -filters³, is a congruence of $\mathbf A$. This is equivalent to saying that for every $\mathbf A\in\mathbf{Alg}\mathcal S$, $\Lambda_{\mathcal S}^{\mathbf A}$ is the identity relation.

The results gathered in next theorem were proved in [3] and discussed and proved with different methods in [6, 7].

teor:starting

Theorem 1. Every finitary deductive system S with the congruence property and the property of conjunction (with PC) or with a binary term $x \to y$ for which Modus Ponens and the deduction theorem hold (with DDT), is congruential and its canonical class of algebras $\mathbf{Alg}S$ is a variety.

If S is a finitary deductive system with the congruence property and (PC) for a binary term $x \wedge y$, then every algebra $A \in AlgS$ has an equationally definable order \leq^{\wedge}_{A} , defined by the equation $x \wedge y \approx x$. Then the deductive system S satisfies that $\Gamma \vdash_{S} \varphi$ if and only if

 $\boxed{ \textbf{(1)} } \quad \forall \mathbf{A} \in \mathbf{Alg} \mathcal{S} \ \forall v \in \mathrm{Hom}(\mathbf{Fm}, \mathbf{A}) \ \forall a \in A((\forall \psi \in \Gamma, \ a \leq_{\mathbf{A}}^{\wedge} v(\psi)) \Longrightarrow a \leq_{\mathbf{A}}^{\wedge} v(\varphi)),$

for every set of formulas Γ and every formula φ . The algebras $\mathbf{A} \in \mathbf{Alg}\mathcal{S}$ of finitary deductive systems \mathcal{S} with the congruence property and (DDT) for a binary term $x \to y$ also have an equationally definable order $\leq_{\mathbf{A}}^{\to}$, now defined by the equation $x \to y \approx 1$. In this case \mathcal{S} may not satisfy the condition above, but it satisfies that for every set of formulas Γ and every formula φ , $\Gamma \vdash_{\mathcal{S}} \varphi$ if and only if

(2)
$$\forall \mathbf{A} \in \mathbf{Alg} \mathcal{S} \ \forall v \in \mathrm{Hom}(\mathbf{Fm}, \mathbf{A}) v(\varphi) = v(1) \text{ or }$$

$$\exists \varphi_0, \ldots, \varphi_n \in \Gamma \ \forall \mathbf{A} \in \mathbf{Alg} \mathcal{S} \ \forall v \in \mathrm{Hom}(\mathbf{Fm}, \mathbf{A}) \ v(\varphi_0 \to (\varphi_1 \to \ldots (\varphi_n \to \varphi) \ldots)) = v(1).$$

Condition (1) can be used to associate a finitary deductive system with every equationally orderable (by a finite set of equations) quasivariety. Let L be an algebraic language,

This research has been partially supported by 2009SGR1433 research grant of the research funding agency AGAUR of the Generalitat de Catalunya and by the MTM2011-25747 research grant of the Spanish Ministry of Science and Innovation.

¹The definitions of the concepts used, but not defined, in this abstract can be found in [4].

 $^{^2}$ In [3] these deductive systems are called strongly selfextensional and in fully selfextensional.

 $^{^3}$ A set *F* ⊆ *A*, is an *S*-filter of **A** if for every set of formulas *Γ*, every formula φ and every homomorphism v from the algebra of formulas to **A**, if $\Gamma \vdash_S \varphi$ and $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

 $\mu(x,y)$ a finite set of *L*-equations in two variables and Q a quasivariety of *L*-algebras. We say that Q is μ -equationally orderable if for every algebra $\mathbf{A} \in \mathsf{Q}$ the relation defined on A by the set of equations μ , that is,

$$\leq^{\mu}_{\mathbf{A}} := \{ \langle a, b \rangle \in A^2 : \mathbf{A} \models \mu(x, y)[a, b] \},$$

is a partial order of A. The deductive system $\mathcal{S}_{Q}^{\leq^{\mu}}$ is then defined as follows:

$$\Gamma \vdash_{\mathcal{S}_{\overline{O}}^{\leq^{\mu}}} \varphi \text{ iff } \forall \mathbf{A} \in \mathbf{Q} \ \forall v \in \mathrm{Hom}(\mathbf{Fm}, \mathbf{A}) \ \forall a \in A((\forall \psi \in \Gamma) \ a \leq^{\mu}_{\mathbf{A}} v(\psi)) \Longrightarrow a \leq^{\mu}_{\mathbf{A}} v(\varphi)).$$

Since Q is a quasivariety and μ is finite, this deductive system is finitary. Moreover it is easily seen to have the congruence property. We refer to $\mathcal{S}_Q^{\leq \mu}$ as the deductive system of the μ -order for Q. When Q is a quasivariety of algebras with a binary term $x \wedge y$ such that in every algebra in Q its interpretation gives a meet-semilattice, then Q is $\{x \wedge y \approx x\}$ -equationally orderable and the deductive system $\mathcal{S}_Q^{\leq \mu}$ (with $\mu(x,y)=\{x \wedge y \approx x\}$) has (PC). Thus, by Theorem 1, $\mathcal{S}_Q^{\leq \mu}$ is congruential and from [6] follows that $\mathbf{Alg}\mathcal{S}_Q^{\leq \mu}$ is the variety generated by Q. In particular, when Q is a variety of residuated lattices, the deductive system $\mathcal{S}_Q^{\leq \mu}$ is the deductive system that in [1] is called the logic of Q that preserves degrees of truth and in this case we have $\mathbf{Alg}\mathcal{S}_Q^{\leq \mu}=Q$.

In [7] the quasivarieties Q with a binary term $x \to y$ satisfying that 1) $x \to x$ is a constant term, whose interpretation on every $\mathbf{A} \in \mathbb{Q}$ we denote by $1^\mathbf{A}$, and that 2) for every algebra $\mathbf{A} \in \mathbb{Q}$, the algebra $\langle A, \to^\mathbf{A}, 1^\mathbf{A} \rangle$ is a Hilbert algebra are called Hilbert-based. These quasivarieties are $\{x \to y \approx 1\}$ -equationally orderable and therefore for each one of them Q the deductive system of the $\{x \to y \approx 1\}$ -order for Q. But for those quasivarieties condition (2) above can also be used to associate a finitary deductive system. Given a Hilbert-based quasivariety Q we denote the deductive system defined by condition (2) by $\mathcal{S}_{\mathbb{Q}}^{\to}$.

When a μ -equationally orderable quasivariety Q has a constant term 1 such that for every $\mathbf{A} \in \mathsf{Q}$, $1^\mathbf{A}$ is the greatest element of the order $\leq^\mu_{\mathbf{A}}$, we can also consider the 1-assertional logic $\mathcal{S}^1_{\mathsf{Q}}$ of Q. If Q is 1-regular, then $\mathcal{S}^1_{\mathsf{Q}}$ is algebraizable. This happens, for example, for all Hilbert-based quasivarieties. Recall that the 1-assertional logic of Q is defined by

$$\Gamma \vdash_{\mathcal{S}^1_{\mathsf{Q}}} \varphi \ \ \text{iff} \ \ \forall \mathbf{A} \in \mathsf{Q} \ \forall v \in \mathsf{Hom}(\mathbf{Fm},\mathbf{A}) \ (\forall \psi \in \varGamma) \ v(\psi) = 1^\mathbf{A}) \Longrightarrow v(\varphi) = 1^\mathbf{A}).$$

If Q is a μ -equationally orderable variety, we do not need that $\mathcal{S}_{\mathbb{Q}}^{\leq^{\mu}}$ has (PC) to conclude that it is congruential and with $\mathbf{Alg}\mathcal{S}_{\mathbb{Q}}^{\leq^{\mu}}=\mathbb{Q}$. In the talk we will present the following general result.

Theorem 2. Let Q be a μ -equationally orderable variety. The deductive system $\mathcal{S}_{Q}^{\leq \mu}$ is congruential and $\mathbf{Alg}\mathcal{S}_{Q}^{\leq \mu} = Q$.

We will also discuss other results on deductive systems associated with a μ -equationally orderable quasivariety Q and the example of deductive systems associated with quasivarieties of BCK-algebras, BCK-meet-semilattices and BCK-join-semilattices, possibly with other operations apart form the implication. The quasivariety BCK of BCK-algebras is $\{x \to y \approx 1\}$ -equationally orderable and so are the quasivarieties of algebras with a BCK

teor:2

reduct. We will show that the 1-assertional logic of BCK is different from $\mathcal{S}_{\mathsf{BCK}}^{\leq \mu}$ (where $\mu = \{x \to y \approx 1\}$). This also holds for the quasivariety of BCK-meet-semilattices, denoted BCK $^{\wedge}$, the quasivariety of BCK-join-semilattices, denoted BCK $^{\vee}$, and the quasivariety of BCK-lattices, denoted BCK L . Since these quasivarieties are indeed a variety (see [5]), $\mathcal{S}_{\mathsf{BCK}}^{\leq \mu}$, $\mathcal{S}_{\mathsf{BCK}}^{\leq \mu}$ and $\mathcal{S}_{\mathsf{BCK}}^{\leq \mu}$ are congruential. Note that $\mathcal{S}_{\mathsf{BCK}}^{\leq \mu}$ is not encompassed by Theorem 1.

In the particular case of the variety Hi of Hilbert algebras we find the same situation as for BCK-algebras: \mathcal{S}^1_{Hi} is different from $\mathcal{S}^{\leq^\mu}_{BCK}$. In this case both logics are congruential. For the first it follows form Theorem 1 and for the second from Theorem 2, since Hi is a variety. Moreover $\mathcal{S}^1_{Hi} = \mathcal{S}^{\rightarrow}_{Hi}$. When we move to the variety Hi^{\wedge} of Hilbert algebras with infimum (i.e. BCK-meet-semilattices whose BCK-reduct is a Hilbert algebra), the situation changes dramatically, the three deductive systems \mathcal{S}^1_{Hi} , $\mathcal{S}^{\rightarrow}_{Hi}$ and $\mathcal{S}^{\leq^\mu}_{Hi}$ are different. Moreover it holds that for a subvariety $K \subseteq Hi^{\wedge}$, the three deductive systems \mathcal{S}^1_K , $\mathcal{S}^{\rightarrow}_K$ and $\mathcal{S}^{\leq^\mu}_{Hi}$ are equal if and only if K is a variety of implicative semilattices.

In [3] it is also shown that for every finitary deductive system S with theorems, the congruence property and (PC) for a binary term $x \wedge y$, the Gentzen system G_S defined by the structural rules (identity, weakening, exchange, contraction, cut), the congruence rules for every n-ary connective \star ,

$$\frac{\varphi_i \rhd \psi_i, \ \psi_i \rhd \varphi_i : i < n}{\star (\varphi_0 \dots \varphi_{n-1}) \rhd \star (\psi_0 \dots \psi_{n-1})}, \quad \text{and the axiom rules} \quad \frac{\underline{\Gamma} \rhd \varphi_i}{\underline{\Gamma}}$$

for every finite set of formulas Γ and every formula φ such that $\Gamma \vdash_{\mathcal{S}} \varphi$, and where $\underline{\Gamma}$ is any finite sequence of all the formulas in Γ , is algebraizable with equivalent algebraic semantics $\mathbf{Alg}\mathcal{S}$, translation s from equations to sequents given by $s(\varphi \approx \psi) := \{\varphi \rhd \psi, \psi \rhd \varphi\}$ and translation ρ from sequents to equations defined by

$$\rho(\triangleright \varphi) := \{ \varphi \approx 1 \}, \qquad \rho(\varphi_0, \dots, \varphi_n \triangleright \varphi) := \{ \varphi_0 \wedge \dots \wedge \varphi_n \wedge \varphi \approx \varphi_0 \wedge \dots \wedge \varphi_n \},$$

where 1 is a fixed theorem of \mathcal{S} . Moreover it holds that \mathcal{S} is the internal deductive system of $\mathbf{G}_{\mathcal{S}}^{4}$. Therefore, if Q is a $\{x \wedge y \approx x\}$ -equationally orderable quasivariety, then the Gentzen system $\mathbf{G}_{\mathcal{S}_{\mathbb{Q}}^{\leq}}$ is algebraizable with equivalent algebraic semantics the variety generated by Q and $\mathcal{S}_{\mathbb{Q}}^{\leq}$ is the internal deductive system of $\mathbf{G}_{\mathcal{S}_{\mathbb{Q}}^{\leq}}$.

In [3] it is also shown that every deductive system S with the congruence property and a binary term $x \to y$ for which Modus Ponens and the deduction theorem hold, the Gentzen system G_S^{\to} defined by the rules above together with the rule

$$\frac{\Pi, \varphi \rhd \psi}{\Pi \rhd \varphi \to \psi'}$$

is algebraizable with equivalent algebraic semantics $\mathbf{Alg}\mathcal{S}$, the translation s from equations to sequents defined as before and the translation η from sequents to equations defined by

$$\eta(\triangleright\varphi) := \varphi \approx 1, \qquad \eta(\varphi_0, \ldots, \varphi_n \triangleright \varphi) := \varphi_0 \to (\varphi_1 \to \ldots (\varphi_n \to \varphi) \ldots) \approx 1,$$

⁴Given sequent calculus **G** with all the structural rules, its internal deductive system $\mathcal{S}_{\mathbf{G}}$ is defined by $\Gamma \vdash_{\mathcal{S}_{\mathbf{G}}} \varphi$ if and only if there is a finite set $\Delta \subseteq \Gamma$ such that for every finite sequence $\underline{\Delta}$ of all the formulas in Δ the sequent $\underline{\Delta} \rhd \varphi$ is derivable in $\mathbf{G}_{\mathcal{S}}$.

where again 1 is a fixed theorem, for example $x \to x$, and S is the internal deductive system of $\mathbf{G}_{\mathcal{S}}^{\rightarrow}$.

If time permits, we will also discuss the relations of the deductive systems discussed for quasivarieties of BCK-algebras and Hilbert algebras (perhaps with additional operations) with the corresponding Gentzen systems associated to them according to [3].

REFERENCES

sFoGiGoToVeO8-m

[1] Bou, F. & Esteva, F. & Font, J. M. & Gil, A. & Godo, L. & Torrens, A. & Verdú, V. (2009). Logics preserving degrees of truth from varieties of residuated lattices. Journal of Logic and Computation, 19, pp. 1031-1069.

FiRaSa06

[2] Figallo Jr., A. & Ramón, G. & Saad, S. (2006). iH-propositional calculus. Bulletin of the Section of Logic, 35, pp. 157 - 162.

FJ

[3] Font, J. M. & Jansana, R. (1996). A General Algebraic Semantics for Sentential Logics. vol. 7 of Lecture Notes in Logic, Springer-Verlag, 1996. Second revised edition by ASL 2009, available at:

FJP-Su

[4] Font, J. M. & R. Jansana, R. & Pigozzi, D. (2003). A Survey of Abstract Algebraic Logic. Studia Logica, Special Issue on Algebraic Logic II, 74, pp. 13–97.

Id84

[5] Idziak, P. M. (1984). Lattice operations in BCK-algebras Mathematica Japonica, 29, pp. 839-846.

JaSelf

[6] Jansana, R. (2006). Selfextensional logics with a conjunction Studia Logica, 84, pp. 63-104.

JaImp

[7] Jansana, R. (2007). Selfextensional logics with implication. In Béziau, J-Y., ed. Universal Logic, Birkhäuser.

Pig-04

[8] Pigozzi, D. (2004). Partially ordered varieties and quasivarieties. Manuscript, available at: http://orion.math.iastate.edu/dpigozzi/

Raf-JSL

[9] Raftery, J.G. (2006). Correspondence between Gentzen and Hilbert systems. The Journal of Symbolic Logic, 71, pp. 903-957.

Raf-09

[10] Raftery, J. G. (2013). Order algebraizable logics. Annals of Pure and Applied Logic, 164(3), pp. 251-283.

E-mail address: jansana@ub.edu