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1. Introduction

Although the results we obtain have some significance for the theory of relation
algebras, the method, and indeed the problem itself, can be presented without
mentioning relation algebras at all. Consider the following Ramsey-like problem.
For a given number n of colours, is there a complete graph Km such that the edges
of Km can be coloured with the n colours in such a way that:

(1) there are no monochromatic triangles,
(2) every non-monochromatic triangle appears everywhere it can.

The first condition gives the upper bound for the possible size of Km, via Ramsey
theorem. The second condition is really a shorthand for the following two require-
ments: (i) every vertex of Km has at least one outgoing edge of each colour, and
(ii) given any edge (x, y) of colour c, and any colours a, b, such that {a, b, c} 6= {c},
there exist a vertex z such that (x, z) is coloured by a and (z, y) is coloured by b.

Clearly, to satisfy (2) the graph Km cannot be too small, so (2) gives a lower
bound for the possible size of Km. For n = 2, the lower bound is 5, and so is
the upper bound because R(3, 3) = 6. For n = 3, the upper bound is 16, the
lower bound can be shown to be 13, and indeed K13 gives one possible answer.
Curiously, no colourings satisfying (1) and (2) exist for K14 and K15. But for K16

there exist two non-isomorphic ones. For n = 4, 5 suitable colourings were found
by S. Comer [3]. For n > 5 the answer was not known. we will show that a
required colouring can be obtained from a finite field satisfying certain conditions.
Unfortunately, we have no general existence theorem for such fields, but computer
searches have shown that these exist for all 2 ≤ n ≤ 120, except n = 8, and n = 13.

2. Ramsey (or Monk, or Maddux) algebras

For a general introduction to Relation Algebras, the reader is referred to Hirsch,
Hodkinson [1], and Maddux [2]. The relation algebras defined below are called
Ramsey algebras here, because of the connection with Ramsey theorem, but they
have been known under other names, for example, Monk algebras or Maddux alge-
bras in [1]. They were also considered in [2]. Our choice of the name was influenced
by a prominent algebraist, who remarked that it should at the very least point a
non-expert in the right direction.

With the naming controversy thus avoided (or perhaps ignited?), we define the
Ramsey algebra Rn, for any n ≥ 2, as a finite relation algebra on n + 1 atoms:
1′, a1, . . . , an, such that for each i ∈ {1, . . . , n} the triple 〈ai, ai, ai〉 is forbidden. To

prevent a notational confusion: what we call Rn here, is Mn+1 in [1], and E
{2,3}
n+1

in [2].
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By Ramsey Theorem, if Rn is representable then it is representable on a finite
set. Representations of Rn were known to exists for 2 ≤ n < 6, where R2 is the
pentagon algebra, so it has a unique representation on 5 points, R3 has precisely
three non-isomprphic representations: one on 13 points and two on 16 points,
representations for R4 and R5 were found by Comer [3].

We will now present a method of finding representations od Ramsey algebras,
based on a rather simple observation about the representation of the pentagon
algebra R2. Its unique representation can be described as follows. Consider Z5

as a Galois field, and let g be a generator of its multiplicative group. It happens
that the order of the multiplicative group, 5 − 1 = 4 is divisible by the number of
colours, so we build a rectangular matrix(

2 3
4 1

)
∼=
(
g g3

g2 g4

)
∼=
(

3 2
4 1

)
where 2 and 3 are the only possible choices for g. The rows of this matrix give
the representation over Z5, in the usual way, namely as a complex algebra of the
partition {0 | 2, 3 | 4, 1} of (the universe of) Z5. The representation is independent
of the choice of the generator g, so we could write it as {0 | g, g3 | g2, g4 = 1}.

Exactly the same procedure can be applied to Z13 and 3 colours (notice that,
conveniently, 13− 1 is divisible by 3). We get the matrix g g4 g7 g10

g2 g5 g8 g11

g3 g6 g9 g12

 ∼=
2 3 11 10

4 6 9 7
8 12 5 1


choosing g = 2. It is then not difficult to check that it produces a representation of
R3 over Z13. Somewhat surprisingly, one of the two representations on 16 points,
can be obtained similarly, this time taking GF (16). Again, conveniently, 16− 1 is
divisible by 3, so we get  g g4 g7 g10 g13

g2 g5 g8 g11 g14

g3 g6 g9 g12 g16 = 1


and this turns out to be a representation as well. The matrices that gave rise to the
representations have the following crucial property that comes in four parts. Let a
be an element of the bottom row. Then

• the additive inverse of a also belongs to the bottom row,
• a + 1 never belongs to the bottom row, and
• for any non-bottom row k, there is a choice of a such that a+ 1 belongs to

the row k.
• for any distinct rows k and `, there is a b in row ` such that b + 1 belongs

to row k.

The first part is a symmetry requirement, the second excludes monochromatic trian-
gles, the third produces all isoceless triangles, the fourth all other non-monochromatic
ones. The next section makes it precise.

3. A representability test

Consider Rn. Let GF (pK), for a prime p, be such that n divides pK − 1, say,
(pK − 1)/n = m. Let g be a generator of the multiplicative group of GF (pK), and
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M be the n×m matrix
g gn+1 . . . g(m−1)n+1

g2 gn+2 g(m−1)n+2

...
...

...
gn gn+n . . . g(m−1)n+n = gmn = 1


and suppose that

(i) −1 = gin for some i ∈ {1, . . . ,m},
(ii) gin + 1 6= gjn for all i, j ∈ {1, . . . ,m},

(iii) for every k ∈ {1, . . . , n−1} there are i ∈ {1, . . . ,m} and j ∈ {0, . . . ,m−1},
such that gin + 1 = gjn+k,

(iv) for every k, ` ∈ {1, . . . , n − 1} with k 6= `, there are i, j ∈ {0, . . . ,m − 1},
such that gin+` + 1 = gjn+k.

We will write Ri for the i-th row of M , considered as a set. The complex operations
on the rows have their usual meaning, so, for example

−Ri = {−gi,−gn+i, . . . ,−g(m−1)n+i}
and

Ri + Rj = {a + b : a ∈ Ri, b ∈ Rj}.

Lemma 1. The matrix M above has the following properties:

(1) −Ri = Ri,
(2) Ri + Ri =

⋃
j 6=i Rj,

(3) Ri + Rj = M , if i 6= j,

for every i, j ∈ {1, . . . ,m}.

Theorem 1. Let Rn be a Ramsey algebra, and M be an n×m matrix over GF (pK)
satisfying the properties stated before Lemma 1. Let G(pK) be the additive group of
GF (pK). Then, Rn is representable over G(pK). More precisely, the representation
of Rn is the subalgebra of the complex algebra of G(pK), whose atoms are the sets
{0} and Ri for i ∈ {1, . . . , n}.

4. Emprirical results

As we said at the outset, we have no general existence theorem, only some
empirical results. For n = 2, . . . , 7 our method produces representations, in fact,
with the exception of the representation of R3 over GF (24), they are all over prime
fields. For n = 8 the method does not produce any representations. For n = 9 the
only representation obtained is over GF (192). For n = 10, 11, 12 representations
over prime fields exist. For n = 13 we do not know whether the method produces
any representations. For n = 14, . . . , 120 representations over prime fields exist.
The sizes of the representations grow roughly as n5/2 in the number of colours.
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