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Mathematical Fuzzy Logic (MFL) studies a family of non-classical logics with a semantics based on
(linearly ordered) scales of degrees of truth. This is what makes these logics specially suited for the study
of gradual aspects of vagueness and imprecision, found in sentences like ‘it is heavily raining’ or ‘that man
is tall’.

Moreover, a conceptually different issue, that of uncertainty, has also been addressed inside MFL. The
main idea, introduced in [13] and later developed by Hájek in his monograph [11], is that one could use
probability to determine the truth degree of statements such as ‘tomorrow it will probably rain’ or ‘the
probability that tomorrow it will rain is high’. Indeed, one takes classical logic and its formulae ϕ to
describe crisp events, introduces a new modal operator P which can be applied on them to create atomic
modal formulae Pϕ which may be read as ‘probably ϕ’ (or better ‘the probability of ϕ is high’), and finally
these atomic modal formulae are combined by using the connectives of Łukasiewicz logic. What we obtain
is a two-layer modal fuzzy logic built on atomic formulae Pϕ whose truth values are given by a probability
measure. Several works have followed this idea with variations. In [9] Godo, Esteva and Hájek replaced
Łukasiewicz logic on the second layer by ŁΠ, but kept classical logic for non-modal formulae. The logic
ŁΠ, with its expanded language, enabled them to deal with conditional probability. Flaminio and Montagna
also considered conditional probability in [7], and Godo and Marchioni investigated coherent conditional
probabilities in [10]. Marchioni also proposed a class of logics of uncertainty in [14] with different kinds
of measures (besides probability) to quantify the uncertainty of events. In all of these works classical logic
has been kept as the underlying logic for non-modal formulae.

However, if one wants to deal with uncertainty and vagueness at once, i.e. with the probability of vague
events, as in ‘tomorrow it will probably rain heavily’, the two-layer paradigm can still be useful provided
that the underlying classical logic is substituted by a fuzzy logic. This idea has been also investigated in
some works, as [5] where finite Łukasiewicz systems Łn are taken as the logics of vague events. Other
recent works along these lines are surveyed in [6].

In this talk we provide a new general framework for two-layer modal fuzzy logics that encompasses all
the mentioned system and paves the way for future development.1 In fact, we go far beyond the landscape
of fuzzy logics. Indeed, we show how one can construct a modal logic (for an arbitrary modality, not nec-
essarily read as a probability) over an arbitrary non-classical logic (under certain technical requirements).
Therefore, we need not assume that the starting logic is fuzzy, and we can develop a general theory of
two-layer modal logics, showing how the methods used in the fuzzy literature can lead to completeness
results using very few properties of the underlying logics. As a semantics, we propose particular kinds of
measured Kripke Frames and prove corresponding completeness theorems.
∗This research is supported by the grant GAP202/10/1826 of the Czech Science Foundation, RVO 67985807, and the FP7 PIRSES-

GA-2009-247584 project MaToMUVI.
1There has already been an attempt at an abstract theory of two-layer modal fuzzy logics in Master thesis [15]; but it was rather

restricted in its scope.
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Convention 1. Let L be a language containing at least a truth constant 1 and binary connectives →
and ∨. In this paper a propositional logic L in L is a finitary lattice-disjunctive weakly implicative logic
(as studied in [3]). In more details, this means that L is identified with the provability relation `L on FmL
given by a finitary Hilbert-style system such that:2

`L ϕ→ ϕ ϕ, ϕ→ ψ `L ψ ϕ→ ψ, ψ→ χ `L ϕ→ χ ϕ a`L 1→ ϕ

ϕ↔ ψ `L ◦(χ1, . . . χi, ϕ, . . . , χn)↔ ◦(χ1, . . . χi, ψ, . . . , χn) for every n-ary ◦ ∈ L and i < n.

`L ϕ→ ϕ ∨ ψ `L ψ→ ϕ ∨ ψ ϕ→ χ, ψ→ χ `L ϕ ∨ ψ→ χ

Γ, ϕ `L χ and Γ, ψ `L χ imply Γ, ϕ ∨ ψ `L χ

Note that our logics are algebraically implicative with a truth definition given by the single equation
x ∨ 1 ≈ 1. Let us fix a logic L in a language L; then L-algebras are algebras with signature L and
homomorphisms from FmL to an L-algebra A are called A-evaluations. For an L-algebra A we define the
set FA = {x | x ∨A 1̄A = x}.

Definition 2. We say that A is an L-algebra, A ∈ L in symbols, if

• for each Γ ∪ {ϕ} ⊆ FmL such that Γ `L ϕ, we have that for each A-evaluation e, if e[Γ] ⊆ FA, then
e(ϕ) ∈ FA,

• for each x, y ∈ A, if {x→A y, y→A x} ⊆ FA, then x = y.

L is in fact a quasivariety and it is the equivalent algebraic semantics of L in the sense of [2]. A non-
trivial L-algebra A is (finitely) subdirectly irreducible relative to L if for every (finite non-empty) subdirect
representation α of A with a family {Ai | i ∈ I} ⊆ L there is i ∈ I such that πi ◦α is an isomorphism. LR(F)SI
denotes the class of all (finitely) subdirectly irreducible algebras relative to L. Of course LRSI ⊆ LRFSI.

Definition 3. Let L be a logic and K ⊆ LRFSI. We say that L has (finite) strong K-completeness, SKC
(or FSKC resp.) whenever for each (finite) theory Γ ∪ {ϕ} holds that Γ `L ϕ iff for each A ∈ K and each
A-evaluation e we have e(ϕ) ∈ FA whenever e[Γ] ⊆ FA.

Algebraically we can say that L has FSKC (or SKC resp.) if K generates L as a (σ-)quasivariety. Note
that every logic has SLRSIC (and hence SLRFSIC). If L is a fuzzy logic, then LRFSI is the class of L-chains.

Let us fix two logics L1 and L2 in disjoint languages L1 and L2 such that � < L1 ∪ L2. Further we fix
two classes of algebras Ki ⊆ (Li)RFSI, i ∈ {1, 2}. We define three kinds of formulae of a two-level language
FmVar
L2(L1) over the set of variables Var:

• non-modal formulae from FmVar
L1

,

• atomic modal formulae of the form �ϕ, for ϕ ∈ FmVar
L1

,

• modal formulae resulting from atomic ones by connectives from L2.

Definition 4. The minimal L2-modal logic over logic L1 (denoted by L2(L1)) has formulae FmVar
L2(L1) and

an axiomatic system consisting of

• the axioms and rules of L1 for non-modal formulae,

• axioms and rules of L2 for modal formulae,

• and the following congruence rule for each pair of non-modal formulae ϕ and ψ:

ϕ↔ ψ ` �ϕ↔ �ψ (CONGR)

An n-ary modal rule has n non-modal premises and a modal conclusion. An L2-modal logic over a logic
L1 is an extension of L2(L1) by some modal rules.

2We write ‘ϕ↔ ψ’ for ‘{ϕ→ ψ, ψ→ ϕ}’, ‘T ` S ’ for ‘T ` ϕ for each ϕ ∈ S ’, and ‘T a` S ’ for ‘T ` S and S ` T ’.
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We understand rules as schemata, i.e., for each substitution σ on FmVar
L1

, if ϕ1, . . . , ϕn ` Ψ is a modal
rule then σϕ1, . . . , σϕn ` σΨ is also a modal rule. We define the notion of proof in a modal logic in the
usual way. One can imagine that the proof consists of three separate parts: proving non-modal formulae,
application of the modal rules on proved non-modal formulae, and proving modal formulae.

Definition 5. A K1-based K2-measured Kripke frame is a system F = 〈W, (Aw)w∈W , B, µ〉 where W is a set
(of possible worlds), Aw ∈ K1 for each w ∈ W, B ∈ K2 and µ is a partial mapping µ :

∏
w∈W

Aw → B.

Note the difference from the ‘traditional’ approach: in order to prove the completeness theorems in the
full generality we cannot assume that all Aws are the same; we call such frames uniform and we will see
later in which cases we can restrict ourselves to such frames.

Definition 6. A Kripke model M over K1-based K2-measured Kripke frame F = 〈W, (Aw)w∈W , B, µ〉 is a
tuple M = 〈F, (ew)w∈W〉 where:

• ew : FmVar
L1
→ Aw is an Aw-evaluation,

• for each non-modal formula ϕ, the element ϕM ∈
∏

w∈W
Aw defined as ϕM(w) = ew(ϕ) belongs to the

domain of µ.

The truth value of atomic modal formulae is defined (uniformly for all worlds) as:

||�ϕ||M = µ(ϕM);

and the truth value of non-atomic modal formulae is (uniformly) computed by using operations from B.
We say that M is a satisfies the (non-)modal formula Ψ (ψ resp.) whenever ||Ψ||M ∈ FB (or ew[ψ] ∈ FAw

for each w ∈ W respectively).
Finally we say that F is a frame for an L2-modal logic over a logic L1 if all its additional modal rules

are valid in all Kripke models over F, i.e. the conclusion of a modal rule is satisfied in all models of over F
which satisfy all its premises.

Next we state the main theorem, the completeness of an L2-modal logic over a logic L1. We will see that
the form/strength of the completeness we obtain depends on the form/strength of the completeness of the
logics L2 and L1. The proof has two main ingredients: Hájek’s idea from [11] of a translation of formulae
and proofs from an L2-modal logic over a logic L1 into the logic L2 and the authors’ characterization of
completeness properties from [3].

Theorem 7. Let L be an L2-modal logic over a logic L1 such that Li has SKiC. Then the following are
equivalent for each non-modal theory T , modal theory Γ, and a modal formula Φ:

• Γ,T `L Φ

• for each K1-based K2-measured Kripke frame F for L and each Kripke model M over F holds that
M satisfies Φ whenever it satisfies all formulae from Γ and T .

The same equivalence holds if L2 has FSK2C only but at the price of restricting to finite Γ and T and
additional assumptions that L1 is a locally finite and L has only finitely many additional modal rules.

Note that any L2-modal logic over a logic L1 enjoys completeness w.r.t. its (L1)RFSI-based (L2)RFSI-
measured Kripke frames and if L1 enjoys completeness w.r.t. a single algebra, then we can restrict ourselves
to uniform frames/models.
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[9] L. Godo, F. Esteva, and P. Hájek. Reasoning about probability using fuzzy logic. Neural Network
World, 10(5):811–823, 2000. Special issue on SOFSEM 2000.

[10] L. Godo and E. Marchioni. Coherent conditional probability in a fuzzy logic setting. Logic Journal
of the Interest Group of Pure and Applied Logic, 14(3):457–481, 2006.
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