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This talk is a contribution towards the project of developing discrete repre-
sentability for the algebraic semantics of various non-classical logics. Discrete
duality is a type of duality where a class of abstract relational systems is a dual
counterpart to a class of algebras. These relational systems are referred to as
‘frames’ following the terminology of non-classical logics. There is no topology
involved in the construction of these frames, so they may be thought of as having
a discrete topology and hence the term: discrete duality. Having a discrete dual-
ity for an algebraic semantics for a logic often provides a Kripke-style semantics
for the logic. In many cases it can also be used to develop filtration and tableau
techniques for the logic. Another typical consequence of such a discrete duality
in the case of lattice-ordered algebras is that we obtain a method of completing
the algebras, i.e., an embedding of algebras into ones that are complete in the
lattice sense.

Establishing discrete duality involves the following steps. Given a class of
algebras Alg we define a class of frames Fr. Next, for any algebra A from Alg
we define its ‘canonical frame’ X (A) ∈ Fr and for each frame X in Fr we define
its ‘complex algebra’ C(X) ∈ Alg. A duality between Alg and Fr holds provided
that the following facts are provable:

• Every algebra A∈Alg is embeddable into the complex algebra of its canon-
ical frame.

• Every frame X∈Fr is embeddable into the canonical frame of its complex
algebra.

The logics of interest in this talk are monoidal t-norm logic, or MTL for
short, (as defined in [EG]) and Hajek’s Basic Logic, or BL for short (as defined in
[H]). The algebraic semantics for these logics are, respectively, ‘MTL-algebras’
and ‘BL-algebras’, which are defined as follows.

• An MTL-algebra is an algebra 〈A, ◦,→,∧,∨, 0, 1〉 that is a bounded lattice
with a commutative monoid operation ◦ with identity 1 that is
residuated: (∀a, b, c ∈ A)(a ◦ b ≤ c ⇔ a ≤ b→ c) and
prelinear: (∀a, b ∈ A)((a→ b) ∨ (b→ a) = 1).
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• A BL-algebra is an MTL-algebra 〈A, ◦,→,∧,∨, 0, 1〉 that is
divisible: (∀a, b ∈ A)(a ≤ b⇒ (∃c ∈ A)(c ◦ b = a)).

Discrete dualities are developed for MTL-algebras in [ORe] building on the
work of [CC]. The underlying order structure of MTL-algebras is a distributive
lattice and hence the frames associated with these algebras are based on posets
as is well known in the duality for distributive lattices [P]. To capture the
properties of the operations of a residuated lattice an additional relation is
required satisfying the appropriate conditions and hence the MTL-frames are
structures of the form 〈X,≤, R〉 where R is a ternary relation on X. The
canonical frame of an MTL-algebra is the set of prime filters (in the lattice
sense) together with the inclusion relation and a canonical form of R determined
by the monoid product. The complex algebra of an MTL-frame is the family of
upward closed subsets of X with the union and intersection of sets as the lattice
operations. The operations of product and residuation are defined in terms of
the relation R in such a way that they satisfy all the MTL axioms. The two
discrete representation theorems for the MTL-algebras and MTL-frames hold.

For each positive integer n we define the class of n-potent MTL-algebras
as the class of MTL-algebras satisfying: xn+1 = xn, where xn denotes the
◦-product, i.e., x ◦ x ◦ . . . ◦ x, of n x’s. The n-potent classes of algebras are
generalisations of the 1-potent case, in which ◦ corresponds to ∧. In related
classes of algebras in which 1 is not always the greatest element of the algebra,
the one-sided 1-potence identity x ≤ x ◦ x corresponds to the structural rule
of contraction in the logic. Thus n-potence is a form of n-contraction (see, for
example, [HNP]). The n-potent classes of algebras often have useful properties
in terms of computability (see, for example, [V]).

The question we address here is: what are the additional frame conditions
needed to characterize the frames of n-potent MTL-algebras? We give some
positive results in this direction. Thereafter, we consider the n-potent BL-
algebras, which are defined analogously. In the case of BL-algebras, there is no
discrete duality; in fact, such a duality would provide a completion method for
BL-algebras, contradicting a result from [KL]. Moreover, in [BC] it is shown
that the only varieties of BL-algebras admitting completions are the n-potent
ones. This observation, in part, motivated the current research direction. We
present here a discrete duality for the variety of 2-potent BL-algebras (that
is, satisfying x3 = x2) and indicate possible directions for obtaining discrete
dualities for other n-potent classes.
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