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Introduction

Logic is the science that studies correct reasoning.

It is studied as part of Philosophy, Mathematics, and Computer
Science.

From XIXth century, it has become a formal science that
studies symbolic abstractions capturing the formal aspects of
inference: symbolic logic or mathematical logic.
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What is a correct reasoning?

Example 1.1
“If God exists, He must be good and ommipotent. If God was
good and omnipotent, He would not allow human suffering. But,
there is human suffering. Therefore, God does not exist."

Is this a correct reasoning?

Petr Cintula and Carles Noguera Abstract Algebraic Logic – 1st lesson



What is a correct reasoning?

Formalization

Atomic parts:

p: God exists
q: God is good
r: God is ommipotent
s: There is human suffering

The form of the reasoning:

p→ q ∧ r
¬(q ∧ r ∧ s)
s
¬p

Is this a correct reasoning?
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Classical logic

Syntax:

Formulae FmL built from atoms combined by connectives
L = {¬,∧,∨,→}.
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Classical logic

Semantics:

Bivalence Principle
Every proposition is either true or false.

Definition 1.2
The Boolean algebra of two elements, 2, is defined over the
universe {0, 1} with the following operations:

¬2

0 1
1 0

∧2 0 1
0 0 0
1 0 1

∨2 0 1
0 0 1
1 1 1

→2 0 1
0 1 1
1 0 1

2 = 〈{0, 1},¬2,∧2,∨2,→2〉
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Correct reasoning in classical logic

Definition 1.3
Given Γ ∪ {ϕ} ⊆ FmL we say that ϕ is a logical consequence of
Γ, denoted Γ |=2 ϕ, iff for every 2-evaluation e such that
e(γ) = 1 for every γ ∈ Γ, we have e(ϕ) = 1.

Correct reasoning = logical consequence

Definition 1.4
Given ψ1, . . . , ψn, ϕ ∈ FmL we say that 〈ψ1, . . . , ψn, ϕ〉 is a
correct reasoning if {ψ1, . . . , ψn} |=2 ϕ. In this case, ψ1, . . . , ψn

are the premises of the reasoning and ϕ is the conclusion.
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Correct reasoning in classical logic

Remark

ψ1
ψ2
...
ψn

ϕ

is a correct reasoning iff there is no interpretation making the
premises true and the conclusion false.
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Correct reasoning in classical logic

Example 1.5

Modus ponens:
p→ q
p
q

It is a correct reasoning (if e(p→ q) = e(p) = 1, then e(q) = 1).

Example 1.6

Abduction:
p→ q
q
p

It is NOT a correct reasoning (take: e(p) = 0 and e(q) = 1).
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Correct reasoning in classical logic

Example 1.7

p→ q ∧ r
¬(q ∧ r ∧ s)
s
¬p

Assume e(p→ q ∧ r) = e(¬(q ∧ r ∧ s)) = e(s) = 1. Then
e(q ∧ r ∧ s) = 0, so e(q ∧ r) = 0. But, since e(p→ q ∧ r) = 1, we
must have e(p) = 0, and therefore: e(¬p) = 1.

It is a correct reasoning!
BUT, is this really a proof that God does not exist?
NO. We only know that if the premisses were true, then the
conclusion would be true as well.
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Logic(s)

Logic studies the notion of logical consequence. There are
many kinds of logical consequence, i.e. many different logics:

1 Classical logic
2 Non-classical logics:

Modal logics
Intuitionistic logic
Superintuitionistic logics
Linear logics
Fuzzy logics
Relevance logics
Substructural logics
Paraconsistent logics
Dynamic logics
Non-monotonic logics

...
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Algebraic Logic

Algebraic Logic is the subdiscipline of Mathematical Logic
which studies logical systems (classical and non-classical) by
using tools from Universal Algebra.

Logic Algebraic counterpart
Classical logic Boolean algebras
Modal logics Modal algebras

Intuitionistic logic Heyting algebras
Linear logics Commutative residuated lattices
Fuzzy logics Semilinear residuated lattices

Relevance logics Commutative contractive residuated lattices
...

...

Universal Algebra is the field of Mathematics which studies
algebraic structures.
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Abstract Algebraic Logic

AAL is the evolution of Algebraic Logic that wants to:

understand the several ways by which a logic can be given
an algebraic semantics
build a general and abstract theory of non-classical logics
based on their relation to algebras
understand the rôle of connectives in (non-)classical logics.
classify non-classical logics
find general results connecting logical and algebraic
properties (bridge theorems)
generalize properties from syntax to semantics (transfer
theorems)
advance the study of particular (families of) non-classical
logics by using the abstract notions and results

It works best, by far, when restricted to propositional logics.
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A little history of (Abstract) Algebraic Logic – 1

1847 George Boole, Mathematical Analysis of Logic.
Augustus De Morgan, Formal Logic.

1854 George Boole, The Laws of Thought.
1880 Charles Sanders Peirce, On the Algebra of Logic.
1890 Ernst Schröder, Algebra der Logik (in three volumes).
1920 Jan Łukasiewicz, O logice trojwartosciowej.

Three-valued logic.
1930 Jan Łukasiewicz, Alfred Tarski, Untersuchungen über

den Aussagenkalkül. Infinitely-valued logic.
1930 Alfred Tarski, Über einige fundamentale Begriffe

der Metamathematik. Consequence operators.
1931 Alfred Tarski, Grundzüge der Systemenkalküls.

Precise connection between classical logic and
Boolean algebras. Lindenbaum–Tarski method.
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A little history of (Abstract) Algebraic Logic – 2

1935 Garrett Birkhoff, On the Structure of Abstract Algebras.
Universal Algebra, equational classes, equational logic.

1958 Jerzy Łoś and Roman Suszko, Remarks on sentential
logics. Structural consequence operators.

1973 Ryszard Wójcicki, Matrix approach in the methodology
of sentential calculi.

1974 Helena Rasiowa, An algebraic approach to non-classical
logics.

1975 S.L. Bloom, Some theorems on structural consequence
operations.

1981 Janusz Czelakowski, Equivalential logics I and II.
1986 Willem J. Blok, Don L. Pigozzi, Protoalgebraic logics.
1989 Willem J. Blok, Don L. Pigozzi, Algebraizable logics.
1996 Josep Maria Font, Ramon Jansana, A general algebraic

semantics for sentential logics.
2000 Janusz Czelakowski, Protoalgebraic logics.
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Structure of the course

Lesson 1: Introduction. Basic notions of algebraic logic.
Lesson 2: Lindenbaum–Tarski method for weakly
implicative logics.
Lesson 3: Leibniz operator on arbitrary logics. Leibniz
hierarchy.
Lesson 4: Advanced topics: bridge theorems,
non-protoalgebraic logics, generalized disjunctions.
Lesson 5: Semilinear logics.
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Basic syntactical notions – 1

Propositional language: a countable type L, i.e. a function
ar : CL → N, where CL is a countable set of symbols called
connectives, giving for each one its arity. Nullary connectives
are also called truth-constants. We write 〈c, n〉 ∈ L whenever
c ∈ CL and ar(c) = n.

Formulae: Let Var be a fixed infinite countable set of symbols
called variables. The set FmL of formulae in L is the least set
containing Var and closed under connectives of L, i.e. for each
〈c, n〉 ∈ L and every ϕ1, . . . , ϕn ∈ FmL, c(ϕ1, . . . , ϕn) is a
formula.

Substitution: a mapping σ : FmL → FmL, such that
σ(c(ϕ1, . . . , ϕn)) = c(σ(ϕ1), . . . , σ(ϕn)) holds for each 〈c, n〉 ∈ L
and every ϕ1, . . . , ϕn ∈ FmL.

Consecution: a pair Γ � ϕ, where Γ ∪ {ϕ} ⊆ FmL.
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Basic syntactical notions – 2

A set L of consecutions can be seen as a relation between sets
of formulae and formulae. We write ‘Γ `L ϕ’ instead of
‘Γ � ϕ ∈ L’.

Definition 1.8
A set L of consecutions in L is called a logic in L whenever

If ϕ ∈ Γ, then Γ `L ϕ. (Reflexivity)
If ∆ `L ψ for each ψ ∈ Γ and Γ `L ϕ, then ∆ `L ϕ. (Cut)
If Γ `L ϕ, then σ[Γ] `L σ(ϕ) for each substitution σ.

(Structurality)

Observe that reflexivity and cut entail:

If Γ `L ϕ and Γ ⊆ ∆, then ∆ `L ϕ. (Monotonicity)

The least logic Dumb is described as:

Γ `Dumb ϕ iff ϕ ∈ Γ.
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Basic syntactical notions – 3

Theorem: a consequence of the empty set
(note that Dumb has no theorems).

Inconsistent logic Inc: the set all consecutions
(equivalently: a logic where all formulae are theorems).

Almost Inconsistent logic AInc: the maximum logic without
theorems (note that Γ, ϕ `AInc ψ).

Theory: a set of formulae T such that if T `L ϕ then ϕ ∈ T. By
Th(L) we denote the set of all theories of L.

Note that
Th(L) can be seen as a closure system. By ThL(Γ) we
denote the theory generated in Th(L) by Γ (i.e., the
intersection of all theories containing Γ).
ThL(Γ) = {ϕ ∈ FmL | Γ `L ϕ}.
The set of all theorems is the least theory and it is
generated by the empty set.
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Basic syntactical notions – 4

Axiomatic system: a set AS of consecutions closed under
substitutions. An element Γ � ϕ is an

axiom if Γ = ∅,
finitary deduction rule if Γ is a finite,
infinitary deduction rule otherwise.

An axiomatic system is finitary if all its rules are finitary.

Proof: a proof of a formula ϕ from a set of formulae Γ in AS is a
well-founded tree labeled by formulae such that

its root is labeled by ϕ and leaves by axioms of AS or
elements of Γ and
if a node is labeled by ψ and ∆ 6= ∅ is the set of labels of its
preceding nodes, then ∆ � ψ ∈ AS.

We write Γ ÀS ϕ if there is a proof of ϕ from Γ in AS.
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Basic syntactical notions – 5

Lemma 1.9
Let AS be an axiomatic system. Then ÀS is the least logic
containing AS.

Presentation: We say that AS is an axiomatic system for (or a
presentation of) the logic L if L = ÀS . A logic is said to be
finitary if it has some finitary presentation.

Lemma 1.10
A logic L is finitary iff for each set of formulae Γ ∪ {ϕ} we have:
if Γ `L ϕ, then there is a finite Γ′ ⊆ Γ such that Γ′ `L ϕ.

Note that Inc,AInc,Dumb are finitary because:
Inc is axiomatized by axioms {ϕ | ϕ ∈ FmL}
AInc is axiomatized by unary rules {ϕ� ψ | ϕ,ψ ∈ FmL}
Dumb is axiomatized by by the empty set
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Examples: classical logic CL and logic BCI

Finitary axiomatic system for CL in LCL = {→,¬}
A1 ϕ→ (ψ → ϕ)

A2 (χ→ (ϕ→ ψ))→ ((χ→ ϕ)→ (χ→ ψ))

A3 (¬ψ → ¬ϕ)→ (ϕ→ ψ)

MP ϕ,ϕ→ ψ � ψ

Finitary axiomatic system for BCI in LBCI = {→}
B (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

C (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))

I ϕ→ ϕ

MP ϕ,ϕ→ ψ � ψ
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Basic syntactical notions – 6

Let L1 ⊆ L2 be propositional languages, Li a logic in Li, and S
a set of consecutions in L2.

L2 is the expansion of L1 by S if it is the weakest logic in L2
containing L1 and S, i.e. the logic axiomatized by all
L2-substitutional instances of consecutions from S ∪ AS,
for any presentation AS of L1.
L2 is an expansion of L1 if L1 ⊆ L2, i.e. it is the expansion
of L1 by S, for some set of consecutions S.
L2 is an axiomatic expansion of L1 if it is an expansion
obtained by adding a set of axioms.
L2 is a conservative expansion of L1 if it is an expansion
and for each consecution Γ � ϕ in L1 we have that Γ `L2 ϕ
entails Γ `L1 ϕ.

If L1 = L2, we use ‘extension’ instead ‘expansion’.

Note that CL is the axiomatic expansion of BCI by A1–A3.
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Basic semantical notions – 1

L-algebra: A = 〈A, 〈cA | c ∈ CL〉〉, where A 6= ∅ (universe) and
cA : An → A for each 〈c, n〉 ∈ L.

Algebra of formulae: the algebra FmL with domain FmL and
operations cFmL for each 〈c, n〉 ∈ L defined as:

cFmL(ϕ1, . . . , ϕn) = c(ϕ1, . . . , ϕn).

FmL is the absolutely free algebra in language L with
generators Var.

Homomorphism of algebras: a mapping f : A→ B such that for
every 〈c, n〉 ∈ L and every a1, . . . , an ∈ A,

f (cA(a1, . . . , an)) = cB(f (a1), . . . , f (an)).

Note that substitutions are exactly endomorphisms of FmL.
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Basic semantical notions – 2

L-matrix: a pair A = 〈A,F〉 where A is an L-algebra called the
algebraic reduct of A, and F is a subset of A called the filter
of A. The elements of F are called designated elements of A.

A matrix A = 〈A,F〉 is
trivial if F = A.
finite if A is finite.
Lindenbaum if A = FmL.

A-evaluation: a homomorphism from FmL to A, i.e. a mapping
e : FmL → A, such that for each 〈c, n〉 ∈ L and each n-tuple of
formulae ϕ1, . . . , ϕn we have:

e(c(ϕ1, . . . , ϕn)) = cA(e(ϕ1), . . . , e(ϕn)).
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Basic semantical notions – 3

Semantical consequence: A formula ϕ is a semantical
consequence of a set Γ of formulae w.r.t. a class K of
L-matrices if for each 〈A,F〉 ∈ K and each A-evaluation e, we
have e(ϕ) ∈ F whenever e[Γ] ⊆ F; we denote it by Γ |=K ϕ.

Exercise 1
Let K be a class of L-matrices. Then |=K is a logic in L.

Lemma 1.11
Furthermore if K is a finite class of finite matrices, then the
logic |=K is finitary.

L-matrix: Let L be a logic in L and A an L-matrix. We say that
A is an L-matrix if L ⊆ |=A. We denote the class of L-matrices
by MOD(L).
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Basic semantical notions – 4

Lemma 1.12

Let L be a logic in L and a mapping g : A→ B be a
homomorphism of L-algebras A,B. Then:

〈A, g−1[G]〉 ∈MOD(L), whenever 〈B,G〉 ∈MOD(L).

〈B, g[F]〉 ∈MOD(L), whenever 〈A,F〉 ∈MOD(L) and g is
surjective and g(x) ∈ g[F] implies x ∈ F.
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Basic semantical notions – 5

Logical filter: Given a logic L in L and an L-algebra A, a subset
F ⊆ A is an L-filter if 〈A,F〉 ∈MOD(L). By F iL(A) we denote
the set of all L-filters over A.

F iL(A) is a closure system and can be given a lattice structure
by defining for any F,G ∈ F iL(A), F ∧ G = F ∩ G and
F ∨ G = FiAL(F ∪ G).

Generated filter: Given a set X ⊆ A, the logical filter generated
by X is FiAL(X) =

⋂
{F ∈ F iL(A) | X ⊆ F}.

F iDumb(A) = P(A) F iAInc(A) = {∅,A} F iInc(A) = {A}
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Examples: classical logic CL and logic BCI

Exercise 2
1. Classical logic: Let A be a Boolean algebra. Then F iCL(A) is
the class of lattice filters on A, in particular for the two-valued
Boolean algebra 2:

F iCL(2) = {{1}, {0, 1}}.

2. The logic BCI: By M we denote the LBCI-algebra with domain
{⊥,>, t, f} and:

→M > t f ⊥
> > ⊥ ⊥ ⊥
t > t f ⊥
f > ⊥ t ⊥
⊥ > > > >

Check that
F iBCI(M) = {{t,>}, {t, f ,>},M}.
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The first completeness theorem

Proposition 1.13

For any logic L in a language L, F iL(FmL) = Th(L).

Theorem 1.14
Let L be a logic. Then for each set Γ of formulae and each
formula ϕ the following holds: Γ `L ϕ iff Γ |=MOD(L) ϕ.
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Completeness theorem for classical logic

Suppose that T ∈ Th(CL) and ϕ /∈ T (T 6`CL ϕ). We want to
show that T 6|= ϕ in some meaningful semantics.
T 6|=〈FmL,T〉 ϕ. 1st completeness theorem

〈α, β〉 ∈ Ω(T) iff α↔ β ∈ T (congruence relation on FmL
compatible with T: if α ∈ T and 〈α, β〉 ∈ Ω(T), then β ∈ T).
Lindenbaum–Tarski algebra: FmL/Ω(T) is a Boolean
algebra and T 6|=〈FmL/Ω(T),T/Ω(T)〉 ϕ.

2nd completeness theorem

Lindenbaum Lemma: If ϕ /∈ T, then there is a maximal
consistent T ′ ∈ Th(CL) such that T ⊆ T ′ and ϕ /∈ T ′.
FmL/Ω(T ′) ∼= 2 (subdirectly irreducible Boolean algebra)
and T 6|=〈2,{1}〉 ϕ. 3rd completeness theorem
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Weakly implicative logics

Definition 1.15
A logic L in a language L is weakly implicative if there is a
binary connective→ (primitive or definable) such that:

(R) `L ϕ→ ϕ

(MP) ϕ,ϕ→ ψ `L ψ

(T) ϕ→ ψ,ψ → χ `L ϕ→ χ

(sCng) ϕ→ ψ,ψ → ϕ `L c(χ1, . . . , χi, ϕ, . . . , χn)→
c(χ1, . . . , χi, ψ, . . . , χn)

for each 〈c, n〉 ∈ L and each 0 ≤ i < n.
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Examples

The following logics are weakly implicative:
CL, BCI, and Inc
global modal logics
intuitionistic and superintuitionistic logic
linear logic and its variants
(the most of) fuzzy logics
substructural logics

...
The following logics are not weakly implicative:

local modal logics we will see why later today

Dumb, AInc, and the conjunction-disjunction fragment of
classical logic as they have no theorems

logics of ortholattices lesson 3
...
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Congruence Property

Conventions
Unless said otherwise, L is a weakly implicative in a language
L with an implication→. We write:

ϕ↔ ψ instead of {ϕ→ ψ,ψ → ϕ}
Γ ` ∆ whenever Γ ` χ for each χ ∈ ∆

Γ a` ∆ whenever Γ ` ∆ and ∆ ` Γ.

Theorem 1.16
Let ϕ,ψ, χ be formulae. Then:

`L ϕ↔ ϕ

ϕ↔ ψ `L ψ ↔ ϕ

ϕ↔ δ, δ ↔ ψ `L ϕ↔ ψ

ϕ↔ ψ `L χ↔ χ̂, where χ̂ is obtained from χ by replacing
some occurrences of ϕ in χ by ψ.
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Corollaries

Corollary 1.17

Let→′ be a connective satisfying (R), (MP), (T), (sCng). Then

ϕ↔ ψ a`L ϕ↔′ ψ.

Proof.
Consider formulas χ = ϕ→′ ϕ and χ̂ = ϕ→′ ψ and the proof

ϕ↔ ψ, . . . , (ϕ→′ ϕ)→ (ϕ→′ ψ), ϕ→′ ϕ, ϕ→′ ψ.

Analogously for χ̂ = ψ →′ ϕ we can write

ϕ↔ ψ, . . . , (ϕ→′ ϕ)→ (ψ →′ ϕ), ϕ→′ ϕ, ψ →′ ϕ.

So we have shown ϕ↔ ψ `L ϕ↔′ ψ. The reverse direction is
fully analogous.
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Corollaries

Corollary 1.17

Let→′ be a connective satisfying (R), (MP), (T), (sCng). Then

ϕ↔ ψ a`L ϕ↔′ ψ.

Corollary 1.18

Local modal logic Tl is not weakly implicative.

Proof.

Let→′ be a ‘good’ implication in Tl. Then→′ (along with
classical implication→) is an implication in global Tg. Thus
1→ ϕ,ϕ→ 1 `Tg 1↔′ ϕ and so 2n(1→ ϕ) `Tl 1↔′ ϕ for some
n. Consider the proof in Tl: 2nϕ, . . . , 2n(1→ ϕ), . . . ,
1↔′ ϕ, . . . , 2n+11↔′ 2n+1ϕ, 2n+11, 2n+1ϕ; a contradiction!
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