Abstract Algebraic Logic – 2nd lesson

Petr Cintula¹ and Carles Noguera²

¹Institute of Computer Science, Academy of Sciences of the Czech Republic Prague, Czech Republic

²Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic Prague, Czech Republic

www.cs.cas.cz/cintula/AAL

Completeness theorem for classical logic

- Suppose that $T \in \operatorname{Th}(\operatorname{CL})$ and $\varphi \notin T$ $(T \not\vdash_{\operatorname{CL}} \varphi)$. We want to show that $T \not\models \varphi$ in some meaningful semantics.
- $T \not\models_{\langle Fm_{\mathcal{L}},T \rangle} \varphi$. 1st completeness theorem
- $\langle \alpha, \beta \rangle \in \Omega(T)$ iff $\alpha \leftrightarrow \beta \in T$ (congruence relation on $Fm_{\mathcal{L}}$ compatible with T: if $\alpha \in T$ and $\langle \alpha, \beta \rangle \in \Omega(T)$, then $\beta \in T$).
- Lindenbaum-Tarski algebra: $Fm_{\mathcal{L}}/\Omega(T)$ is a Boolean algebra and $T \not\models_{\langle Fm_{\mathcal{L}}/\Omega(T), T/\Omega(T) \rangle} \varphi$.

2nd completeness theorem

- Lindenbaum Lemma: If $\varphi \notin T$, then there is a maximal consistent $T' \in \text{Th}(CL)$ such that $T \subseteq T'$ and $\varphi \notin T'$.
- $Fm_{\mathcal{L}}/\Omega(T')\cong \mathbf{2}$ (subdirectly irreducible Boolean algebra) and $T\not\models_{\langle \mathbf{2},\{1\}\rangle} \varphi$. 3rd completeness theorem

Definition 2.1

Let $A = \langle A, F \rangle$ be an L-matrix. We define:

• the matrix preorder \leq_A of A as

$$a \leq_{\mathbf{A}} b$$
 iff $a \to^{\mathbf{A}} b \in F$

• the Leibniz congruence $\Omega_A(F)$ of A as

$$\langle a,b \rangle \in \Omega_{\mathbf{A}}(F)$$
 iff $a \leq_{\mathbf{A}} b$ and $b \leq_{\mathbf{A}} a$.

A congruence θ of A is logical in a matrix $\langle A, F \rangle$ if for each $a, b \in A$ if $a \in F$ and $\langle a, b \rangle \in \theta$, then $b \in F$.

Theorem 2.2

Let $A = \langle A, F \rangle$ be an L-matrix. Then:

- $\mathbf{0} \leq_{\mathbf{A}}$ is a preorder.
- ② $\Omega_A(F)$ is the largest logical congruence of A.
- **③** $\langle a,b\rangle$ ∈ $\Omega_A(F)$ iff for each χ ∈ $Fm_{\mathcal{L}}$ and each A-evaluation e:

$$e[p{\rightarrow}a](\chi) \in F \qquad \textit{iff} \qquad e[p{\rightarrow}b](\chi) \in F.$$

Proof.

1. Take A-evaluation e such that e(p)=a, e(q)=b, and e(r)=c. Recall that in L we have: $\vdash_{\mathsf{L}} p \to p$ and $p \to q, q \to r \vdash_{\mathsf{L}} p \to r.$ As $\mathbf{A} = \mathbf{MOD}(\mathsf{L})$ we have: $e(p \to p) \in F$, i.e., $a \leq_{\mathbf{A}} a$ and if $e(p \to q), e(q \to r) \in F$, then $e(p \to r) \in F$ i.e., if $a \leq_{\mathbf{A}} b$ and $b \leq_{\mathbf{A}} c$, then $a \leq_{\mathbf{A}} c$.

Theorem 2.2

Let $A = \langle A, F \rangle$ be an L-matrix. Then:

- $\mathbf{0} \leq_{\mathbf{A}}$ is a preorder.
- $\Omega_A(F)$ is the largest logical congruence of A.
- **③** $\langle a,b\rangle$ ∈ $\Omega_A(F)$ iff for each χ ∈ $Fm_{\mathcal{L}}$ and each A-evaluation e:

$$e[p{\rightarrow}a](\chi) \in F \qquad \textit{iff} \qquad e[p{\rightarrow}b](\chi) \in F.$$

Proof.

2. $\Omega_A(F)$ is obviously an equivalence relation. It is a congruence due to (sCng) and logical due to (MP).

Take a logical congruence θ and $\langle a,b\rangle\in\theta$. Since $\langle a,a\rangle\in\theta$, we have $\langle a\to^A a,a\to^A b\rangle\in\theta$. As $a\to^A a\in F$ and θ is logical we get $a\to^A b\in F$, i.e., $a\leq_{\mathbf{A}} b$. The proof of $b\leq_{\mathbf{A}} a$ is analogous.

Theorem 2.2

Let $A = \langle A, F \rangle$ be an L-matrix. Then:

- $\mathbf{0} \leq_{\mathbf{A}}$ is a preorder.
- ② $\Omega_A(F)$ is the largest logical congruence of A.
- **③** $\langle a,b\rangle$ ∈ $\Omega_A(F)$ iff for each χ ∈ $Fm_{\mathcal{L}}$ and each A-evaluation e:

$$e[p{\rightarrow}a](\chi) \in F \qquad \textit{iff} \qquad e[p{\rightarrow}b](\chi) \in F.$$

Proof.

3. One direction is a corollary of Theorem 1.16 and $(\mbox{MP}).$

The converse one: set $\chi = p \to q$ and e(q) = b: then $a \to^{\mathbf{A}} b \in F$ iff $b \to^{\mathbf{A}} b \in F$, thus $a \leq_{\mathbf{A}} b$. The proof of $b \leq_{\mathbf{A}} a$ is analogous (using e(q) = a).

Algebraic counterpart

Definition 2.3

An L-matrix $\mathbf{A}=\langle A,F\rangle$ is reduced, $\mathbf{A}\in\mathbf{MOD}^*(\mathbf{L})$ in symbols, if $\Omega_{\mathbf{A}}(F)$ is the identity relation $\mathrm{Id}_{\mathbf{A}}$.

An algebra A is L-algebra, $A \in ALG^*(L)$ in symbols, if there is a set $F \subseteq A$ such that $\langle A, F \rangle \in MOD^*(L)$.

Note that $\Omega_A(A) = A^2$. Thus from $\mathcal{F}i_{Inc}(A) = \{A\}$ we obtain:

 $A \in ALG^*(Inc)$ iff A is a singleton

Examples: classical logic CL and logic BCI

Exercise 3

Classical logic: prove that for any Boolean algebra A:

$$\Omega_A(\{1\}) = \mathrm{Id}_A$$
 i.e., $A \in ALG^*(CL)$.

On the other hand, show that:

$$\Omega_4(\{a,1\}) = \mathrm{Id}_A \cup \{\langle 1,a \rangle, \langle 0, \neg a \rangle\}$$
 i.e. $\langle 4, \{a,1\} \rangle \notin \mathbf{MOD}^*(\mathrm{CL})$.

BCI: recall the algebra *M* defined via:

Show that:

$$\Omega_{\mathbf{M}}(\{t, \top\}) = \Omega_{\mathbf{M}}(\{t, f, \top\}) = \mathrm{Id}_{\mathbf{M}}$$
 i.e. $\mathbf{M} \in \mathbf{ALG}^*(\mathrm{BCI})$.

Factorizing matrices – 1

Let us take $\mathbf{A} = \langle \mathbf{A}, F \rangle \in \mathbf{MOD}(\mathbf{L})$. We write:

- ullet A^* for $A/\Omega_A(F)$
- $[\cdot]_F$ for the canonical epimorphism of A onto A^* defined as:

$$[a]_F = \{b \in A \mid \langle a, b \rangle \in \Omega_A(F)\}$$

• \mathbf{A}^* for $\langle \mathbf{A}^*, [F]_F \rangle$.

Lemma 2.4

Let $A = \langle A, F \rangle \in \mathbf{MOD}(L)$ and $a, b \in A$. Then:

- $2 A^* \in MOD(L).$
- $\mathbf{4}^* \in \mathbf{MOD}^*(L).$

Factorizing matrices – 2

Proof.

- One direction is trivial. Conversely: $[a]_F \in [F]_F$ implies that $[a]_F = [b]_F$ for some $b \in F$; thus $\langle a, b \rangle \in \Omega_A(F)$ and, since $\Omega_A(F)$ is a logical congruence, we obtain $a \in F$.
- **2** Recall that the second claim of Lemma 1.12 says that for a surjective $g: A \to B$ and $F \in \mathcal{F}i_{L}(A)$ we get $g[F] \in \mathcal{F}i_{L}(B)$, whenever $g(x) \in g[F]$ implies $x \in F$.
- **4** Assume that $\langle [a]_F, [b]_F \rangle \in \Omega_{A^*}([F]_F)$, i.e., $[a]_F \leq_{\mathbf{A}^*} [b]_F$ and $[b]_F \leq_{\mathbf{A}^*} [a]_F$. Therefore $a \to^{\mathbf{A}} b \in F$ and $b \to^{\mathbf{A}} a \in F$, i.e., $\langle a,b \rangle \in \Omega_{\mathbf{A}}(F)$. Thus $[a]_F = [b]_F$.

Lindenbaum-Tarski matrix

Let L be a weakly implicative logic in \mathcal{L} and $T \in Th(L)$. For every formula φ , we define the set

$$[\varphi]_T = \{ \psi \in Fm_{\mathcal{L}} \mid \varphi \leftrightarrow \psi \subseteq T \}.$$

The Lindenbaum—Tarski matrix with respect to L and T, LindT $_T$, has the filter $\{[\varphi]_T \mid \varphi \in T\}$ and algebraic reduct with the domain $\{[\varphi]_T \mid \varphi \in Fm_{\mathcal{L}}\}$ and operations:

$$c^{\mathbf{LindT}_T}([\varphi_1]_T,\ldots,[\varphi_n]_T)=[c(\varphi_1,\ldots,\varphi_n)]_T$$

Clearly, for every $T \in Th(L)$ we have:

$$\mathbf{LindT}_T = \langle \mathbf{Fm}_{\mathcal{L}}, T \rangle^*.$$

The second completeness theorem

Theorem 2.5

Let L be a weakly implicative logic. Then for any set Γ of formulae and any formula φ the following holds:

$$\Gamma \vdash_{\mathsf{L}} \varphi \quad \textit{iff} \quad \Gamma \models_{\mathbf{MOD}^*(\mathsf{L})} \varphi.$$

Proof.

Using just the soundness part of the first completeness theorem it remains to prove:

$$\Gamma \models_{\mathbf{MOD}^*(L)} \varphi$$
 implies $\Gamma \vdash_L \varphi$.

Take Lindenbaum–Tarski matrix $\mathbf{LindT}_{\mathrm{Th}_{L}(\Gamma)} = \langle \mathit{Fm}_{\mathcal{L}}, \mathrm{Th}_{L}(\Gamma) \rangle^*$ and evaluation $e(\psi) = [\psi]_{\mathrm{Th}_{L}(\Gamma)}.$ As clearly $e[\Gamma] \subseteq e[\mathrm{Th}_{L}(\Gamma)] = [\mathrm{Th}_{L}(\Gamma)]_{\mathrm{Th}_{L}(\Gamma)},$ then, as $\mathbf{LindT}_{\mathrm{Th}_{L}(\Gamma)}$ is an L-model, we have: $e(\varphi) = [\varphi]_{\mathrm{Th}_{L}(\Gamma)} \in [\mathrm{Th}_{L}(\Gamma)]_{\mathrm{Th}_{L}(\Gamma)},$ and so $\varphi \in \mathrm{Th}_{L}(\Gamma)$ i.e., $\Gamma \vdash_{L} \varphi$.

Closure system over a set A: a collection of subsets $\mathcal{C} \subseteq \mathcal{P}(A)$ closed under arbitrary intersections and such that $A \in \mathcal{C}$. The elements of \mathcal{C} are called closed sets.

Closure operator over a set A: a mapping $C: \mathcal{P}(A) \to \mathcal{P}(A)$ such that for every $X, Y \subseteq A$:

- ② C(X) = C(C(X)), and
- \bullet if $X \subseteq Y$, then $C(X) \subseteq C(Y)$.

Exercise 4

If C is a closure operator, $\{X \subseteq A \mid C(X) = X\}$ is a closure system.

If C is closure system, $C(X) = \bigcap \{Y \in C \mid X \subseteq Y\}$ is a closure operator.

A closure operator C is finitary if for every $X \subseteq A$, $C(X) = \bigcup \{C(Y) \mid Y \subseteq X \text{ and } Y \text{ is finite}\}.$

A closure system \mathcal{C} is called inductive if it is closed under unions of upwards directed families (i.e. families $\mathcal{D} \neq \emptyset$ such that for every $A, B \in \mathcal{D}$, there is $C \in \mathcal{D}$ such that $A \cup B \subseteq C$).

Theorem 2.6 (Schmidt Theorem)

A closure operator C is finitary if, and only if, its associated closure system C is inductive.

Each logic L determines a closure system $\operatorname{Th}(L)$ and a closure operator Th_L .

Conversely, given a structural closure operator C over $Fm_{\mathcal{L}}$ (for every σ , if $\varphi \in C(\Gamma)$, then $\sigma(\varphi) \in C(\sigma[\Gamma])$), there is a logic L such that $C = \operatorname{Th}_{\mathbf{L}}$.

L is a finitary logic iff Th_L is a finitary closure operator.

The set of all L-filters over a given algebra A, $\mathcal{F}i_{L}(A)$ is a closure system over A. Its associated closure operator is Fi_{L}^{A} .

Transfer theorem for finitarity

Corollary 2.7

Given a logic L in a language \mathcal{L} , the following conditions are equivalent:

- L is finitary.
- $\circled{\circ}$ $\operatorname{Fi}_{\operatorname{L}}^{A}$ is a finitary closure operator for any \mathcal{L} -algebra A.
- $\mathcal{F}i_L(A)$ is an inductive closure system for any \mathcal{L} -algebra A.

A base of a closure system C over A is any $B \subseteq C$ satisfying one of the following equivalent conditions:

- $oldsymbol{0}$ $\mathcal C$ is the coarsest closure system containing $\mathcal B$.
- ② For every $T \in \mathcal{C} \setminus \{A\}$, there is a $\mathcal{D} \subseteq \mathcal{B}$ such that $T = \bigcap \mathcal{D}$.
- **③** For every $T ∈ C \setminus \{A\}$, $T = \bigcap \{B ∈ B \mid T ⊆ B\}$.
- For every $Y \in \mathcal{C}$ and $a \in A \setminus Y$ there is $Z \in \mathcal{B}$ such that $Y \subseteq Z$ and $a \notin Z$.

Exercise 5

Show that the four definitions are equivalent.

An element X of a closure system $\mathcal C$ over A is called (finitely) \cap -irreducible if for each (finite non-empty) set $\mathcal Y\subseteq \mathcal C$ such that $X=\bigcap_{Y\in \mathcal Y} Y$, there is $Y\in \mathcal Y$ such that X=Y.

Abstract Lindenbaum Lemma

An element X of a closure system $\mathcal C$ over A is called maximal w.r.t. an element a if it is a maximal element of the set $\{Y \in \mathcal C \mid a \notin Y\}$ w.r.t. the order given by inclusion.

Proposition 2.8

Let C be a closure system over a set A and $T \in C$. Then, T is maximal w.r.t. an element if, and only if, T is \cap -irreducible.

Lemma 2.9

Let C be a finitary closure operator and \mathcal{C} its corresponding closure system. If $T \in \mathcal{C}$ and $a \notin T$, then there is $T' \in \mathcal{C}$ such that $T \subseteq T'$ and T' is maximal with respect to a. \cap -irreducible closed sets form a base.

Operations on matrices – 1

 $\langle A,F \rangle$: first-order structure in the equality-free predicate language with function symbols from $\mathcal L$ and a unique unary predicate symbol interpreted by F.

Submatrix: $\langle A, F \rangle \subseteq \langle B, G \rangle$ if $A \subseteq B$ and $F = A \cap G$. Operator: $\mathbf{S}(\langle A, F \rangle)$ is the class of all subalgebras of $\langle A, F \rangle$. Homomorphic image: $\langle B, G \rangle$ is a homomorphic image of $\langle A, F \rangle$ if it exists $h \colon A \to B$ homomorphism of algebras such that $h[F] \subseteq G$. Operator \mathbf{H} .

Strict homomorphic image: $\langle \pmb{B}, G \rangle$ is a strict homomorphic image of $\langle \pmb{A}, F \rangle$ if it exists $h \colon \pmb{A} \to \pmb{B}$ homomorphism of algebras such that $h[F] \subseteq G$ and $h[A \setminus F] \subseteq B \setminus G$. Operator \mathbf{H}_S . Isomorphic image: Image by a bijective strict homomorphism. Operator \mathbf{I} .

Operations on matrices – 2

Direct product: Given matrices $\{\langle A_i, F_i \rangle \mid i \in I\}$, their direct product is $\langle A, F \rangle$, where $A = \prod_{i \in I} A_i$, $f^A(a_1, \ldots, a_n)(i) = f^{A_i}(a_1(i), \ldots, a_n(i))$. $F = \prod_{i \in I} F_i$. $\pi_j : A \twoheadrightarrow A_j$. Operator **P**.

Exercise 6

Let L be a weakly implicative logic. Then:

- $② SP(MOD^*(L)) \subseteq MOD^*(L).$

Subdirect products and subdirect irreducibility

A matrix ${\bf A}$ is said to be representable as a subdirect product of the family of matrices $\{{\bf A}_i \mid i \in I\}$ if there is an embedding homomorphism α from ${\bf A}$ into the direct product $\prod_{i \in I} {\bf A}_i$ such that for every $i \in I$, the composition of α with the i-th projection, $\pi_i \circ \alpha$, is a surjective homomorphism. In this case, α is called a subdirect representation, and it is called finite if I is finite.

Operator $P_{SD}(\mathbb{K})$.

A matrix $\mathbf{A} \in \mathbb{K}$ is (finitely) subdirectly irreducible relative to \mathbb{K} if for every (finite non-empty) subdirect representation α of \mathbf{A} with a family $\{\mathbf{A}_i \mid i \in I\} \subseteq \mathbb{K}$ there is $i \in I$ such that $\pi_i \circ \alpha$ is an isomorphism. The class of all (finitely) subdirectly irreducible matrices relative to \mathbb{K} is denoted as $\mathbb{K}_{R(F)SI}$.

 $\mathbb{K}_{RSI} \subseteq \mathbb{K}_{RFSI}$.

Characterization of RSI and RFSI reduced models

Theorem 2.10

Given a weakly implicative logic L and $\mathbf{A}=\langle \mathbf{A}, F\rangle \in \mathbf{MOD}^*(\mathbf{L})$, we have:

- **○ A** ∈ **MOD***(L)_{RSI} iff F is \cap -irreducible in $\mathcal{F}i_L(A)$.
- **2** $A \in MOD^*(L)_{RFSI}$ iff F is finitely \cap -irreducible in $\mathcal{F}i_L(A)$.

Subdirect representation

Theorem 2.11

If L is a finitary weakly implicative logic, then

$$\label{eq:model} \textbf{MOD}^*(\textbf{L}) = \textbf{P}_{SD}(\textbf{MOD}^*(\textbf{L})_{RSI}),$$

in particular every matrix in $\mathbf{MOD}^*(L)$ is representable as a subdirect product of matrices in $\mathbf{MOD}^*(L)_{RSI}$.

The third completeness theorem

Theorem 2.12

Let L be a finitary weakly implicative logic. Then

$$\vdash_{\mathsf{L}} = \models_{\mathbf{MOD}^*(\mathsf{L})_{\mathsf{RSI}}}.$$

Leibniz operator

Leibniz operator: the function giving for each $F \in \mathcal{F}i_{\mathbb{L}}(A)$ the Leibniz congruence $\Omega_A(F)$.

Proposition 2.13

Let L be a weakly implicative logic L and A an \mathcal{L} -algebra. Then

- **1** Ω_A is monotone: if $F \subseteq G$ then $\Omega_A(F) \subseteq \Omega_A(G)$.
- ② Ω_A commutes with inverse images by homomorphisms: for every \mathcal{L} -algebra \mathbf{B} , homomorphism $h \colon A \to \mathbf{B}$, and $F \in \mathcal{F}i_{\mathbf{L}}(\mathbf{B})$:

$$\Omega_{\pmb{A}}(h^{-1}[F]) = h^{-1}[\Omega_{\pmb{B}}(F)] = \{\langle a,b\rangle \mid \langle h(a),h(b)\rangle \in \Omega_{\pmb{B}}(F)\}.$$

 $Con_{ALG^*(L)}(A)$ is the set ordered by inclusion of congruences of A giving a quotient in $ALG^*(L)$.

Example

Recall that for the algebra $M \in ALG^*(BCI)$ defined via:

we have

$$\Omega_{M}(\{t, \top\}) = \Omega_{M}(\{t, f, \top\}) = \mathrm{Id}_{M}$$
 i.e., Ω_{M} is not injective

Interesting equivalence

Theorem 2.14

Given any weakly implicative logic L, TFAE:

- For every \mathcal{L} -algebra A, the Leibniz operator Ω_A is a lattice isomorphism from $\mathcal{F}i_L(A)$ to $Con_{ALG^*(L)}(A)$.
- ② For every $\langle A, F \rangle \in \mathbf{MOD}^*(L)$, F is the least L-filter on A.
- **3** The Leibniz operator $\Omega_{Fm_{\mathcal{L}}}$ is a lattice isomorphism from $\operatorname{Th}(\mathbb{L})$ to $\operatorname{Con}_{\operatorname{ALG}^*(\mathbb{L})}(Fm_{\mathcal{L}})$.
- There is a set of equations \mathcal{T} in one variable such that (Alg) $p \dashv \vdash_L \{\mu(p) \leftrightarrow \nu(p) \mid \mu \approx \nu \in \mathcal{T}\}.$
- **5** There is a set of equations \mathcal{T} in one variable such that for each $\mathbf{A} = \langle A, F \rangle \in \mathbf{MOD}^*(\mathbf{L})$ and each $a \in A$ holds: $a \in F$ if, and only if, $\mu^A(a) = \nu^A(a)$ for every $\mu \approx \nu \in \mathcal{T}$.

In the last two items the sets T can be taken the same.

Algebraically implicative logics

Definition 2.15

We say that a logic L is algebraically implicative if it is weakly implicative and satisfies one of the equivalent conditions from the previous theorem.

In this case, $ALG^*(L)$ is called an equivalent algebraic semantics for L and the set \mathcal{T} is called a truth definition.

Example 2.16

In many cases, one equation is enough for the truth definition. For instance, in classical logic, intuitionism, t-norm based fuzzy logics, etc. the truth definition is $\{p \approx \overline{1}\}$. Linear logic is algebraically implicative with $\mathcal{T} = \{p \wedge \overline{1} \approx \overline{1}\}$.

Different logics with the same algebras

Exercise 7

 $\mathcal{L} = \{\neg, \rightarrow\}$. Algebra A with domain $\{0, \frac{1}{2}, 1\}$ and operations:

	_
0	1
$\frac{1}{2}$	$\frac{1}{2}$
1	0

$$\begin{array}{l}
 \text{L}_3 = \models_{\langle A, \{1\} \rangle} \\
 \text{J}_3 = \models_{\langle A, \{\frac{1}{2}, 1\} \rangle}
 \end{array}$$

[three-valued Łukasiewicz logic] [Da Costa, D'Ottaviano]

Defined connectives: $\overline{1} = p \rightarrow p, \diamond p = \neg p \rightarrow p$ \mathbb{L}_3 and \mathbb{J}_3 are both algebraically implicative with

$$\begin{array}{c|c|c} L & \mathbf{ALG}^*(L) & \mathcal{T}(p) \\ \hline \underline{\mathtt{L}}_3 & \mathbf{Q}(A) & \{p \approx \overline{1}\} \\ \mathbf{J}_3 & \mathbf{Q}(A) & \{\diamond p \approx \overline{1}\} \end{array}$$

Equational consequence

An equation in the language \mathcal{L} is a formal expression of the form $\varphi \approx \psi$, where $\varphi, \psi \in Fm_{\mathcal{L}}$.

We say that an equation $\varphi \approx \psi$ is a consequence of a set of equations Π w.r.t. a class \mathbb{K} of \mathcal{L} -algebras if for each $A \in \mathbb{K}$ and each A-evaluation e we have $e(\varphi) = e(\psi)$ whenever $e(\alpha) = e(\beta)$ for each $\alpha \approx \beta \in \Pi$; we denote it by $\prod \models_{\mathbb{K}} \varphi \approx \psi$.

Proposition 2.17

Let L be a weakly implicative logic and $\Pi \cup \{\varphi \approx \psi\}$ a set of equations. Then

$$\Pi \models_{\mathbf{ALG}^*(\mathsf{L})} \varphi \approx \psi \quad \textit{iff} \quad \{\alpha \leftrightarrow \beta \mid \alpha \approx \beta \in \Pi\} \vdash_{\mathsf{L}} \varphi \leftrightarrow \psi.$$

Alternatively, using translation
$$\rho[\Pi] = \bigcup_{\alpha \approx \beta \in \Pi} (\alpha \leftrightarrow \beta)$$
:

$$\Pi \models_{\mathbf{ALG}^*(\mathbf{L})} \varphi \approx \psi \quad \textit{iff} \quad \rho[\Pi] \vdash_{\mathbf{L}} \rho(\varphi \approx \psi).$$

Characterizations of algebraically implicative logics

We have defined a translation ρ from (sets of) equations to sets of formulae using \leftrightarrow .

Analogously we define a translation τ from (sets of) formulae to sets of equations using the truth definition \mathcal{T} :

$$\tau[\Gamma] = \{\alpha(\varphi) \approx \beta(\varphi) \mid \varphi \in \Gamma \text{ and } \alpha \approx \beta \in \mathcal{T}\}$$

Theorem 2.18

Given any weakly implicative logic L, TFAE:

- lacktriangledown L is algebraically implicative with the truth definition \mathcal{T} .
- 2 There is a set of equations T in one variable such that:
 - $\bullet \quad \Pi \models_{\mathbf{ALG}^*(\mathbf{L})} \varphi \approx \psi \text{ iff } \rho[\Pi] \vdash_{\mathbf{L}} \rho(\varphi \approx \psi)$
 - $p + \vdash_{\mathsf{L}} \rho[\tau(p)]$
- There is a set of equations T in one variable such that:
 - $\bullet \quad \Gamma \vdash_{\mathsf{L}} \varphi \; \textit{iff} \; \tau[\Gamma] \models_{\mathsf{ALG}^*(\mathsf{L})} \tau(\varphi)$

Finitary algebraically implicative logics and quasivarieties

A quasivariety is a class of algebras described by quasiequations, formal expressions of the form $\bigwedge_{i=1}^{n} \alpha_i \approx \beta_i \Rightarrow \varphi \approx \psi$, where $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n, \varphi, \psi \in Fm_{\mathcal{L}}$.

Proposition 2.19

If L is a finitary algebraically implicative logic, then it has a finite truth definition and $\mathbf{ALG}^*(L)$ is a quasivariety.

Rasiowa-implicative and regularly implicative logics

Definition 2.20

We say that a weakly implicative logic L is

regularly implicative if:

(Reg)
$$\varphi, \psi \vdash_{\mathsf{L}} \psi \to \varphi$$
.

Rasiowa-implicative if:

$$(W) \varphi \vdash_{\mathsf{L}} \psi \to \varphi.$$

Proposition 2.21

A weakly implicative logic L is regularly implicative iff all the filters of the matrices in $\mathbf{MOD}^*(L)$ are singletons.

Proposition 2.22

A regularly implicative logic L is Rasiowa-implicative iff for each $A = \langle A, \{t\} \rangle \in \mathbf{MOD}^*(L)$ the element t is the maximum of \leq_A .

Hierarchy of weakly implicative logics

Proposition 2.23

Each Rasiowa-implicative logic is regularly implicative and each regularly implicative logic is algebraically implicative.

Examples

The following logics are Rasiowa-implicative:

- classical logic
- global modal logics
- intuitionistic and superintuitionistic logics
- many fuzzy logics (Łukasiewicz, Gödel-Dummett, product logics, HL, MTL, ...)
- substructural logics with weakening
- inconsistent logic
- ...

Example 2.24

- The equivalence fragment of classical logic is a regularly implicative but not Rasiowa-implicative logic.
- Linear logic is algebraically, but not regularly, implicative.
- The logic BCI is weakly, but not algebraically, implicative.