Two-layer modal logics: from fuzzy logics to a general framework

Petr Cintula¹ Carles Noguera¹²

¹Institute of Computer Science Academy of Sciences of the Czech Republic

²Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

.≣⇒

Probability and fuzzy logic ...

Petr Cintula and Carles Noguera

Two-layer modal logics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Once upon a time, there was a logician

Petr Cintula and Carles Noguera

Two-layer modal logics

ヘロン 人間 とくほど くほとう

æ

Once upon a time, there was a logician

프 🕨 🗉 프

ヘロト ヘアト ヘビト ヘ

and he wrote a book ...

Petr Cintula and Carles Noguera

Two-layer modal logics

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Many have read it

ヘロン 人間 とくほ とくほ とう

E DQC

Many have read it

Many have cited it

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Many have read it

Many have cited it WOS: 1200+ Google Scholar: 3000+

Petr Cintula and Carles Noguera

Two-layer modal logics

< 回 > < 回 > < 回 > -

3

Many have read it

Many have cited it WOS: 1200+ Google Scholar: 3000+

But just few have got to Section 8.4 ...

< 回 > < 回 > < 回 > .

æ

Fuzzy logic for reasoning about probability

Let us take:

- the classical logic CL in language $\rightarrow, \neg, \lor, \land, \overline{0}$
- Łukasiewicz logic Ł in language $\rightarrow_L, \neg_L, \oplus, \ominus$
- an extra symbol

We define three kinds of formulae of a two-level language over a fixed set of variables *Var*:

- non-modal: built from *Var* using $\rightarrow, \neg, \lor, \land, \overline{0}$
- atomic modal: of the form $\Box \varphi$, for each non-modal φ
- modal: built from atomic ones using $\rightarrow_L, \neg_L, \oplus, \ominus$

We use the following notational conventions:

non-modalmodalformulae φ, ψ, \dots Φ, Ψ, \dots sets of formulae T, S, \dots Γ, Δ, \dots

Probability Kripke frames and Kripke models

Definition 1

A *probability Kripke frame* is a system $\mathbf{F} = \langle W, \mu \rangle$ where

- W is a set (of possible worlds)
- μ is a finitely additive probability measure defined on

a sublattice of 2^W

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Definition 2

A *Kripke model* **M** over a probability Kripke frame $\mathbf{F} = \langle W, \mu \rangle$ is a tuple $\mathbf{M} = \langle \mathbf{F}, (e_w)_{w \in W} \rangle$ where:

- ew is a classical evaluation of non-modal formulae
- the domain of μ contains the set $\{w \mid e_w(\varphi) = 1\}$ for each non-modal formula φ

The truth values of modal formulae are defined uniformly:

$$\begin{split} ||\Box\varphi||_{\mathbf{M}} &= \mu(\{w \mid e_w(\varphi) = 1\}) \\ ||\neg_{\mathbf{L}}\Phi||_{\mathbf{M}} = 1 - ||\Phi||_{\mathbf{M}} \\ ||\Phi \to_{\mathbf{L}} \Psi||_{\mathbf{M}} &= \min\{1, 1 - ||\Phi||_{\mathbf{M}} + ||\Psi||_{\mathbf{M}}\} \\ ||\Phi \oplus \Psi||_{\mathbf{M}} &= \min\{1, ||\Phi||_{\mathbf{M}} + ||\Psi||_{\mathbf{M}}\} \\ ||\Phi \ominus \Psi||_{\mathbf{M}} &= \max\{0, ||\Phi||_{\mathbf{M}} - ||\Psi||_{\mathbf{M}}\} \end{split}$$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

∃ 𝒫𝔅

Definition 3

The logic \mathfrak{FP} of probability inside Łukasiewicz logic is given by the axiomatic system consisting of:

- the axioms and rules of CL for non-modal formulae,
- axioms and rules of Ł for modal formulae,
- modal axioms

$$\begin{array}{ll} (\mathsf{FP0}) & \neg_{\mathsf{E}} \Box(\overline{\mathbf{0}}) \\ (\mathsf{FP1}) & \Box(\varphi \to \psi) \to_{\mathsf{E}} (\Box \varphi \to_{\mathsf{E}} \Box \psi) \\ (\mathsf{FP2}) & \neg_{\mathsf{E}} \Box(\varphi) \to_{\mathsf{E}} \Box(\neg \varphi) \\ (\mathsf{FP3}) & \Box(\varphi \lor \psi) \to_{\mathsf{E}} (\Box \psi \oplus (\Box \varphi \ominus \Box(\varphi \land \psi))) \end{array}$$

a unary modal rule:

$$\varphi \vdash \Box \varphi$$

The notion of provability $\vdash_{\mathfrak{FP}}$ (from both modal and non-modal premises) is defined as usual.

ヘロン ヘアン ヘビン ヘビン

Theorem 4

Let $\Gamma \cup \{\Psi\}$ be a set of modal formulas. TFAE:

•
$$\Gamma \vdash_{\mathfrak{FP}} \Psi$$

• $||\Psi||_{\mathbf{M}} = 1$ for each Kripke model \mathbf{M} where $||\Phi||_{\mathbf{M}} = 1$
for each $\Phi \in \Gamma$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Variations considered in the literature:

- changing the measure
- changing the 'upper' logic: replacing the Łukasiewicz logic by any other t-norm-based logic
- changing the 'lower' logic: e.g. replacing CL by the Łukasiewicz logic to speak about probability of 'fuzzy' events
- adding more modalities
- any combination of the above four options

The goal of this contribution: identify the common aspects of all existing approaches and recover particular completeness results as instances of a general theory.

ヘロト 人間 ト ヘヨト ヘヨト

Setting up the stage ...

Petr Cintula and Carles Noguera

Two-layer modal logics

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

L: propositional language (a type)

 $arphi, \psi, \ldots$: formulae from $\mathit{Fm}_\mathcal{L}$ (terms) defined as usual

L: protoalgebraic logic

E: a (parameterized) equivalence of L

We write $\varphi \leftrightarrow \psi$ for $\{\chi(\varphi, \psi, \vec{\delta}) \mid \chi \in E \text{ and } \vec{\delta} \in Fm_{\mathcal{L}}^{<\omega}\}$ $T \vdash S$ for $T \vdash \varphi$ for each $\varphi \in S$

◆□ → ◆ 三 → ◆ 三 → ◆ ○ ◆

 \mathcal{L} : the language of MTL

 $arphi, \psi, \ldots$: formulae from $\mathit{Fm}_\mathcal{L}$ (terms) defined as usual

- L: finitary extension of MTL
- \leftrightarrow : the equivalence connective of MTL
 - $\begin{array}{lll} \text{We write} & \varphi \leftrightarrow \psi & \text{for} & \{\varphi \leftrightarrow \psi\} \\ & & \\ T \vdash S & \text{for} & T \vdash \varphi \text{ for each } \varphi \in S \end{array}$

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ ● の Q @

 \mathcal{L} -algebra A: just an algebra of type \mathcal{L}

A-evaluation *e*: a homomorphism from the absolutely free \mathcal{L} -algebra into an \mathcal{L} -algebra *A*.

- A is an L-algebra if
 - A an MTL-algebra
 - $T \vdash_{\mathcal{L}} \varphi$ implies that for each *A*-evaluation:

 $\text{ if } e[T] \subseteq \{1^A\}, \text{ then } e(\varphi) = 1^A.$

ヘロン 人間 とくほ とくほ とう

- L: the class of L-algebras (a quasivariety)
- $\models_{\mathbb{K}}$: semantical consequence w.r.t. a class \mathbb{K} of L-algebras

Theorem 5 (Completeness)	
$\vdash_{\mathrm{L}} = \models_{\mathbb{L}}$	

 \mathcal{L} -matrix **A**: a pair $\langle A, F \rangle$, where *A* is an \mathcal{L} -algebra and $F \subseteq A$

A-evaluation *e*: a homomorphism from the absolutely free \mathcal{L} -algebra into an \mathcal{L} -algebra *A*.

A is a reduced L-matrix if

- $x \leftrightarrow^A y \subseteq F_A$ implies x = y
- $T \vdash_{\mathbf{L}} \varphi$ implies that for each **A**-evaluation:

 $\text{ if } e[T] \subseteq F_{\mathbf{A}} \text{, then } e(\varphi) \in F_{\mathbf{A}}.$

イロト イポト イヨト イヨト

MOD*(L): the class of all reduced L-matrices

 $\models_{\mathbb{K}}$: semantical consequence w.r.t. a class \mathbb{K} of red. L-matrices

Two-layer modal logics ...

Petr Cintula and Carles Noguera

Two-layer modal logics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let us fix two logics L_1 and L_2 in disjoint languages and an extra symbol \Box .

We define three kinds of formulae of a two-level language over a fixed set of variables *Var*:

- non-modal: built from Var using connectives of L₁
- atomic modal: of the form $\Box \varphi$, for each non-modal φ
- modal: built from atomic ones using connectives of L₂.

We use the following notational conventions:

	non-modal	modal
formulae	$arphi,\psi,\ldots$	Ψ, Φ, \dots
sets of formulae	T, S, \ldots	Γ, Δ, \dots

・ 同 ト ・ ヨ ト ・ ヨ ト …

The minimal logic and its extensions

An *n*-ary modal rule is a pair $T \vdash \Psi$, where T is a set of n non-modal formulae and Ψ is a modal formula.

Definition 7

The minimal L_2 -modal logic over L_1 is given by the axiomatic system consisting of

- the axioms and rules of L₁ for non-modal formulae,
- axioms and rules of L₂ for modal formulae,
- a modal rule:

 $\varphi \leftrightarrow \psi \vdash \Box \varphi \leftrightarrow \Box \psi \qquad (\text{CONGR})$

An L_2 -modal logic over L_1 is an extension of the minimal one by some modal rules.

The notion of proof (from both modal and non-modal premises) is defined as usual.

Measured Kripke frames and Kripke models

We fix two classes of reduced matrices $\mathbb{K}_i \subseteq \mathbf{MOD}^*(\mathbf{L}_i)$

Definition 8

A \mathbb{K}_1 -based \mathbb{K}_2 -measured Kripke frame is a system

 $\mathbf{F} = \langle W, \langle \pmb{A}_w
angle_{w \in W}, \pmb{B}, \mu
angle$ where

ヘロン 人間 とくほ とくほ とう

= 990

• W is a set (of possible worlds)

•
$$oldsymbol{A}_w \in \mathbb{K}_1$$
 for each $w \in W$

- $\boldsymbol{B} \in \mathbb{K}_2$
- μ is a *partial* mapping $\mu \colon \prod_{w \in W} A_w \to B$

Measured Kripke frames and Kripke models

We fix two classes of reduced matrices $\mathbb{K}_i \subseteq \mathbf{MOD}^*(\mathbf{L}_i)$

Definition 8

A \mathbb{K}_1 -based \mathbb{K}_2 -measured Kripke frame is a system

 $\mathbf{F} = \langle W, \langle \! oldsymbol{A}_w
angle_{w \in W}, oldsymbol{B}, \mu
angle$ where

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• W is a set (of possible worlds)

•
$$oldsymbol{A}_w \in \mathbb{K}_1$$
 for each $w \in W$

- $\boldsymbol{B} \in \mathbb{K}_2$
- μ is a *partial* mapping $\mu \colon \prod_{w \in W} A_w \to B$

A *Kripke model* **M** over a **F** is a tuple $\mathbf{M} = \langle \mathbf{F}, \langle e_w \rangle_{w \in W} \rangle$ where:

- e_w is an A_w -evaluation of formulae of L_1
- The domain of μ contains the element $\langle e_w(\varphi) \rangle_{w \in W}$ for each non-modal formula φ

Let us fix a Kripke model $\mathbf{M} = \langle \langle W, \langle A_w \rangle_{w \in W}, B, \mu \rangle, \langle e_w \rangle_{w \in W} \rangle$ and we define the truth value of

- non-modal formulae in each possible world using the evaluation e_w
- atomic modal formulae uniformly in M as:

$$||\Box \varphi||_{\mathbf{M}} = \mu(\langle e_w(\varphi) \rangle_{w \in W})$$

- non-atomic modal formulae using operations from B
- We say that **M** is a *model of*
 - a non-modal formula ψ if $e_w(\psi) \in F_{A_w}$ for each $w \in W$.
 - a modal formula Ψ whenever $||\Psi||_{\mathbf{M}} \in F_{\mathbf{B}}$.

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

Definition 9

A formula Φ is a semantical consequence of $T \cup \Gamma$ w.r.t. a class of measured Kripke frames K, $T, \Gamma \models_{\mathsf{K}} \Phi$, if for each frame $\mathbf{F} \in \mathsf{K}$ and each Kripke model **M** over **F** holds that **M** is a model of Φ whenever it is a model of Γ and T.

Definition 10

A \mathbb{K}_1 -based \mathbb{K}_2 -measured Kripke frame \mathbf{F} is a frame for an \mathbf{L}_2 -modal logic \mathfrak{L} over \mathbf{L}_1 , $\mathbf{F} \in \mathsf{KF}_{\mathbb{K}_1}^{\mathbb{K}_2}(\mathfrak{L})$, if for each additional modal rule $T \vdash \Psi$ we have $T \models_{\mathbf{F}} \Psi$.

ヘロト 人間 ト ヘヨト ヘヨト

Recall the logic $\Im \mathfrak{P}$ built over the classical logic CL; with 'upper' logic being the Łukasiewicz logic; and the modal rules:

$$\begin{array}{ll} (\mathsf{FP0}) & \neg_{\mathbf{L}} \Box(\overline{\mathbf{0}}) \\ (\mathsf{FP1}) & \Box(\varphi \to \psi) \to_{\mathbf{L}} (\Box \varphi \to_{\mathbf{L}} \Box \psi) \\ (\mathsf{FP2}) & \neg_{\mathbf{L}} \Box(\varphi) \to_{\mathbf{L}} \Box(\neg \varphi) \\ (\mathsf{FP3}) & \Box(\varphi \lor \psi) \to_{\mathbf{L}} (\Box \psi \oplus (\Box \varphi \ominus \Box(\varphi \land \psi))) \\ & \varphi \vdash \Box \varphi \end{array}$$

The rule (CONGR) is clearly derivable \Rightarrow

 \mathfrak{FP} is an Ł-modal logic over CL

(4回) (日) (日)

Let us take $\mathbf{F} \in \mathsf{KF}_2^{[0,1]_L}$; note that $\mathbf{F} = \langle W, \langle \mathbf{2} \rangle_{w \in W}, [0,1]_L, \mu \rangle$ and μ is a finitely additive probability measure

Definition 11

A logic L enjoys the

- strong K-completeness, SKC, if for each T ∪ {φ} holds:
 T ⊢_L φ iff T ⊨_K φ.
- finite strong \mathbb{K} -completeness, FS \mathbb{K} C, if for each finite $T \cup \{\varphi\}$ holds: $T \vdash_{L} \varphi$ iff $T \models_{\mathbb{K}} \varphi$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theorem 12

Let \mathfrak{L} be an L_2 -modal logic over a logic L_1 such that

- L_1 has SK_1C .
- L₂ has SK₂C.
- ٩

٩

Then for each non-modal theory T, modal theory Γ , and a modal formula Φ :

$$\Gamma, T \vdash_{\mathfrak{L}} \Phi \qquad iff \qquad \Gamma, T \models_{\mathsf{KF}_{\mathsf{K}_{*}}^{\mathsf{K}_{2}}(\mathfrak{L})} \Phi$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theorem 13

Let \mathfrak{L} be an L_2 -modal logic over a logic L_1 such that

- L_1 has FSK_1C .
- L_2 has FSK_2C .
- £ has only finitely many modal rules.
- **MOD**^{*}(L₁) *is locally finite.*

Then for each finite non-modal theory T, finite modal theory Γ , and a modal formula Φ :

$$\Gamma, T \vdash_{\mathfrak{L}} \Phi \qquad iff \qquad \Gamma, T \models_{\mathsf{KF}_{\mathbb{K}_1}^{\mathbb{K}_2}(\mathfrak{L})} \Phi$$

ヘロン 人間 とくほ とくほ とう

ъ

A hint of the proof ...

Petr Cintula and Carles Noguera

Two-layer modal logics

ヘロト 人間 とくほとくほとう

₹ 990

- protoalgebraic logics L_i in languages \mathcal{L}_i
- an L₂-modal logic £ be over L₁
- classes \mathbb{K}_i of reduced L_i -matrices, s.t. L_i enjoys $S\mathbb{K}_iC$
- a modal theory Γ
- a non-modal theory T
- a modal formula Ψ such that $\Gamma, T \not\vdash_{\mathfrak{L}} \Psi$

▲口▶▲圖▶▲圖▶▲圖▶ ▲国▶ ● ○○

Translating \mathfrak{L} into L_2

We set $Var_{\Box} = \{p_{\varphi} \mid \varphi \text{ a non-modal formula}\}$ and define:

•
$$(\Box \varphi)^* = p_{\varphi}$$

•
$$(c(\Phi_1,\ldots,\Phi_n))^* = c(\Phi_1^*,\ldots,\Phi_n^*)$$
, for any *n*-ary $c \in \mathcal{L}_2$.

•
$$\Gamma^* = \{ \Phi^* \mid \Phi \in \Gamma \}$$

• $T^* = \{ \Phi^* \mid \text{ there is a model rule } \langle S, \Phi \rangle \text{ of } \mathfrak{L} \text{ s.t. } T \vdash_{L_1} S \}$

(i.e. T^* consists of *-translations conclusions of additional modal rules of \mathfrak{L} with premises provable from T in L_1)

Lemma 14

$$\Gamma, T \vdash_{\mathfrak{L}} \Phi \quad \textit{iff} \quad \Gamma^*, T^* \vdash_{\mathbf{L}_2} \Phi^*$$

We know that $\Gamma^*, T^* \not\vdash_{L_2} \Psi^*$, then:

• let *B* be a \mathbb{K}_2 -algebra and *e* an *B*-evaluation s.t. $e[\Gamma^*, T^*] \subseteq F_B$ and $e[\Psi^*] \notin F_B$.

•
$$W = \{ \varphi \mid T \not\vdash \varphi \}$$

for each φ ∈ W we take K₁-algebra A_φ and an A_φ-evaluation e_φ s.t. e_φ[T] ⊆ F_{A_φ} and e_φ(φ) ∉ F_{A_φ}

•
$$\mu(\langle a_{\varphi} \rangle_{\varphi \in W}) = \begin{cases} e(v_{\chi}) & \text{if } (\exists \chi)(\forall \varphi \in W)(a_{\varphi} = e_{\varphi}(\chi)) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Proposition 15

$$\mathbf{F}=\langle W,\langle m{A}_{arphi}
angle_{arphi\in W},m{B},\mu
angle$$
 is a Kripke frame

・ロト ・四ト ・ヨト ・ヨトー

3

Constructing counterexample for $\Gamma, T \not\vdash_{\mathfrak{L}} \Psi$, cont.

Proposition 16

For each Kripke model $\mathbf{M} = \langle \mathbf{F}, \langle \hat{e}_{\varphi} \rangle_{\varphi \in W} \rangle$ there is a substitution σ such that for each non-modal ψ and modal Ψ :

 $\hat{e}_{\varphi}(\psi) = e_{\varphi}(\sigma\psi)$ and $||\Psi||_{\mathbf{M}} = e((\sigma\Psi)^{*})$

Furthermore, **M** is a model of ψ iff $T \vdash_{L_1} \sigma \psi$

Proposition 17

F is a Kripke frame for \mathfrak{L}

Proof of the completeness theorem.

We know that **F** is a Kripke frame for \mathfrak{L} and if we consider Kripke model $\mathbf{M} = \langle \mathbf{F}, \langle e_{\varphi} \rangle_{\varphi \in W} \rangle$, here the σ of Proposition 16 is the identity and thus **M** is a model of Γ, T and not of Ψ .

ヘロン 人間 とくほ く ほと