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Probability and fuzzy logic . . .
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Once upon a time, there was a logician . . .
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and he wrote a book . . .

Hájek: Metamathematics of fuzzy logic, Kluwer 1998

Many have read it

Many have cited it WOS: 1200+ Google Scholar: 3000+

But just few have got to Section 8.4 . . .
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Fuzzy logic for reasoning about probability

Let us take:
the classical logic CL in language→,¬,∨,∧, 0
Łukasiewicz logic Ł in language→Ł,¬Ł,⊕,	
an extra symbol �

We define three kinds of formulae of a two-level language over
a fixed set of variables Var:

non-modal: built from Var using→,¬,∨,∧, 0
atomic modal: of the form �ϕ, for each non-modal ϕ
modal: built from atomic ones using→Ł,¬Ł,⊕,	

We use the following notational conventions:

non-modal modal
formulae ϕ,ψ, . . . Φ,Ψ, . . .
sets of formulae T, S, . . . Γ,∆, . . .
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Probability Kripke frames and Kripke models

Definition 1
A probability Kripke frame is a system F = 〈W, µ〉 where

W is a set (of possible worlds)
µ is a finitely additive probability measure defined on

a sublattice of 2W

Definition 2
A Kripke model M over a probability Kripke frame F = 〈W, µ〉 is
a tuple M = 〈F, (ew)w∈W〉 where:

ew is a classical evaluation of non-modal formulae
the domain of µ contains the set {w | ew(ϕ) = 1}

for each non-modal formula ϕ
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Truth definition

The truth values of modal formulae are defined uniformly:

||�ϕ||M =µ({w | ew(ϕ) = 1})
||¬ŁΦ||M =1− ||Φ||M

||Φ→Ł Ψ||M = min{1, 1− ||Φ||M + ||Ψ||M}
||Φ⊕Ψ||M = min{1, ||Φ||M + ||Ψ||M}
||Φ	Ψ||M = max{0, ||Φ||M − ||Ψ||M}
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Axiomatization

Definition 3
The logic FP of probability inside Łukasiewicz logic is given by
the axiomatic system consisting of:

the axioms and rules of CL for non-modal formulae,
axioms and rules of Ł for modal formulae,
modal axioms

(FP0) ¬Ł�(0)
(FP1) �(ϕ→ ψ)→Ł (�ϕ→Ł �ψ)
(FP2) ¬Ł�(ϕ)→Ł �(¬ϕ)
(FP3) �(ϕ ∨ ψ)→Ł (�ψ ⊕ (�ϕ	�(ϕ ∧ ψ)))

a unary modal rule:
ϕ ` �ϕ

The notion of provability `FP (from both modal and non-modal
premises) is defined as usual.
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Completeness theorem

Theorem 4
Let Γ ∪ {Ψ} be a set of modal formulas. TFAE:

Γ `FP Ψ

||Ψ||M = 1 for each Kripke model M where ||Φ||M = 1
for each Φ ∈ Γ
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Variations and our goal

Variations considered in the literature:
changing the measure
changing the ‘upper’ logic: replacing the Łukasiewicz logic
by any other t-norm-based logic
changing the ‘lower’ logic: e.g. replacing CL by the
Łukasiewicz logic to speak about probability of ‘fuzzy’
events
adding more modalities
any combination of the above four options

The goal of this contribution: identify the common aspects of
all existing approaches and recover particular completeness
results as instances of a general theory.
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Setting up the stage . . .
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Propositional logics – an abstract way

L: propositional language (a type)

ϕ,ψ, . . . : formulae from FmL (terms) defined as usual

L: protoalgebraic logic

E: a (parameterized) equivalence of L

We write ϕ↔ ψ for {χ(ϕ,ψ,~δ) | χ ∈ E and ~δ ∈ FmL<ω}
T ` S for T ` ϕ for each ϕ ∈ S
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Propositional logics – a ‘fuzzy’ way

L: the language of MTL

ϕ,ψ, . . . : formulae from FmL (terms) defined as usual

L: finitary extension of MTL

↔: the equivalence connective of MTL

We write ϕ↔ ψ for {ϕ↔ ψ}
T ` S for T ` ϕ for each ϕ ∈ S
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Semantics – a ‘fuzzy’ way

L-algebra A: just an algebra of type L

A-evaluation e: a homomorphism from the absolutely
free L-algebra into an L-algebra A.

A is an L-algebra if
A an MTL-algebra
T `L ϕ implies that for each A-evaluation:

if e[T] ⊆ {1A}, then e(ϕ) = 1A.

L: the class of L-algebras (a quasivariety)

|=K: semantical consequence w.r.t. a class K of L-algebras

Theorem 5 (Completeness)

`L = |=L
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Semantics – an abstract way

L-matrix A: a pair 〈A,F〉, where A is an L-algebra and F ⊆ A

A-evaluation e: a homomorphism from the absolutely
free L-algebra into an L-algebra A.

A is a reduced L-matrix if
x↔A y ⊆ FA implies x = y

T `L ϕ implies that for each A-evaluation:
if e[T] ⊆ FA, then e(ϕ) ∈ FA.

MOD∗(L): the class of all reduced L-matrices

|=K: semantical consequence w.r.t. a class K of red. L-matrices

Theorem 6 (Completeness)

`L = |=MOD∗(L)
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Two-layer modal logics . . .
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General notion of two level language

Let us fix two logics L1 and L2 in disjoint languages and an
extra symbol �.

We define three kinds of formulae of a two-level language over
a fixed set of variables Var:

non-modal: built from Var using connectives of L1

atomic modal: of the form �ϕ, for each non-modal ϕ
modal: built from atomic ones using connectives of L2.

We use the following notational conventions:

non-modal modal
formulae ϕ,ψ, . . . Ψ,Φ, . . .
sets of formulae T, S, . . . Γ,∆, . . .

Petr Cintula and Carles Noguera Two-layer modal logics



The minimal logic and its extensions

An n-ary modal rule is a pair T ` Ψ, where T is a set of n
non-modal formulae and Ψ is a modal formula.

Definition 7
The minimal L2-modal logic over L1 is given by the axiomatic
system consisting of

the axioms and rules of L1 for non-modal formulae,
axioms and rules of L2 for modal formulae,
a modal rule:

ϕ↔ ψ ` �ϕ↔ �ψ (CONGR)

An L2-modal logic over L1 is an extension of the minimal one by
some modal rules.

The notion of proof (from both modal and non-modal premises)
is defined as usual.
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Measured Kripke frames and Kripke models

We fix two classes of reduced matrices Ki ⊆MOD∗(Li)

Definition 8
A K1-based K2-measured Kripke frame is a system

F = 〈W, 〈Aw〉w∈W ,B, µ〉 where

W is a set (of possible worlds)
Aw ∈ K1 for each w ∈ W

B ∈ K2

µ is a partial mapping µ :
∏

w∈W
Aw → B

A Kripke model M over a F is a tuple M = 〈F, 〈ew〉w∈W〉 where:
ew is an Aw-evaluation of formulae of L1

The domain of µ contains the element 〈ew(ϕ)〉w∈W

for each non-modal formula ϕ
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Truth definition

Let us fix a Kripke model M = 〈〈W, 〈Aw〉w∈W ,B, µ〉, 〈ew〉w∈W〉 and
we define the truth value of

non-modal formulae in each possible world using the
evaluation ew

atomic modal formulae uniformly in M as:

||�ϕ||M = µ(〈ew(ϕ)〉w∈W)

non-atomic modal formulae using operations from B

We say that M is a model of
a non-modal formula ψ if ew(ψ) ∈ FAw for each w ∈ W.
a modal formula Ψ whenever ||Ψ||M ∈ FB.
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Semantical consequence and frames for a logic

Definition 9
A formula Φ is a semantical consequence of T ∪ Γ w.r.t. a class
of measured Kripke frames K, T,Γ |=K Φ, if for each frame
F ∈ K and each Kripke model M over F holds that M is a model
of Φ whenever it is a model of Γ and T.

Definition 10
A K1-based K2-measured Kripke frame F is a frame for an
L2-modal logic L over L1, F ∈ KFK2

K1
(L), if for each additional

modal rule T ` Ψ we have T |=F Ψ.
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Example

Recall the logic FP built over the classical logic CL; with ‘upper’
logic being the Łukasiewicz logic; and the modal rules:

(FP0) ¬Ł�(0)

(FP1) �(ϕ→ ψ)→Ł (�ϕ→Ł �ψ)

(FP2) ¬Ł�(ϕ)→Ł �(¬ϕ)

(FP3) �(ϕ ∨ ψ)→Ł (�ψ ⊕ (�ϕ	�(ϕ ∧ ψ)))

(FP3) ϕ ` �ϕ

The rule (CONGR) is clearly derivable⇒
FP is an Ł-modal logic over CL

Let us take F ∈ KF[0,1]Ł
2 ; note that F = 〈W, 〈2〉w∈W , [0, 1]Ł, µ〉 and

µ is a finitely additive probability measure
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Completeness theorem – some prerequisites

Definition 11
A logic L enjoys the

strong K-completeness, SKC, if for each T ∪ {ϕ} holds:
T `L ϕ iff T |=K ϕ.
finite strong K-completeness, FSKC, if for each finite
T ∪ {ϕ} holds: T `L ϕ iff T |=K ϕ.
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Strong completeness theorem

Theorem 12
Let L be an L2-modal logic over a logic L1 such that

L1 has SK1C.
L2 has SK2C.

Then for each non-modal theory T, modal theory Γ,
and a modal formula Φ:

Γ,T `L Φ iff Γ,T |=
KFK2

K1
(L)

Φ
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Finite strong completeness theorem

Theorem 13
Let L be an L2-modal logic over a logic L1 such that

L1 has FSK1C.
L2 has FSK2C.
L has only finitely many modal rules.
MOD∗(L1) is locally finite.

Then for each finite non-modal theory T, finite modal theory Γ,
and a modal formula Φ:

Γ,T `L Φ iff Γ,T |=
KFK2

K1
(L)

Φ
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A hint of the proof . . .
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Let us fix

protoalgebraic logics Li in languages Li

an L2-modal logic L be over L1

classes Ki of reduced Li-matrices, s.t. Li enjoys SKiC

a modal theory Γ

a non-modal theory T

a modal formula Ψ such that Γ,T 6`L Ψ
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Translating L into L2

We set Var� = {pϕ | ϕ a non-modal formula} and define:

(�ϕ)∗ = pϕ
(c(Φ1, . . . ,Φn))∗ = c(Φ∗1, . . . ,Φ

∗
n), for any n-ary c ∈ L2.

Γ∗ = {Φ∗ | Φ ∈ Γ}
T∗ = {Φ∗ | there is a model rule 〈S,Φ〉 of L s.t. T `L1 S}

(i.e. T∗ consists of ∗-translations conclusions of additional
modal rules of L with premises provable from T in L1)

Lemma 14

Γ,T `L Φ iff Γ∗,T∗ `L2 Φ∗
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Constructing counterexample for Γ,T 6`L Ψ

We know that Γ∗,T∗ 6`L2 Ψ∗, then:
let B be a K2-algebra and e an B-evaluation s.t.
e[Γ∗,T∗] ⊆ FB and e[Ψ∗] /∈ FB.

W = {ϕ | T 6` ϕ}

for each ϕ ∈ W we take K1-algebra Aϕ and an
Aϕ-evaluation eϕ s.t. eϕ[T] ⊆ FAϕ and eϕ(ϕ) /∈ FAϕ

µ(〈aϕ〉ϕ∈W) =

{
e(vχ) if (∃χ)(∀ϕ ∈ W)(aϕ = eϕ(χ))

undefined otherwise

Proposition 15

F = 〈W, 〈Aϕ〉ϕ∈W ,B, µ〉 is a Kripke frame
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Constructing counterexample for Γ,T 6`L Ψ, cont.

Proposition 16

For each Kripke model M = 〈F, 〈êϕ〉ϕ∈W〉 there is a substitution
σ such that for each non-modal ψ and modal Ψ:

êϕ(ψ) = eϕ(σψ) and ||Ψ||M = e((σΨ)∗)

Furthermore, M is a model of ψ iff T `L1 σψ

Proposition 17
F is a Kripke frame for L

Proof of the completeness theorem.
We know that F is a Kripke frame for L and if we consider
Kripke model M = 〈F, 〈eϕ〉ϕ∈W〉, here the σ of Proposition 16 is
the identity and thus M is a model of Γ,T and not of Ψ.
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