On deductive systems associated with some equationally orderable quasivarieties

#### RAMON JANSANA

#### International Workshop on Algebraic Logic in Computer Science

as part of

19h International Conference on Logic for Programming, Artificial Intelligence and Reasoning

> Stellenbosch, December 14th, 2013.

## Outline

- Preliminaries
- Part I: General results
  - Equationally orderable quasivarieties.
  - ► The deductive system of the order of an equationally orderable quasivariety.
  - When it is congruential (or fully selfextensional).
- Part II: Discussion of some examples.
  - BCK algebras.
  - BCK algebras with infimum and BCK algebras with supremum.
  - Hilbert algebras.
  - Hilbert algebras with infimum and Hilbert algebras with supremum.

▶ A (finitary) deductive system (or logic) is a pair  $S = \langle Fm, \vdash_S \rangle$  where Fm is the algebra of formulas of an algebraic similarity type and  $\vdash_S$  is a consequence relation between sets of formulas and formulas, i.e. it satisfies

▶ A (finitary) deductive system (or logic) is a pair  $S = \langle Fm, \vdash_S \rangle$  where Fm is the algebra of formulas of an algebraic similarity type and  $\vdash_S$  is a consequence relation between sets of formulas and formulas, i.e. it satisfies

• if  $\varphi \in \Gamma$ , then  $\Gamma \vdash_{\mathcal{S}} \varphi$ ,

▶ A (finitary) deductive system (or logic) is a pair  $S = \langle Fm, \vdash_S \rangle$  where Fm is the algebra of formulas of an algebraic similarity type and  $\vdash_S$  is a consequence relation between sets of formulas and formulas, i.e. it satisfies

• if 
$$\varphi \in \Gamma$$
, then  $\Gamma \vdash_{\mathcal{S}} \varphi$ 

 $\ \, \textbf{0} \ \, \textbf{if} \ \, \Gamma \vdash_{\mathcal{S}} \varphi \text{ and for every } \psi \in \Gamma, \ \, \Delta \vdash_{\mathcal{S}} \psi, \text{ then } \Delta \vdash_{\mathcal{S}} \varphi,$ 

▶ A (finitary) deductive system (or logic) is a pair  $S = \langle Fm, \vdash_S \rangle$  where Fm is the algebra of formulas of an algebraic similarity type and  $\vdash_S$  is a consequence relation between sets of formulas and formulas, i.e. it satisfies

- if  $\varphi \in \Gamma$ , then  $\Gamma \vdash_{\mathcal{S}} \varphi$ ,
- $\textbf{0} \quad \text{if } \Gamma \vdash_{\mathcal{S}} \varphi \text{ and for every } \psi \in \Gamma, \ \Delta \vdash_{\mathcal{S}} \psi, \text{ then } \Delta \vdash_{\mathcal{S}} \varphi,$
- if Γ ⊢<sub>S</sub> φ, then for any substitution σ, σ[Γ] ⊢<sub>S</sub> σ(φ),
  (a substitution is an homomorphism from the formula algebra Fm into itself.)

▶ A (finitary) deductive system (or logic) is a pair  $S = \langle Fm, \vdash_S \rangle$  where Fm is the algebra of formulas of an algebraic similarity type and  $\vdash_S$  is a consequence relation between sets of formulas and formulas, i.e. it satisfies

- **1** if  $\varphi \in \Gamma$ , then  $\Gamma \vdash_{\mathcal{S}} \varphi$ ,
- $\textbf{0} \quad \text{if } \Gamma \vdash_{\mathcal{S}} \varphi \text{ and for every } \psi \in \Gamma, \ \Delta \vdash_{\mathcal{S}} \psi, \text{ then } \Delta \vdash_{\mathcal{S}} \varphi,$
- if Γ ⊢<sub>S</sub> φ, then for any substitution σ, σ[Γ] ⊢<sub>S</sub> σ(φ),
  (a substitution is an homomorphism from the formula algebra Fm into itself.)
- if  $\Gamma \vdash_{\mathcal{S}} \varphi$ , then  $\Gamma' \vdash_{\mathcal{S}} \varphi$  for some finite  $\Gamma' \subseteq \Gamma$ .

▶ A (finitary) deductive system (or logic) is a pair  $S = \langle Fm, \vdash_S \rangle$  where Fm is the algebra of formulas of an algebraic similarity type and  $\vdash_S$  is a consequence relation between sets of formulas and formulas, i.e. it satisfies

- **1** if  $\varphi \in \Gamma$ , then  $\Gamma \vdash_{\mathcal{S}} \varphi$ ,
- $\textbf{@} \text{ if } \Gamma \vdash_{\mathcal{S}} \varphi \text{ and for every } \psi \in \Gamma, \ \Delta \vdash_{\mathcal{S}} \psi, \text{ then } \Delta \vdash_{\mathcal{S}} \varphi,$
- if Γ ⊢<sub>S</sub> φ, then for any substitution σ, σ[Γ] ⊢<sub>S</sub> σ(φ),
  (a substitution is an homomorphism from the formula algebra Fm into itself.)
- if  $\Gamma \vdash_{\mathcal{S}} \varphi$ , then  $\Gamma' \vdash_{\mathcal{S}} \varphi$  for some finite  $\Gamma' \subseteq \Gamma$ .

► A deductive system S has the congruence property if the relation on **Fm** given by  $\varphi \dashv \vdash_S \psi$  is a congruence.

 $\blacktriangleright$  Let  ${\mathcal S}$  be a deductive system and let  ${\bf A}$  be an algebra.

▶ A (finitary) deductive system (or logic) is a pair  $S = \langle Fm, \vdash_S \rangle$  where Fm is the algebra of formulas of an algebraic similarity type and  $\vdash_S$  is a consequence relation between sets of formulas and formulas, i.e. it satisfies

• if 
$$\varphi \in \Gamma$$
, then  $\Gamma \vdash_{\mathcal{S}} \varphi$ ,

- $\textbf{0} \quad \text{if } \Gamma \vdash_{\mathcal{S}} \varphi \text{ and for every } \psi \in \Gamma, \ \Delta \vdash_{\mathcal{S}} \psi, \text{ then } \Delta \vdash_{\mathcal{S}} \varphi,$
- if Γ ⊢<sub>S</sub> φ, then for any substitution σ, σ[Γ] ⊢<sub>S</sub> σ(φ),
  (a substitution is an homomorphism from the formula algebra Fm into itself.)
- if  $\Gamma \vdash_{\mathcal{S}} \varphi$ , then  $\Gamma' \vdash_{\mathcal{S}} \varphi$  for some finite  $\Gamma' \subseteq \Gamma$ .

▶ A deductive system S has the congruence property if the relation on **Fm** given by  $\varphi \dashv \vdash_S \psi$  is a congruence.

 $\blacktriangleright$  Let  ${\mathcal S}$  be a deductive system and let  ${\bf A}$  be an algebra.

A set  $F \subseteq A$  is an S-filter if for every valuation v on **A**, and every  $\Gamma \cup \{\varphi\} \subseteq Fm$ if  $\Gamma \vdash_{S} \varphi$  and  $v[\Gamma] \subseteq F$ , then  $v(\varphi) \in F$ .

▶ A (finitary) deductive system (or logic) is a pair  $S = \langle Fm, \vdash_S \rangle$  where Fm is the algebra of formulas of an algebraic similarity type and  $\vdash_S$  is a consequence relation between sets of formulas and formulas, i.e. it satisfies

• if 
$$\varphi \in \Gamma$$
, then  $\Gamma \vdash_{\mathcal{S}} \varphi$ ,

- $\textbf{0} \quad \text{if } \Gamma \vdash_{\mathcal{S}} \varphi \text{ and for every } \psi \in \Gamma, \ \Delta \vdash_{\mathcal{S}} \psi, \text{ then } \Delta \vdash_{\mathcal{S}} \varphi,$
- if Γ ⊢<sub>S</sub> φ, then for any substitution σ, σ[Γ] ⊢<sub>S</sub> σ(φ),
  (a substitution is an homomorphism from the formula algebra Fm into itself.)
- if  $\Gamma \vdash_{\mathcal{S}} \varphi$ , then  $\Gamma' \vdash_{\mathcal{S}} \varphi$  for some finite  $\Gamma' \subseteq \Gamma$ .

► A deductive system S has the congruence property if the relation on **Fm** given by  $\varphi \dashv \vdash_S \psi$  is a congruence.

 $\blacktriangleright$  Let  ${\mathcal S}$  be a deductive system and let  ${\bf A}$  be an algebra.

A set  $F \subseteq A$  is an S-filter if for every valuation v on **A**, and every  $\Gamma \cup \{\varphi\} \subseteq Fm$ if  $\Gamma \vdash_{\mathcal{S}} \varphi$  and  $v[\Gamma] \subseteq F$ , then  $v(\varphi) \in F$ .

We denote by  $\operatorname{Fi}_{\mathcal{S}} A$  the set of  $\mathcal{S}$ -filters of A (which is a complete lattice).

An algebra A is an S-algebra if the only congruence included in the relation

$$\Lambda_{\mathcal{S}}^{\mathbf{A}} = \{ \langle a, b \rangle \in A \times A : \forall F \in \mathrm{Fi}_{\mathcal{S}} \mathbf{A} (a \in F \Leftrightarrow b \in F) \}$$

is the identity.

An algebra **A** is an S-algebra if the only congruence included in the relation

$$\Lambda^{\mathsf{A}}_{\mathcal{S}} = \{ \langle a, b \rangle \in A \times A : \forall F \in \mathrm{Fi}_{\mathcal{S}} \mathsf{A} (a \in F \Leftrightarrow b \in F) \}$$

is the identity.

The algebraic counterpart of S is the class of S-algebras, denoted by **Alg**S.

An algebra **A** is an S-algebra if the only congruence included in the relation

$$\Lambda_{\mathcal{S}}^{\mathbf{A}} = \{ \langle a, b \rangle \in A \times A : \forall F \in \mathrm{Fi}_{\mathcal{S}} \mathbf{A} (a \in F \Leftrightarrow b \in F) \}$$

is the identity.

The algebraic counterpart of S is the class of S-algebras, denoted by **Alg**S.

#### Definition

A deductive system  ${\cal S}$  is *congruential* (or fully selfextensional) if for every  ${\bf A}$  the relation

$$\Lambda^{\mathsf{A}}_{\mathcal{S}} = \{ \langle a, b \rangle : \forall F \in \mathrm{Fi}_{\mathcal{S}} \mathsf{A} (a \in F \Leftrightarrow b \in F) \}$$

is a congruence.

An algebra **A** is an S-algebra if the only congruence included in the relation

$$\Lambda_{\mathcal{S}}^{\mathbf{A}} = \{ \langle a, b \rangle \in A \times A : \forall F \in \mathrm{Fi}_{\mathcal{S}} \mathbf{A} (a \in F \Leftrightarrow b \in F) \}$$

is the identity.

The algebraic counterpart of S is the class of S-algebras, denoted by AlgS.

#### Definition

A deductive system  ${\cal S}$  is *congruential* (or fully selfextensional) if for every  ${\bf A}$  the relation

$$\Lambda^{\mathsf{A}}_{\mathcal{S}} = \{ \langle a, b \rangle : \forall F \in \mathrm{Fi}_{\mathcal{S}} \mathsf{A} (a \in F \Leftrightarrow b \in F) \}$$

is a congruence.

### Proposition

A deductive system S is congruential if and only if for every  $\mathbf{A} \in \mathbf{Alg}S$  the relation  $\Lambda_{S}^{\mathbf{A}}$  is the identity.

### Theorem (Font, J. (1996))

Let S be a deductive system.

- If S has the property of conjunction for a term ∧ and the congruence property, then it is congruential and AlgS is a variety.
- If S has the deduction-detachment theorem for a term → and the congruence property, then it is congruential and AlgS is a variety.

In both cases the algebras in  $\boldsymbol{Alg}\mathcal{S}$  carry an equationally definable partial order, defined by

- $x \wedge y \approx x$ , in the first case
- $x \rightarrow y \approx x \rightarrow x$ , in the second case.

In the first case the deductive system is given by the order (in a sense we will make precise), but not necessarily in the second.

## PART I

## General results

#### Definition

Let K be a class of algebras of a fixed algebraic similarity type  $\mathcal{L}$ . Let  $\mu(x, y)$  be a finite set of  $\mathcal{L}$ -equations in two variables. We say that K is  $\mu$ -equationally orderable, or admits a  $\mu$ -order, if for every  $\mathbf{A} \in K$ 

$$\leq^{\mathsf{A}}_{\mu} := \{ \langle a, b \rangle \in A^2 : \mathsf{A} \models \mu(x, y)[a, b] \}$$

is a partial order of A.

#### Definition

Let K be a class of algebras of a fixed algebraic similarity type  $\mathcal{L}$ . Let  $\mu(x, y)$  be a finite set of  $\mathcal{L}$ -equations in two variables. We say that K is  $\mu$ -equationally orderable, or admits a  $\mu$ -order, if for every  $\mathbf{A} \in K$ 

$$\leq^{\mathsf{A}}_{\mu} := \{ \langle a, b \rangle \in \mathcal{A}^2 : \mathsf{A} \models \mu(x, y)[a, b] \}$$

is a partial order of A.

Note that every class of algebras is  $\{x \approx y\}$ -equationally orderable.

#### Definition

Let K be a class of algebras of a fixed algebraic similarity type  $\mathcal{L}$ . Let  $\mu(x, y)$  be a finite set of  $\mathcal{L}$ -equations in two variables. We say that K is  $\mu$ -equationally orderable, or admits a  $\mu$ -order, if for every  $\mathbf{A} \in K$ 

$$\leq^{\mathsf{A}}_{\mu} := \{ \langle a, b \rangle \in \mathcal{A}^2 : \mathsf{A} \models \mu(x, y)[a, b] \}$$

is a partial order of A.

Note that every class of algebras is  $\{x \approx y\}$ -equationally orderable.

We say that K is *properly equationally orderable* if it is  $\mu$ -equationally orderable for some finite set  $\mu(x, y)$  of  $\mathcal{L}$ -equations different from  $\{x \approx y\}$ .

#### Proposition

Let K be a class of algebras and  $\mu(x, y)$  a finite set of equations in two variables. K is  $\mu$ -equationally orderable if and only if the following holds:

- $\bigcirc \models_{\mathsf{K}} \mu(x,x),$
- $\ \, { 2 ) } \ \, \mu(x,y) \cup \mu(y,z) \models_{\mathsf{K}} \mu(y,z),$
- $(x,y) \cup \mu(y,x) \models_{\mathsf{K}} x \approx y.$

#### Proposition

Let K be a class of algebras and  $\mu(x, y)$  a finite set of equations in two variables. K is  $\mu$ -equationally orderable if and only if the following holds:

- $\bullet \models_{\mathsf{K}} \mu(x, x),$
- $\ \, { 2 ) } \ \, \mu(x,y) \cup \mu(y,z) \models_{\mathsf{K}} \mu(y,z),$
- $\ \, {\bf 0} \ \, \mu(x,y)\cup\mu(y,x)\models_{\mathsf{K}} x\approx y.$

#### Proposition

If K is  $\mu$ -equationally orderable, the quasivariety generated by K is also  $\mu$ -equationally orderable.

### Definition

Let Q be a  $\mu$ -equationally orderable quasivariety. The relation  $\vdash_{S_{\alpha}^{\leq \mu}} \subseteq \mathcal{P}(Fm) \times Fm$  is defined by:

$$\begin{array}{ll} \Gamma \vdash_{\mathcal{S}_{\mathsf{Q}}^{\leq_{\mu}}} \varphi & \text{iff} \quad \forall \mathsf{A} \in \mathsf{Q} \ \forall v \in \operatorname{Hom}(\mathsf{Fm}, \mathsf{A}) \ \forall a \in \mathsf{A} \\ & ((\forall \psi \in \mathsf{\Gamma}) \ a \leq_{\mu}^{\mathsf{A}} v(\psi)) \Longrightarrow a \leq_{\mu}^{\mathsf{A}} v(\varphi)), \end{array}$$

for every  $\Gamma \cup \{\varphi\} \subseteq Fm$ .

#### Definition

Let Q be a  $\mu$ -equationally orderable quasivariety. The relation  $\vdash_{S_{Q}^{\leq \mu}} \subseteq \mathcal{P}(Fm) \times Fm$  is defined by:  $\Gamma \vdash_{S_{Q}^{\leq \mu}} \varphi$  iff  $\forall \mathbf{A} \in \mathbf{Q} \ \forall v \in \operatorname{Hom}(\mathbf{Fm}, \mathbf{A}) \ \forall a \in A$   $((\forall \psi \in \Gamma) \ a \leq_{\mu}^{\mathbf{A}} v(\psi)) \Longrightarrow a \leq_{\mu}^{\mathbf{A}} v(\varphi)),$ for every  $\Gamma \cup \{\varphi\} \subseteq Fm$ .

It is easy to check that:

### Definition

Let Q be a  $\mu$ -equationally orderable quasivariety. The relation  $\vdash_{S_{Q}^{\leq \mu}} \subseteq \mathcal{P}(Fm) \times Fm$  is defined by:  $\Gamma \vdash_{S_{Q}^{\leq \mu}} \varphi$  iff  $\forall \mathbf{A} \in \mathbf{Q} \ \forall v \in \operatorname{Hom}(\mathbf{Fm}, \mathbf{A}) \ \forall a \in A$   $((\forall \psi \in \Gamma) \ a \leq_{\mu}^{\mathbf{A}} v(\psi)) \Longrightarrow a \leq_{\mu}^{\mathbf{A}} v(\varphi)),$ for every  $\Gamma \cup \{\varphi\} \subseteq Fm$ .

It is easy to check that:

 $\bullet$  The relation  $\vdash_{\mathcal{S}_{Q}^{\leq \mu}}$  is a substitution-invariant consequence relation.

### Definition

Let Q be a  $\mu$ -equationally orderable quasivariety. The relation  $\vdash_{S_{Q}^{\leq \mu}} \subseteq \mathcal{P}(Fm) \times Fm$  is defined by:  $\Gamma \vdash_{S_{Q}^{\leq \mu}} \varphi$  iff  $\forall \mathbf{A} \in \mathbf{Q} \ \forall v \in \operatorname{Hom}(\mathbf{Fm}, \mathbf{A}) \ \forall a \in A$   $((\forall \psi \in \Gamma) \ a \leq_{\mu}^{\mathbf{A}} v(\psi)) \Longrightarrow a \leq_{\mu}^{\mathbf{A}} v(\varphi)),$ for every  $\Gamma \cup \{\varphi\} \subseteq Fm$ .

It is easy to check that:

- The relation  $\vdash_{S_{2}^{\leq \mu}}$  is a substitution-invariant consequence relation.
- Since Q is closed under ultraproducts and  $\mu$  is finite,  $\vdash_{S_{\alpha \leq \mu}}$  is finitary.

► The deductive system of the  $\mu$ -order of Q is  $\mathcal{S}_{Q}^{\leq \mu} = \langle \mathbf{Fm}, \vdash_{\mathcal{S}_{Q}^{\leq \mu}} \rangle$ .

► The deductive system of the  $\mu$ -order of Q is  $\mathcal{S}_{Q}^{\leq \mu} = \langle \mathbf{Fm}, \vdash_{\mathcal{S}_{Q}^{\leq \mu}} \rangle$ .

If  $\mu$  is obvious from the context we write:  $S_{Q}^{\leq}$ .

► The deductive system of the  $\mu$ -order of Q is  $S_{Q}^{\leq \mu} = \langle \mathbf{Fm}, \vdash_{S_{q}^{\leq \mu}} \rangle$ .

If  $\mu$  is obvious from the context we write:  $\mathcal{S}_{Q}^{\leq}$ .

 $\blacktriangleright$  It immediately follows that  $\mathcal{S}_Q^{\leq \mu}$  is the deductive system determined by the class of matrices

 $\{\langle \mathbf{A}, [a] \rangle : \mathbf{A} \in \mathbb{Q} \text{ and } a \in A\}.$ 

► The deductive system of the  $\mu$ -order of Q is  $S_{Q}^{\leq \mu} = \langle \mathbf{Fm}, \vdash_{S_{q}^{\leq \mu}} \rangle$ .

If  $\mu$  is obvious from the context we write:  $\mathcal{S}_{Q}^{\leq}$ .

 $\blacktriangleright$  It immediately follows that  $\mathcal{S}_Q^{\leq \mu}$  is the deductive system determined by the class of matrices

 $\{\langle \mathbf{A}, [a] \rangle : \mathbf{A} \in \mathbb{Q} \text{ and } a \in A\}.$ 

▶ If some  $\mathbf{A} \in \mathbf{Q}$  has no upper-bound w.r.t.  $\leq_{\mu}$  then  $S_{\mathbf{Q}}^{\leq_{\mu}}$  does not have theorems.

► The deductive system of the  $\mu$ -order of Q is  $S_{Q}^{\leq \mu} = \langle \mathbf{Fm}, \vdash_{S_{q}^{\leq \mu}} \rangle$ .

If  $\mu$  is obvious from the context we write:  $\mathcal{S}_{Q}^{\leq}$ .

 $\blacktriangleright$  It immediately follows that  $\mathcal{S}_Q^{\leq \mu}$  is the deductive system determined by the class of matrices

 $\{\langle \mathbf{A}, [a] \rangle : \mathbf{A} \in \mathbb{Q} \text{ and } a \in A\}.$ 

▶ If some  $\mathbf{A} \in \mathbf{Q}$  has no upper-bound w.r.t.  $\leq_{\mu}$  then  $\mathcal{S}_{\mathbf{Q}}^{\leq_{\mu}}$  does not have theorems.

#### Proposition

 $\mathcal{S}_{Q}^{\leq_{\mu}}$  has theorems if and only if every  $\mathbf{A} \in Q$  has an upper-bound w.r.t.  $\leq_{\mu}$  and this largest element is term definable.

Let Q be a  $\mu$ -equationally orderable quasivariety.

Let Q be a  $\mu$ -equationally orderable quasivariety.

Let  $\mu^{\partial}(x, y) = \mu(y, x)$ , i.e. the set of equations obtained by swapping x and y.
Let  $\mu^{\partial}(x, y) = \mu(y, x)$ , i.e. the set of equations obtained by swapping x and y.

 $\mu^{\partial}(x, y)$  defines in every  $\mathbf{A} \in \mathbf{Q}$  the dual order  $\leq^{\partial}_{\mu}$  of the partial order  $\leq_{\mu}$  defined by  $\mu(y, x)$ . So,  $\leq^{\partial}_{\mu} = \leq_{\mu^{\partial}}$ .

Let  $\mu^{\partial}(x, y) = \mu(y, x)$ , i.e. the set of equations obtained by swapping x and y.

 $\mu^{\partial}(x, y)$  defines in every  $\mathbf{A} \in \mathbf{Q}$  the dual order  $\leq^{\partial}_{\mu}$  of the partial order  $\leq_{\mu}$  defined by  $\mu(y, x)$ . So,  $\leq^{\partial}_{\mu} = \leq_{\mu^{\partial}}$ .

Therefore, for any  $\mu$ -equationally orderable quasivariety we have

Let  $\mu^{\partial}(x, y) = \mu(y, x)$ , i.e. the set of equations obtained by swapping x and y.

 $\mu^{\partial}(x, y)$  defines in every  $\mathbf{A} \in \mathbf{Q}$  the dual order  $\leq^{\partial}_{\mu}$  of the partial order  $\leq_{\mu}$  defined by  $\mu(y, x)$ . So,  $\leq^{\partial}_{\mu} = \leq_{\mu^{\partial}}$ .

Therefore, for any  $\mu$ -equationally orderable quasivariety we have

• the logic  $\mathcal{S}_{\mathsf{Q}}^{\leq \mu}$  of the  $\mu$ -order,

Let  $\mu^{\partial}(x, y) = \mu(y, x)$ , i.e. the set of equations obtained by swapping x and y.

 $\mu^{\partial}(x, y)$  defines in every  $\mathbf{A} \in \mathbf{Q}$  the dual order  $\leq^{\partial}_{\mu}$  of the partial order  $\leq_{\mu}$  defined by  $\mu(y, x)$ . So,  $\leq^{\partial}_{\mu} = \leq_{\mu^{\partial}}$ .

Therefore, for any  $\mu$ -equationally orderable quasivariety we have

- the logic  $\mathcal{S}_{\mathsf{Q}}^{\leq \mu}$  of the  $\mu$ -order,
- the logic  $\mathcal{S}_{\mathsf{Q}}^{\leq_{\mu^{\partial}}}$  of the  $\mu^{\partial}$ -order.

Let  $\mu^{\partial}(x, y) = \mu(y, x)$ , i.e. the set of equations obtained by swapping x and y.

 $\mu^{\partial}(x, y)$  defines in every  $\mathbf{A} \in \mathbf{Q}$  the dual order  $\leq^{\partial}_{\mu}$  of the partial order  $\leq_{\mu}$  defined by  $\mu(y, x)$ . So,  $\leq^{\partial}_{\mu} = \leq_{\mu^{\partial}}$ .

Therefore, for any  $\mu$ -equationally orderable quasivariety we have

- the logic  $\mathcal{S}_{\mathsf{Q}}^{\leq \mu}$  of the  $\mu$ -order,
- the logic  $\mathcal{S}_{\mathsf{Q}}^{\leq_{\mu^{\partial}}}$  of the  $\mu^{\partial}$ -order.

Note that

$$\mathsf{Q}\models\varphi\approx\psi\quad\text{iff}\quad\varphi\twoheadrightarrow_{\mathcal{S}_\mathsf{Q}^{\leq\mu}}\psi\quad\text{iff}\quad\psi\twoheadrightarrow_{\mathcal{S}_\mathsf{Q}^{\leq\mu\partial}}\varphi.$$

▶ In general  $S_Q^{\leq}$  and  $S_Q^{\leq^{\partial}}$  may be different.

▶ In general  $S_Q^{\leq}$  and  $S_Q^{\leq^{\partial}}$  may be different.

#### Example

Let SL be the variety of semilattices.

SL is  $\{x \cdot y \approx x\}$ -equationally orderable.

The logic  $S_{SL}^{\leq}$  is a logic of conjunction and the logic  $S_{SL}^{\leq^{\partial}}$  is a logic of disjunction. They are different. For example

$$x \cdot y \vdash_{\mathcal{S}_{\mathsf{SL}}^{\leq}} x \quad \text{but} \quad x \cdot y \not\vdash_{\mathcal{S}_{\mathsf{SL}}^{\leq}} x.$$

The deductive system  $\mathcal{S}_Q^{\leq}$  has the congruence property.

The deductive system  $\mathcal{S}_{Q}^{\leq}$  has the congruence property.

A sufficient condition on a subset of an algebra  $\mathbf{A} \in \mathbb{Q}$  to be an  $\mathcal{S}_{\mathbb{Q}}^{\leq}$ -filter is:

The deductive system  $\mathcal{S}_Q^{\leq}$  has the congruence property.

A sufficient condition on a subset of an algebra  $\mathbf{A} \in \mathbb{Q}$  to be an  $\mathcal{S}_{\mathbb{Q}}^{\leq}$ -filter is:

#### Lemma

Let Q be a  $\mu$ -equationally orderable quasivariety and let  $\mathbf{A} \in \mathbf{Q}$ . Then every down-directed up-set  $F \subseteq A$  of the poset  $\langle A, \leq_{\mu}^{\mathbf{A}} \rangle$  is an  $\mathcal{S}_{\Omega}^{\leq}$ -filter.

The deductive system  $\mathcal{S}_Q^{\leq}$  has the congruence property.

A sufficient condition on a subset of an algebra  $\mathbf{A} \in \mathbb{Q}$  to be an  $\mathcal{S}_{\mathbb{Q}}^{\leq}$ -filter is:

#### Lemma

Let Q be a  $\mu$ -equationally orderable quasivariety and let  $\mathbf{A} \in \mathbf{Q}$ . Then every down-directed up-set  $F \subseteq A$  of the poset  $\langle A, \leq_{\mu}^{\mathbf{A}} \rangle$  is an  $\mathcal{S}_{\mathbf{Q}}^{\leq}$ -filter.

Thus,

$$\{\langle \mathbf{A}, F \rangle : \mathbf{A} \in \mathsf{Q} \text{ and } F \text{ is a downdirected up-set}\}$$

is a matrix semantics for  $\mathcal{S}_{Q}^{\leq \mu}$ .





▶ Let Q be a  $\mu$ -equationally orderable quasivariety. Then for every **A** ∈ Q and every **a**, **b** ∈ **A**,

$$a = b$$
 iff  $\forall F \in \operatorname{Fi}_{\mathcal{S}_Q^{\leq}} \mathbf{A}(a \in F \Leftrightarrow b \in F)$  iff  $\langle a, b \rangle \in \Lambda_{\mathcal{S}_Q^{\leq}}^{\mathbf{A}}$ .



▶ Let Q be a  $\mu$ -equationally orderable quasivariety. Then for every **A** ∈ Q and every  $a, b \in A$ ,

$$a = b$$
 iff  $\forall F \in \operatorname{Fi}_{\mathcal{S}_Q^{\leq}} \mathbf{A}(a \in F \Leftrightarrow b \in F)$  iff  $\langle a, b \rangle \in \Lambda_{\mathcal{S}_Q^{\leq}}^{\mathbf{A}}$ .

This holds because for every  $a \in A$ , [a) is  $\mathcal{S}_{Q}^{\leq}$ -filter.



▶ Let Q be a  $\mu$ -equationally orderable quasivariety. Then for every **A** ∈ Q and every **a**, **b** ∈ **A**,

$$a = b$$
 iff  $\forall F \in \operatorname{Fi}_{\mathcal{S}_{Q}^{\leq}} \mathbf{A}(a \in F \Leftrightarrow b \in F)$  iff  $\langle a, b \rangle \in \Lambda_{\mathcal{S}_{Q}^{\leq}}^{\mathbf{A}}$ .

This holds because for every  $a \in A$ , [a) is  $\mathcal{S}_{Q}^{\leq}$ -filter. Therefore

### Proposition

If Q is a  $\mu$ -equationally orderable quasivariety, then  $Q \subseteq \operatorname{Alg} S_Q^{\leq}$ .



▶ Let Q be a  $\mu$ -equationally orderable quasivariety. Then for every **A** ∈ Q and every **a**, **b** ∈ **A**,

$$a = b$$
 iff  $\forall F \in \operatorname{Fi}_{\mathcal{S}_{Q}^{\leq}} \mathbf{A}(a \in F \Leftrightarrow b \in F)$  iff  $\langle a, b \rangle \in \Lambda_{\mathcal{S}_{Q}^{\leq}}^{\mathbf{A}}$ .

This holds because for every  $a \in A$ , [a) is  $\mathcal{S}_{Q}^{\leq}$ -filter. Therefore

### Proposition

If Q is a  $\mu$ -equationally orderable quasivariety, then  $Q \subseteq \operatorname{Alg} S_Q^{\leq}$ .

▶ 
$$Q = Alg S_Q^{\leq}$$
 may not hold.

▶ 
$$Q = Alg S_Q^{\leq}$$
 may not hold.

Let  $\mathsf{Q}_{\rightarrow}$  be the quasivariety in the language  $\{\rightarrow,1\}$  defined by

▶ 
$$Q = Alg S_Q^{\leq}$$
 may not hold.

Let  $\mathsf{Q}_{\rightarrow}$  be the quasivariety in the language  $\{\rightarrow,1\}$  defined by

 $1 x \to x \approx 1$ 

$$(x \to y \approx 1 \& y \to z \approx 1) \Rightarrow x \to z \approx 1.$$

$$(x \to y \approx 1 \& y \to x \approx 1) \Rightarrow x \approx y.$$

▶ 
$$Q = Alg S_Q^{\leq}$$
 may not hold.

Let  $\mathsf{Q}_{\rightarrow}$  be the quasivariety in the language  $\{\rightarrow,1\}$  defined by

$$x \to x \approx 1$$

$$(x \to y \approx 1 \& y \to z \approx 1) \Rightarrow x \to z \approx 1.$$

$$(x \to y \approx 1 \& y \to x \approx 1) \Rightarrow x \approx y.$$

Let  $P = \langle P, \leq, 1 \rangle$  be a poset with a distinguished element 1 (not necessarily an upper-bound).

▶ 
$$Q = Alg S_Q^{\leq}$$
 may not hold.

Let  $\mathsf{Q}_{\rightarrow}$  be the quasivariety in the language  $\{\rightarrow,1\}$  defined by

• 
$$x \to x \approx 1$$
  
•  $(x \to y \approx 1 \& y \to z \approx 1) \Rightarrow x \to z \approx 1$ 

$$(x \to y \approx 1 \& y \to x \approx 1) \Rightarrow x \approx y.$$

Let  $P = \langle P, \leq, 1 \rangle$  be a poset with a distinguished element 1 (not necessarily an upper-bound). Let  $c \in P$ .

▶ 
$$Q = Alg S_Q^{\leq}$$
 may not hold.

Let  $\mathsf{Q}_{\rightarrow}$  be the quasivariety in the language  $\{\rightarrow,1\}$  defined by

Let  $P = \langle P, \leq, 1 \rangle$  be a poset with a distinguished element 1 (not necessarily an upper-bound). Let  $c \in P$ . Define  $\mathbf{A}_{P}^{c} = \langle P, \rightarrow, 1 \rangle$  by setting

▶ 
$$Q = Alg S_Q^{\leq}$$
 may not hold.

Let  $\mathsf{Q}_{\rightarrow}$  be the quasivariety in the language  $\{\rightarrow,1\}$  defined by

Let  $P = \langle P, \leq, 1 \rangle$  be a poset with a distinguished element 1 (not necessarily an upper-bound). Let  $c \in P$ . Define  $\mathbf{A}_{P}^{c} = \langle P, \rightarrow, 1 \rangle$  by setting

$$x \to y = \begin{cases} 1 & \text{if } x \leq y \\ c & \text{if } x \nleq y \end{cases}$$

▶ 
$$Q = Alg S_Q^{\leq}$$
 may not hold.

Let  $\mathsf{Q}_{\rightarrow}$  be the quasivariety in the language  $\{\rightarrow,1\}$  defined by

Let  $P = \langle P, \leq, 1 \rangle$  be a poset with a distinguished element 1 (not necessarily an upper-bound). Let  $c \in P$ . Define  $\mathbf{A}_{P}^{c} = \langle P, \rightarrow, 1 \rangle$  by setting

$$x o y = \left\{ egin{array}{cl} 1 & ext{if } x \leq y \ c & ext{if } x \not\leq y \end{array} 
ight.$$

Then  $\mathbf{A}_{P}^{c} \in \mathbf{Q}_{\rightarrow}$ .

Let L and L' be the following posets (bounded lattices).





Consider the algebra  $\mathbf{A}_{L}^{b}$  and the algebra  $\mathbf{B}$  with domain L' and with  $\rightarrow^{\mathbf{B}}$  the constant map to 1.



Consider the algebra  $\mathbf{A}_{L}^{b}$  and the algebra  $\mathbf{B}$  with domain L' and with  $\rightarrow^{\mathbf{B}}$  the constant map to 1. Then  $h: L \rightarrow L'$  defined as in the diagram



Consider the algebra  $\mathbf{A}_{L}^{b}$  and the algebra  $\mathbf{B}$  with domain L' and with  $\rightarrow^{\mathbf{B}}$  the constant map to 1. Then  $h: L \rightarrow L'$  defined as in the diagram



Consider the algebra  $\mathbf{A}_{L}^{b}$  and the algebra  $\mathbf{B}$  with domain L' and with  $\rightarrow^{\mathbf{B}}$  the constant map to 1.

Then  $h: L \to L'$  defined as in the diagram is a homomorphism from  $\mathbf{A}_{I}^{b}$  onto  $\mathbf{B}$ 



Consider the algebra  $\mathbf{A}_{L}^{b}$  and the algebra  $\mathbf{B}$  with domain L' and with  $\rightarrow^{\mathbf{B}}$  the constant map to 1. Then  $h: L \rightarrow L'$  defined as in the diagram is a homomorphism from  $\mathbf{A}_{L}^{b}$  onto  $\mathbf{B}$  and  $\mathbf{B} \not\in \mathbf{Q}_{\rightarrow}$ 



Consider the algebra  $\mathbf{A}_{L}^{b}$  and the algebra  $\mathbf{B}$  with domain L' and with  $\rightarrow^{\mathbf{B}}$  the constant map to 1.

Then  $h: L \to L'$  defined as in the diagram is a homomorphism from  $\mathbf{A}_L^b$  onto  $\mathbf{B}$  and  $\mathbf{B} \notin \mathbf{Q}_{\to}$   $(1 \to 0 = 0 \to 1 = 1 \text{ and } 1 \neq 0)$ .



Consider the algebra  $\mathbf{A}_{L}^{b}$  and the algebra  $\mathbf{B}$  with domain L' and with  $\rightarrow^{\mathbf{B}}$  the constant map to 1.

Then  $h: L \to L'$  defined as in the diagram is a homomorphism from  $\mathbf{A}_L^b$  onto  $\mathbf{B}$  and  $\mathbf{B} \notin \mathbf{Q}_{\to}$   $(1 \to 0 = 0 \to 1 = 1 \text{ and } 1 \neq 0)$ . Thus  $\mathbf{Q}_{\to}$  is not a variety.



Consider the algebra  $\mathbf{A}_{L}^{b}$  and the algebra  $\mathbf{B}$  with domain L' and with  $\rightarrow^{\mathbf{B}}$  the constant map to 1.

Then  $h: L \to L'$  defined as in the diagram is a homomorphism from  $\mathbf{A}_L^b$  onto  $\mathbf{B}$  and  $\mathbf{B} \notin \mathbf{Q}_{\to}$   $(1 \to 0 = 0 \to 1 = 1 \text{ and } 1 \neq 0)$ . Thus  $\mathbf{Q}_{\to}$  is not a variety.

We show that  $B \in Alg \mathcal{S}_{Q_{\rightarrow}}^{\leq}$ :



Consider the algebra  $\mathbf{A}_{L}^{b}$  and the algebra  $\mathbf{B}$  with domain L' and with  $\rightarrow^{\mathbf{B}}$  the constant map to 1.

Then  $h: L \to L'$  defined as in the diagram is a homomorphism from  $\mathbf{A}_L^b$  onto  $\mathbf{B}$  and  $\mathbf{B} \notin \mathbf{Q}_{\to}$   $(1 \to 0 = 0 \to 1 = 1 \text{ and } 1 \neq 0)$ . Thus  $\mathbf{Q}_{\to}$  is not a variety.

We show that  $\boldsymbol{B}\in\boldsymbol{Alg}\mathcal{S}_{Q_{\rightarrow}}^{\leq}\colon$ 

 $h^{-1}[\{1\}] = \{1, b\}$  and this set is an  $\mathcal{S}^{\leq}_{\mathsf{Q}_{\rightarrow}}$ -filter of  $\mathsf{A}^{b}_{L}$ .



Consider the algebra  $\mathbf{A}_{L}^{b}$  and the algebra  $\mathbf{B}$  with domain L' and with  $\rightarrow^{\mathbf{B}}$  the constant map to 1.

Then  $h: L \to L'$  defined as in the diagram is a homomorphism from  $\mathbf{A}_L^b$  onto  $\mathbf{B}$  and  $\mathbf{B} \notin \mathbf{Q}_{\to}$   $(1 \to 0 = 0 \to 1 = 1 \text{ and } 1 \neq 0)$ . Thus  $\mathbf{Q}_{\to}$  is not a variety.

We show that  $\boldsymbol{B}\in\boldsymbol{Alg}\mathcal{S}_{Q_{\rightarrow}}^{\leq}$  :

 $h^{-1}[\{1\}] = \{1, b\}$  and this set is an  $S_{Q_{\rightarrow}}^{\leq}$ -filter of  $\mathbf{A}_{L}^{b}$ . Since h is onto,  $\{1\}$  is an  $S_{Q_{\rightarrow}}^{\leq}$ -filter of  $\mathbf{B}$ .



Consider the algebra  $\mathbf{A}_{L}^{b}$  and the algebra  $\mathbf{B}$  with domain L' and with  $\rightarrow^{\mathbf{B}}$  the constant map to 1.

Then  $h: L \to L'$  defined as in the diagram is a homomorphism from  $\mathbf{A}_L^b$  onto  $\mathbf{B}$  and  $\mathbf{B} \notin \mathbf{Q}_{\to}$   $(1 \to 0 = 0 \to 1 = 1 \text{ and } 1 \neq 0)$ . Thus  $\mathbf{Q}_{\to}$  is not a variety.

We show that  $\boldsymbol{B}\in\boldsymbol{Alg}\mathcal{S}_{Q_{\rightarrow}}^{\leq}$  :

 $h^{-1}[\{1\}] = \{1, b\}$  and this set is an  $\mathcal{S}_{Q_{\rightarrow}}^{\leq}$ -filter of  $\mathbf{A}_{L}^{b}$ . Since h is onto,  $\{1\}$  is an  $\mathcal{S}_{Q_{\rightarrow}}^{\leq}$ -filter of  $\mathbf{B}$ . This implies that  $\Lambda_{\mathcal{S}_{Q_{\rightarrow}}^{\leq}}^{\mathbf{B}}$  is the identity.
Let L and L' be the following posets (bounded lattices).



Consider the algebra  $\mathbf{A}_{L}^{b}$  and the algebra  $\mathbf{B}$  with domain L' and with  $\rightarrow^{\mathbf{B}}$  the constant map to 1. Then  $h: L \rightarrow L'$  defined as in the diagram is a homomorphism from  $\mathbf{A}_{L}^{b}$  onto  $\mathbf{B}$ 

and  $\mathbf{B} \notin \mathbf{Q}_{\rightarrow}$   $(1 \rightarrow 0 = 0 \rightarrow 1 = 1 \text{ and } 1 \neq 0)$ . Thus  $\mathbf{Q}_{\rightarrow}$  is not a variety.

We show that  $\boldsymbol{B}\in\boldsymbol{Alg}\mathcal{S}_{Q_{\rightarrow}}^{\leq}$  :

 $h^{-1}[\{1\}] = \{1, b\}$  and this set is an  $\mathcal{S}_{Q_{\rightarrow}}^{\leq}$ -filter of  $\mathbf{A}_{L}^{b}$ . Since h is onto,  $\{1\}$  is an  $\mathcal{S}_{Q_{\rightarrow}}^{\leq}$ -filter of  $\mathbf{B}$ . This implies that  $\Lambda_{\mathcal{S}_{Q_{\rightarrow}}^{\leq}}^{\mathbf{B}}$  is the identity. Hence  $\mathbf{B} \in \mathbf{Alg}\mathcal{S}_{Q_{\rightarrow}}^{\leq}$ .

#### Theorem

If Q is a  $\mu$ -equationally orderable quasivariety and  $\operatorname{Alg} S_Q^{\leq} = Q$ , then  $S_Q^{\leq}$  is congruential.

#### Theorem

If Q is a  $\mu$ -equationally orderable quasivariety and  $\operatorname{Alg} S_Q^{\leq} = Q$ , then  $S_Q^{\leq}$  is congruential.

#### Theorem

If Q is a  $\mu$ -equationally orderable variety, then  $Q = \operatorname{Alg} S_Q^{\leq}$ .

#### Theorem

If Q is a  $\mu$ -equationally orderable quasivariety and  $\operatorname{Alg} S_Q^{\leq} = Q$ , then  $S_Q^{\leq}$  is congruential.

#### Theorem

If Q is a  $\mu$ -equationally orderable variety, then  $Q = \operatorname{Alg} S_Q^{\leq}$ .

### Proof.

The intrinsic variety of  $S_Q^\leq$  is the variety  $V(S_Q^\leq)$  axiomatized by the equations  $\varphi \approx \psi$  such that

$$\varphi \dashv_{\mathcal{S}_{\mathsf{Q}}^{\leq}} \vdash \psi$$

We recall:  $Q \models \varphi \approx \psi$  iff  $\varphi \dashv_{\mathcal{S}_Q^{\leq}} \vdash \psi$ . Therefore  $V(\mathcal{S}_Q^{\leq})$  is the variety generated by Q. Also  $V(\mathcal{S}_Q^{\leq})$  is the variety generated by  $\operatorname{Alg}\mathcal{S}_Q^{\leq}$ . Since  $Q \subseteq \operatorname{Alg}\mathcal{S}_Q^{\leq}$ , Q and  $\operatorname{Alg}\mathcal{S}_Q^{\leq}$  generate the same variety.

R. Jansana

#### As a corollary:

#### Theorem

If Q is a  $\mu$ -equationally orderable variety, then  $S_Q^{\leq}$  and  $S_Q^{\leq^{\partial}}$  are congruential.

#### As a corollary:

#### Theorem

If Q is a  $\mu$ -equationally orderable variety, then  $S_Q^{\leq}$  and  $S_Q^{\leq^{\partial}}$  are congruential.

There exists a  $\mu$ -equationally orderable quasivariety Q such that

- Q is not a variety,
- $Q \subsetneq Alg \mathcal{S}_Q^{\leq}$ ,
- $\mathcal{S}_{Q}^{\leq}$  congruential.

- $\textcircled{0} \hspace{0.1in} \langle A, \rightarrow, 1 \rangle \in \mathbb{Q}_{\rightarrow}\text{,}$
- **2**  $\langle A, \wedge \rangle$  is a meet-semilattice,
- $a \land b = a \text{ iff } a \to b = 1, \text{ for all } a, b \in A.$

- $\textcircled{0} \hspace{0.1in} \langle A, \rightarrow, 1 \rangle \in \mathbb{Q}_{\rightarrow}\text{,}$
- **2**  $\langle A, \wedge \rangle$  is a meet-semilattice,

$$a \land b = a \text{ iff } a \to b = 1, \text{ for all } a, b \in A.$$

Then:

 $\blacktriangleright$   $Q^{\wedge}_{\rightarrow}$  is not a variety.

- $\ \, {\bf 0} \ \, \langle {\it A}, \rightarrow, 1 \rangle \in {\sf Q}_{\rightarrow} {,}$
- **2**  $\langle A, \wedge \rangle$  is a meet-semilattice,

$$a \land b = a \text{ iff } a \to b = 1, \text{ for all } a, b \in A.$$

Then:

▶  $Q^{\wedge}_{\rightarrow}$  is not a variety.

The example discussed to show that  $\mathsf{Q}_{\rightarrow}$  is not a variety shows also this.

- $\ \, {\color{black} \bullet} \ \, \langle A, \rightarrow, 1 \rangle \in {\sf Q}_{\rightarrow} {,}$
- **2**  $\langle A, \wedge \rangle$  is a meet-semilattice,

$$a \land b = a \text{ iff } a \to b = 1, \text{ for all } a, b \in A.$$

Then:

▶  $Q^{\wedge}_{\rightarrow}$  is not a variety.

The example discussed to show that  $\mathsf{Q}_{\rightarrow}$  is not a variety shows also this.

▶ The deductive system  $S_{Q_{\Delta}}^{\leq}$  is congruential and  $AlgS_{Q}^{\leq}$  is a variety.

- $\ \, {\color{black} \bullet} \ \, \langle A, \rightarrow, 1 \rangle \in {\sf Q}_{\rightarrow} {,}$
- **2**  $\langle A, \wedge \rangle$  is a meet-semilattice,

$$\bigcirc$$
  $a \land b = a$  iff  $a \rightarrow b = 1$ , for all  $a, b \in A$ .

Then:

▶  $Q^{\wedge}_{\rightarrow}$  is not a variety.

The example discussed to show that  $\mathsf{Q}_{\rightarrow}$  is not a variety shows also this.

▶ The deductive system  $S_{Q_{\triangle}}^{\leq}$  is congruential and  $AlgS_Q^{\leq}$  is a variety.

It follows because  $\mathcal{S}_{Q_{\hookrightarrow}^{<}}^{\leq}$  has the congruence property and the property of conjunction.

- $\ \, {\color{black} \bullet} \ \, \langle A, \rightarrow, 1 \rangle \in {\sf Q}_{\rightarrow} {,}$
- **2**  $\langle A, \wedge \rangle$  is a meet-semilattice,

$$a \land b = a \text{ iff } a \to b = 1, \text{ for all } a, b \in A.$$

Then:

▶  $Q^{\wedge}_{\rightarrow}$  is not a variety.

The example discussed to show that  $\mathsf{Q}_{\rightarrow}$  is not a variety shows also this.

▶ The deductive system  $S_{Q_{\rightarrow}^{\wedge}}^{\leq}$  is congruential and  $AlgS_Q^{\leq}$  is a variety.

It follows because  $\mathcal{S}_{Q_{\hookrightarrow}^{<}}^{\leq}$  has the congruence property and the property of conjunction.

OPEN PROBLEM: In general, if  $S_Q^{\leq}$  is congruential, is  $Alg S_Q^{\leq}$  a variety?

# PART II

Discussion of some examples: BCK algebras and Hilbert algebras, possibly with extra lattice operations.

### Definition

- $(x \to y) \to ((y \to z) \to (x \to z)) \approx 1,$
- $x \to x \approx 1,$
- $x \to 1 \approx 1,$
- if  $x \to y \approx 1$  and  $y \to x \approx 1$ , then  $x \approx y$ .
- ▶ BCK is  $\{x \rightarrow y \approx 1\}$ -equationally orderable.

### Definition

- $(x \to y) \to ((y \to z) \to (x \to z)) \approx 1,$
- $x \to x \approx 1,$
- $x \to 1 \approx 1,$
- if  $x \to y \approx 1$  and  $y \to x \approx 1$ , then  $x \approx y$ .
- ▶ BCK is  ${x \rightarrow y \approx 1}$ -equationally orderable.
- $S_{BCK}^1$  is algebraizable.

### Definition

- $(x \to y) \to ((y \to z) \to (x \to z)) \approx 1,$
- $x \to x \approx 1,$
- $x \to 1 \approx 1,$
- if  $x \to y \approx 1$  and  $y \to x \approx 1$ , then  $x \approx y$ .
- ▶ BCK is  $\{x \rightarrow y \approx 1\}$ -equationally orderable.
- ▶  $S_{BCK}^1$  is algebraizable.
- $S_{BCK}^{\leq}$  is not protoalgebraic and has theorems.

### Definition

- $(x \to y) \to ((y \to z) \to (x \to z)) \approx 1,$
- $x \to x \approx 1,$
- $x \to 1 \approx 1,$
- if  $x \to y \approx 1$  and  $y \to x \approx 1$ , then  $x \approx y$ .
- ▶ BCK is  $\{x \rightarrow y \approx 1\}$ -equationally orderable.
- $S_{BCK}^1$  is algebraizable.
- $S_{BCK}^{\leq}$  is not protoalgebraic and has theorems.
- ▶  $S_{BCK}^{\leq^{\partial}}$  does not have theorems.

### Definition

The quasivariety BCK of *BCK-algebras* is axiomatized by the following equations and quasiequation:

- $(x \to y) \to ((y \to z) \to (x \to z)) \approx 1,$
- $x \to x \approx 1,$
- $x \to 1 \approx 1,$
- if  $x \to y \approx 1$  and  $y \to x \approx 1$ , then  $x \approx y$ .
- ▶ BCK is  ${x \rightarrow y \approx 1}$ -equationally orderable.
- $S^1_{BCK}$  is algebraizable.
- $S_{BCK}^{\leq}$  is not protoalgebraic and has theorems.
- ▶  $S_{BCK}^{\leq^{\partial}}$  does not have theorems.

▶ The three logics  $S_{BCK}^1$ ,  $S_{BCK}^{\leq}$ ,  $S_{BCK}^{\leq^{\partial}}$  are different.

Let us consider the BCK algebra we obtain by defining in the lattice below the operation  $\rightarrow$  by the next table



The principal up-sets are obviously  $\mathcal{S}_{\text{BCK}}^{\leq}\text{-filters.}$  Let

$$F = \{2, 1\} \subseteq G = \{\beta, 3, 2, 1\}.$$

It is not difficult to see that

$$\langle \alpha, \beta \rangle \in \mathbf{\Omega}(F)$$
, but  $\langle \alpha, \beta \rangle \notin \mathbf{\Omega}(G)$ .

Thus  $\mathcal{S}_{BCK}^{\leq}$  is not ptrotoalgebraic.

#### PROBLEMS.

- Are  $\mathcal{S}_{\mathsf{BCK}}^{\leq}$  and  $\mathcal{S}_{\mathsf{BCK}}^{\leq^{\partial}}$  congruential ?
- Is  $\textbf{Alg}\mathcal{S}_{\text{BCK}}^{\leq}=\text{BCK}?$
- Is  $\textbf{Alg}\mathcal{S}_{\text{BCK}}^{\leq^{\partial}} = \text{BCK}?$
- Is  $\mathbf{Alg}\mathcal{S}_{\mathsf{BCK}}^{\leq^{\partial}} = \mathbf{Alg}\mathcal{S}_{\mathsf{BCK}}^{\leq}$ ?

BCK meet-semilattices are in essence the BCK algebras whose order defined by  $x \to y \approx 1$  is a meet-semilattice.

BCK meet-semilattices are in essence the BCK algebras whose order defined by  $x \to y \approx 1$  is a meet-semilattice.

### Definition

An algebra  $\mathbf{A} = \langle A, \rightarrow, \wedge, 1 \rangle$  in the language  $\{\rightarrow, \wedge, 1\}$  is a BCK meet-semilattice if  $\langle A, \rightarrow, 1 \rangle$  is a BCK algebra and the following equations and quasiequation are valid on  $\mathbf{A}$ 

$$\bigcirc (x \wedge y) \to x \approx 1,$$

$$(x \wedge y) \to y \approx 1,$$

(a) if  $x \to y \approx 1$  and  $x \to z \approx 1$ , then  $x \to (y \land z) \approx 1$ .

BCK meet-semilattices are in essence the BCK algebras whose order defined by  $x \to y \approx 1$  is a meet-semilattice.

### Definition

An algebra  $\mathbf{A} = \langle A, \rightarrow, \wedge, 1 \rangle$  in the language  $\{\rightarrow, \wedge, 1\}$  is a BCK meet-semilattice if  $\langle A, \rightarrow, 1 \rangle$  is a BCK algebra and the following equations and quasiequation are valid on  $\mathbf{A}$ 

• 
$$(x \land y) \rightarrow x \approx 1$$
,  
•  $(x \land y) \rightarrow y \approx 1$ ,  
• if  $x \rightarrow y \approx 1$  and  $x \rightarrow z \approx 1$ , then  $x \rightarrow (y \land z) \approx 1$ 

• The class  $BCK^{\wedge}$  of BCK-meet-semilattices is a variety (P. Idziak).

BCK meet-semilattices are in essence the BCK algebras whose order defined by  $x \to y \approx 1$  is a meet-semilattice.

### Definition

An algebra  $\mathbf{A} = \langle A, \rightarrow, \wedge, 1 \rangle$  in the language  $\{\rightarrow, \wedge, 1\}$  is a BCK meet-semilattice if  $\langle A, \rightarrow, 1 \rangle$  is a BCK algebra and the following equations and quasiequation are valid on  $\mathbf{A}$ 

1.

• 
$$(x \wedge y) \rightarrow x \approx 1$$
,  
•  $(x \wedge y) \rightarrow y \approx 1$ ,  
• if  $x \rightarrow y \approx 1$  and  $x \rightarrow z \approx 1$ , then  $x \rightarrow (y \wedge z) \approx$ 

• The class BCK<sup>^</sup> of BCK-meet-semilattices is a variety (P. Idziak).

•  $\mathcal{S}^1_{\mathsf{BCK}^\wedge}$  is algebraizable.

BCK meet-semilattices are in essence the BCK algebras whose order defined by  $x \to y \approx 1$  is a meet-semilattice.

### Definition

An algebra  $\mathbf{A} = \langle A, \rightarrow, \wedge, 1 \rangle$  in the language  $\{\rightarrow, \wedge, 1\}$  is a BCK meet-semilattice if  $\langle A, \rightarrow, 1 \rangle$  is a BCK algebra and the following equations and quasiequation are valid on  $\mathbf{A}$ 

- The class  $BCK^{\wedge}$  of BCK-meet-semilattices is a variety (P. Idziak).
- $\mathcal{S}^1_{\mathsf{BCK}^\wedge}$  is algebraizable.
- $\mathcal{S}_{\mathsf{BCK}^{\wedge}}^{\leq}$  is not protoalgebraic and has theorems.

BCK meet-semilattices are in essence the BCK algebras whose order defined by  $x \to y \approx 1$  is a meet-semilattice.

### Definition

An algebra  $\mathbf{A} = \langle A, \rightarrow, \wedge, 1 \rangle$  in the language  $\{\rightarrow, \wedge, 1\}$  is a BCK meet-semilattice if  $\langle A, \rightarrow, 1 \rangle$  is a BCK algebra and the following equations and quasiequation are valid on  $\mathbf{A}$ 

1.

- The class  $BCK^{\wedge}$  of BCK-meet-semilattices is a variety (P. Idziak).
- $\mathcal{S}^1_{\mathsf{BCK}^\wedge}$  is algebraizable.
- $\mathcal{S}_{\mathsf{BCK}^{\wedge}}^{\leq}$  is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathsf{BCK}^\wedge}^{\leq^\partial}$  does not have theorems.

BCK meet-semilattices are in essence the BCK algebras whose order defined by  $x \to y \approx 1$  is a meet-semilattice.

### Definition

An algebra  $\mathbf{A} = \langle A, \rightarrow, \wedge, 1 \rangle$  in the language  $\{\rightarrow, \wedge, 1\}$  is a BCK meet-semilattice if  $\langle A, \rightarrow, 1 \rangle$  is a BCK algebra and the following equations and quasiequation are valid on  $\mathbf{A}$ 

1.

• 
$$(x \wedge y) \rightarrow x \approx 1$$
,  
•  $(x \wedge y) \rightarrow y \approx 1$ ,  
• if  $x \rightarrow y \approx 1$  and  $x \rightarrow z \approx 1$ , then  $x \rightarrow (y \wedge z) \approx$ 

- The class  $BCK^{\wedge}$  of BCK-meet-semilattices is a variety (P. Idziak).
- $\mathcal{S}^1_{\mathsf{BCK}^\wedge}$  is algebraizable.
- $\mathcal{S}_{\mathsf{BCK}^{\wedge}}^{\leq}$  is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathsf{BCK}^{\wedge}}^{\leq^{\partial}}$  does not have theorems.
- The three deductive systems  $S^1_{\mathsf{BCK}^\wedge}$ ,  $S^{\leq}_{\mathsf{BCK}^\wedge}$  and  $S^{\leq^{\partial}}_{\mathsf{BCK}^\wedge}$  are different.

• 
$$S_{BCK^{\wedge}}^{\leq}$$
 is congruential and  $Alg S_{BCK^{\wedge}}^{\leq} = BCK^{\wedge}$ .

•  $S_{BCK^{\wedge}}^{\leq}$  is congruential and  $Alg S_{BCK^{\wedge}}^{\leq} = BCK^{\wedge}$ . •  $S_{BCK^{\wedge}}^{\leq^{\partial}}$  is congruential and  $Alg S_{BCK^{\wedge}}^{\leq^{\partial}} = BCK^{\wedge}$ .

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak). Thus the logic of the order is congruential as well as the logic of the dual order.

•  $\mathcal{S}^1_{\mathsf{BCK}^\vee}$  is algebraizable.

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak). Thus the logic of the order is congruential as well as the logic of the dual order.

- $\mathcal{S}^1_{\mathsf{BCK}^\vee}$  is algebraizable.
- $\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq}$  is not protoalgebraic and has theorems.

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak). Thus the logic of the order is congruential as well as the logic of the dual order.

- $\mathcal{S}^1_{\mathsf{BCK}^\vee}$  is algebraizable.
- $\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq}$  is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq^{\partial}}$  does not have theorems.
# BCK-join-semilattices

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak). Thus the logic of the order is congruential as well as the logic of the dual order.

- $\mathcal{S}^1_{\mathsf{BCK}^\vee}$  is algebraizable.
- $\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq}$  is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq^{\partial}}$  does not have theorems.
- The three deductive systems  $S^1_{\mathsf{BCK}^\vee}$ ,  $S^{\leq}_{\mathsf{BCK}^\vee}$  and  $S^{\leq^{\vartheta}}_{\mathsf{BCK}^\vee}$  are different.

# BCK-join-semilattices

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak). Thus the logic of the order is congruential as well as the logic of the dual order.

- $\mathcal{S}^1_{\mathsf{BCK}^\vee}$  is algebraizable.
- $\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq}$  is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq^{\partial}}$  does not have theorems.
- The three deductive systems  $\mathcal{S}^1_{\mathsf{BCK}^\vee}$ ,  $\mathcal{S}^\leq_{\mathsf{BCK}^\vee}$  and  $\mathcal{S}^{\leq^\partial}_{\mathsf{BCK}^\vee}$  are different.
- $\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq}$  is congruential and  $\mathsf{Alg}\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq} = \mathsf{BCK}^{\vee}$ .

# BCK-join-semilattices

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak). Thus the logic of the order is congruential as well as the logic of the dual order.

- $\mathcal{S}^1_{\mathsf{BCK}^\vee}$  is algebraizable.
- $\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq}$  is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq^{\partial}}$  does not have theorems.
- The three deductive systems  $S^1_{\mathsf{BCK}^\vee}$ ,  $S^{\leq}_{\mathsf{BCK}^\vee}$  and  $S^{\leq^{\partial}}_{\mathsf{BCK}^\vee}$  are different.
- $\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq}$  is congruential and  $\mathsf{Alg}\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq} = \mathsf{BCK}^{\vee}$ .
- $\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq^{\partial}}$  is congruential and  $\mathsf{Alg}\mathcal{S}_{\mathsf{BCK}^{\vee}}^{\leq^{\partial}} = \mathsf{BCK}^{\vee}$ .

### Definition

An algebra **A** in the language  $\{\rightarrow, 1\}$  is a Hilbert algebra if the following equations and quasiequation are valid on **A**.

H1.  $x \to (y \to x) \approx 1$ , H2.  $x \to (y \to z) \to ((x \to y) \to (x \to z)) \approx 1$ , H3. if  $x \to y \approx y \to x \approx 1$ , then  $x \approx y$ .

### Definition

An algebra **A** in the language  $\{\rightarrow, 1\}$  is a Hilbert algebra if the following equations and quasiequation are valid on **A**.

H1.  $x \to (y \to x) \approx 1$ , H2.  $x \to (y \to z) \to ((x \to y) \to (x \to z)) \approx 1$ , H3. if  $x \to y \approx y \to x \approx 1$ , then  $x \approx y$ .

▶ The class H of Hilbert algebras is a variety of BCK-algebras.

### Definition

An algebra **A** in the language  $\{\rightarrow, 1\}$  is a Hilbert algebra if the following equations and quasiequation are valid on **A**.

H1.  $x \to (y \to x) \approx 1$ , H2.  $x \to (y \to z) \to ((x \to y) \to (x \to z)) \approx 1$ , H3. if  $x \to y \approx y \to x \approx 1$ , then  $x \approx y$ .

▶ The class H of Hilbert algebras is a variety of BCK-algebras.

▶ The 1-assertional logic  $S^1_H$  of H is the ( $\rightarrow$ , 1)-fragment of intuitionistic logic.

### Definition

An algebra **A** in the language  $\{\rightarrow, 1\}$  is a Hilbert algebra if the following equations and quasiequation are valid on **A**.

H1.  $x \to (y \to x) \approx 1$ , H2.  $x \to (y \to z) \to ((x \to y) \to (x \to z)) \approx 1$ , H3. if  $x \to y \approx y \to x \approx 1$ , then  $x \approx y$ .

▶ The class H of Hilbert algebras is a variety of BCK-algebras.

- ▶ The 1-assertional logic  $S^1_H$  of H is the  $(\rightarrow, 1)$ -fragment of intuitionistic logic.
  - has the congruence property,

### Definition

An algebra **A** in the language  $\{\rightarrow, 1\}$  is a Hilbert algebra if the following equations and quasiequation are valid on **A**.

H1.  $x \to (y \to x) \approx 1$ , H2.  $x \to (y \to z) \to ((x \to y) \to (x \to z)) \approx 1$ , H3. if  $x \to y \approx y \to x \approx 1$ , then  $x \approx y$ .

▶ The class H of Hilbert algebras is a variety of BCK-algebras.

▶ The 1-assertional logic  $S^1_H$  of H is the  $(\rightarrow, 1)$ -fragment of intuitionistic logic.

- has the congruence property,
- has the  $\to\text{-deduction-detachment}$  property: for all sets of formulas  $\Gamma$  and all formulas  $\varphi,\psi$

$$\Gamma \cup \{\varphi\} \vdash_{\mathcal{S}^1_{\mathsf{H}}} \psi \quad \text{iff} \quad \Gamma \vdash_{\mathcal{S}^1_{\mathsf{H}}} \varphi \to \psi.$$

### Definition

An algebra **A** in the language  $\{\rightarrow, 1\}$  is a Hilbert algebra if the following equations and quasiequation are valid on **A**.

H1.  $x \to (y \to x) \approx 1$ , H2.  $x \to (y \to z) \to ((x \to y) \to (x \to z)) \approx 1$ , H3. if  $x \to y \approx y \to x \approx 1$ , then  $x \approx y$ .

▶ The class H of Hilbert algebras is a variety of BCK-algebras.

▶ The 1-assertional logic  $S^1_H$  of H is the  $(\rightarrow, 1)$ -fragment of intuitionistic logic.

- has the congruence property,
- has the  $\to\text{-deduction-detachment}$  property: for all sets of formulas  $\Gamma$  and all formulas  $\varphi,\psi$

$$\Gamma \cup \{\varphi\} \vdash_{\mathcal{S}^1_{\mathsf{H}}} \psi \quad \text{iff} \quad \Gamma \vdash_{\mathcal{S}^1_{\mathsf{H}}} \varphi \to \psi.$$

These facts imply:

### Definition

An algebra **A** in the language  $\{\rightarrow, 1\}$  is a Hilbert algebra if the following equations and quasiequation are valid on **A**.

H1.  $x \to (y \to x) \approx 1$ , H2.  $x \to (y \to z) \to ((x \to y) \to (x \to z)) \approx 1$ , H3. if  $x \to y \approx y \to x \approx 1$ , then  $x \approx y$ .

► The class H of Hilbert algebras is a variety of BCK-algebras.

▶ The 1-assertional logic  $S^1_H$  of H is the  $(\rightarrow, 1)$ -fragment of intuitionistic logic.

- has the congruence property,
- has the  $\to\text{-deduction-detachment}$  property: for all sets of formulas  $\Gamma$  and all formulas  $\varphi,\psi$

$$\Gamma \cup \{\varphi\} \vdash_{\mathcal{S}^1_{\mathsf{H}}} \psi \quad \text{iff} \quad \Gamma \vdash_{\mathcal{S}^1_{\mathsf{H}}} \varphi \to \psi.$$

These facts imply:

•  $\mathcal{S}^1_{\mathsf{H}}$  is congruential.

•  $S^1_{\mathsf{H}}$  = the deductive system  $S^{\rightarrow}_{\mathsf{H}}$  associated with  $\mathsf{H}$  by the following definition  $\Gamma \vdash_{\mathcal{S}_{\mathsf{K}}} \varphi \quad \text{iff} \quad (\forall \mathbf{A} \in \mathsf{K})(\forall v \in \operatorname{Hom}(\mathsf{Fm}, \mathbf{A})) \ v(\varphi) = 1^{\mathsf{A}} \text{ or}$   $(\exists \varphi_0, \dots, \varphi_n \in \Gamma)(\forall \mathbf{A} \in \mathsf{K})(\forall v \in \operatorname{Hom}(\mathsf{Fm}, \mathbf{A}))$  $v(\varphi_0 \to (\dots (\varphi_n \to \varphi) \dots)) = 1^{\mathsf{A}}.$  ▶ The variety H is  $\{x \rightarrow y \approx 1\}$ -equationally orderable.

- ▶ The variety H is  $\{x \rightarrow y \approx 1\}$ -equationally orderable.
- ▶ The deductive systems  $S_{H}^{\leq}$  and  $S_{H}^{\leq^{\partial}}$  are congruential.

- ▶ The variety H is  $\{x \rightarrow y \approx 1\}$ -equationally orderable.
- ▶ The deductive systems  $S_H^{\leq}$  and  $S_H^{\leq^{\partial}}$  are congruential.

▶  $\mathcal{S}_{H}^{\leq^{\partial}}$  does not have theorems.

- The variety H is  $\{x \rightarrow y \approx 1\}$ -equationally orderable.
- $\blacktriangleright$  The deductive systems  $\mathcal{S}_{H}^{\leq}$  and  $\mathcal{S}_{H}^{\leq^{\partial}}$  are congruential.

▶  $S_{\rm H}^{\leq^{\partial}}$  does not have theorems.

### Proposition

The deductive system  $\mathcal{S}_{H}^{\leq}$  enjoys Modus Ponens for  $\rightarrow$ .

• The variety H is  $\{x \rightarrow y \approx 1\}$ -equationally orderable.

▶ The deductive systems  $S_H^{\leq}$  and  $S_H^{\leq^{\partial}}$  are congruential.

▶  $S_{\rm H}^{\leq^{\partial}}$  does not have theorems.

#### Proposition

The deductive system  $\mathcal{S}_{H}^{\leq}$  enjoys Modus Ponens for  $\rightarrow$ .

### Proof.

Let **A** be any Hilbert algebra. We show that for every  $a, b, c \in A$ 

$$a \leq b \& a \leq b \rightarrow c \Longrightarrow a \leq c.$$

This implies that  $S_{H}^{\leq}$  enjoys Modus Ponens for  $\rightarrow$ . Suppose that  $a \leq b$  and  $a \leq b \rightarrow c$ . Then  $a \rightarrow b = 1$  and  $a \rightarrow (b \rightarrow c) = 1$ . Therefore,  $(a \rightarrow b) \rightarrow (a \rightarrow c) = 1$ ; hence,  $1 \rightarrow (a \rightarrow c) = 1$ . This implies that  $a \rightarrow c = 1$  and so  $a \leq c$ .

#### Proposition

The deductive system  $\mathcal{S}_{H}^{\leq}$  is equal to  $\mathcal{S}_{H}^{1}$ .

### Proof.

 $\begin{array}{l} \mathcal{S}^1_H \text{ is an extension of } \mathcal{S}^\leq_H \text{ with the same theorems, because 1 is a maximum element in every Hilbert algebra. Now note that all axioms of the axiomatization of <math display="inline">\mathcal{S}^1_H$  are theorems of  $\mathcal{S}^\leq_H.$  Since Modus Ponens is valid in  $\mathcal{S}^\leq_H, \mathcal{S}^\leq_H$  is an extension of  $\mathcal{S}^1_H.$  Thus  $\mathcal{S}^\leq_H=\mathcal{S}^1_H.$ 

#### Proposition

The deductive system  $\mathcal{S}_{H}^{\leq}$  is equal to  $\mathcal{S}_{H}^{1}$ .

### Proof.

 $\begin{array}{l} \mathcal{S}^1_H \text{ is an extension of } \mathcal{S}^\leq_H \text{ with the same theorems, because 1 is a maximum element in every Hilbert algebra. Now note that all axioms of the axiomatization of <math display="inline">\mathcal{S}^1_H$  are theorems of  $\mathcal{S}^\leq_H.$  Since Modus Ponens is valid in  $\mathcal{S}^\leq_H, \mathcal{S}^\leq_H$  is an extension of  $\mathcal{S}^1_H.$  Thus  $\mathcal{S}^\leq_H=\mathcal{S}^1_H.$ 

#### Therefore,

#### Proposition

The deductive system  $\mathcal{S}^1_{\mathsf{H}}$  is congruential.

### Definition

#### Definition

A Hilbert algebra with supremum is an algebra  $\mathbf{A} = \langle A, \rightarrow, \lor, 1 \rangle$  in the language  $\{\rightarrow, \land, 1\}$  which is a BCK-join-semilattice such that  $\langle A, \rightarrow, 1 \rangle$  is a Hilbert algebra.

 $\blacktriangleright$  The class of Hilbert algebras with supremum  $H^{\vee}$  is a variety.

### Definition

A Hilbert algebra with supremum is an algebra  $\mathbf{A} = \langle A, \rightarrow, \lor, 1 \rangle$  in the language  $\{\rightarrow, \land, 1\}$  which is a BCK-join-semilattice such that  $\langle A, \rightarrow, 1 \rangle$  is a Hilbert algebra.

 $\blacktriangleright$  The class of Hilbert algebras with supremum  $H^{\vee}$  is a variety.

▶ We have four deductive systems.

### Definition

- ▶ The class of Hilbert algebras with supremum  $H^{\vee}$  is a variety.
- ▶ We have four deductive systems.
  - $\bullet$  The 1-assertional logic  $\mathcal{S}^1_{\mathsf{H}^\vee}$

### Definition

- ▶ The class of Hilbert algebras with supremum  $H^{\vee}$  is a variety.
- ▶ We have four deductive systems.
  - $\bullet\,$  The 1-assertional logic  $\mathcal{S}^1_{H^\vee}$  (has axiomatization with Modus Ponens as the only rule).

### Definition

- ▶ The class of Hilbert algebras with supremum  $H^{\vee}$  is a variety.
- ▶ We have four deductive systems.
  - The 1-assertional logic  $\mathcal{S}^1_{H^\vee}$  (has axiomatization with Modus Ponens as the only rule).
  - The logic  $\mathcal{S}_{\mathsf{H}^{\vee}}^{\leq}$  of the  $\{x \to y \approx 1\}$ -order of  $\mathsf{H}^{\wedge}$ .

#### Definition

- ▶ The class of Hilbert algebras with supremum  $H^{\vee}$  is a variety.
- ▶ We have four deductive systems.
  - The 1-assertional logic  $\mathcal{S}^1_{H^\vee}$  (has axiomatization with Modus Ponens as the only rule).
  - The logic  $\mathcal{S}_{\mathsf{H}^{\vee}}^{\leq}$  of the  $\{x \to y \approx 1\}$ -order of  $\mathsf{H}^{\wedge}$ .
  - The logic  $\mathcal{S}_{\mathsf{H}^{\vee}}^{\leq^{\partial}}$  of the dual  $\{x \to y \approx 1\}$ -order of  $\mathsf{H}^{\wedge}$ .

#### Definition

- ▶ The class of Hilbert algebras with supremum H<sup>∨</sup> is a variety.
- ▶ We have four deductive systems.
  - The 1-assertional logic  $\mathcal{S}^1_{H^\vee}$  (has axiomatization with Modus Ponens as the only rule).
  - The logic  $\mathcal{S}_{\mathsf{H}^{\vee}}^{\leq}$  of the  $\{x \to y \approx 1\}$ -order of  $\mathsf{H}^{\wedge}$ .
  - The logic  $\mathcal{S}_{\mathsf{H}^{\vee}}^{\leq^{\partial}}$  of the dual  $\{x \to y \approx 1\}$ -order of  $\mathsf{H}^{\wedge}$ .
  - The logic  $\mathcal{S}_{\mathsf{H}^{\vee}}^{\rightarrow}$  defined by

$$\begin{array}{ll} \Gamma \vdash_{\mathcal{S}_{\mathsf{H}^{\wedge}}} \varphi & \text{iff} \quad (\forall \mathbf{A} \in \mathsf{H}^{\wedge})(\forall v \in \operatorname{Hom}(\mathsf{Fm}, \mathbf{A})) \ v(\varphi) = 1^{\mathbf{A}} \ \text{or} \\ (\exists \varphi_{0}, \ldots, \varphi_{n} \in \Gamma)(\forall \mathbf{A} \in \mathsf{K})(\forall v \in \operatorname{Hom}(\mathsf{Fm}, \mathbf{A})) \\ v(\varphi_{0} \to (\ldots (\varphi_{n} \to \varphi) \ldots)) = 1^{\mathbf{A}}. \end{array}$$

### Definition

A Hilbert algebra with supremum is an algebra  $\mathbf{A} = \langle A, \rightarrow, \lor, 1 \rangle$  in the language  $\{\rightarrow, \land, 1\}$  which is a BCK-join-semilattice such that  $\langle A, \rightarrow, 1 \rangle$  is a Hilbert algebra.

- $\blacktriangleright$  The class of Hilbert algebras with supremum  $H^{\vee}$  is a variety.
- ▶ We have four deductive systems.
  - The 1-assertional logic  $\mathcal{S}^1_{H^\vee}$  (has axiomatization with Modus Ponens as the only rule).
  - The logic  $\mathcal{S}_{\mathsf{H}^{\vee}}^{\leq}$  of the  $\{x \to y \approx 1\}$ -order of  $\mathsf{H}^{\wedge}$ .
  - The logic  $\mathcal{S}_{\mathsf{H}^{\vee}}^{\leq^{o}}$  of the dual  $\{x \to y \approx 1\}$ -order of  $\mathsf{H}^{\wedge}$ .
  - The logic  $\mathcal{S}_{\mathsf{H}^{\vee}}^{\rightarrow}$  defined by

$$\begin{split} \Gamma \vdash_{\mathcal{S}_{\mathsf{H}^{\wedge}}} \varphi \quad \text{iff} \quad (\forall \mathsf{A} \in \mathsf{H}^{\wedge})(\forall v \in \operatorname{Hom}(\mathsf{Fm}, \mathsf{A})) \ v(\varphi) &= 1^{\mathsf{A}} \text{ or} \\ (\exists \varphi_0, \dots, \varphi_n \in \Gamma)(\forall \mathsf{A} \in \mathsf{K})(\forall v \in \operatorname{Hom}(\mathsf{Fm}, \mathsf{A})) \\ v(\varphi_0 \to (\dots (\varphi_n \to \varphi) \dots)) &= 1^{\mathsf{A}}. \end{split}$$

▶ As with Hilbert algebras,  $S_{H^{\vee}}^{\leq}$ ,  $S_{H^{\vee}}^{1}$  and  $S_{H^{\vee}}^{\rightarrow}$  are equal and congruential.

### Definition

### Definition

A Hilbert algebra with infimum is an algebra  $\mathbf{A} = \langle A, \rightarrow, \wedge, 1 \rangle$  in the language  $\{\rightarrow, \wedge, 1\}$  which is a BCK-meet-semilattice such that  $\langle A, \rightarrow, 1 \rangle$  is a Hilbert algebra.

▶ The class of Hilbert algebras with infimum H<sup>∧</sup> is a variety.

### Definition

- ▶ The class of Hilbert algebras with infimum H<sup>∧</sup> is a variety.
- ▶ We have four deductive systems.

### Definition

- ▶ The class of Hilbert algebras with infimum H<sup>∧</sup> is a variety.
- ▶ We have four deductive systems.
  - The 1-assertional logic  $\mathcal{S}^1_{\mathsf{H}^\wedge}.$

### Definition

- ▶ The class of Hilbert algebras with infimum H<sup>∧</sup> is a variety.
- ▶ We have four deductive systems.
  - The 1-assertional logic  $\mathcal{S}^1_{\mathsf{H}^\wedge}.$
  - The logic  $\mathcal{S}_{\mathsf{H}^{\wedge}}^{\leq}$  of the  $\{x \to y \approx 1\}$ -order of  $\mathsf{H}^{\wedge}$ .

### Definition

- ▶ The class of Hilbert algebras with infimum H<sup>∧</sup> is a variety.
- ▶ We have four deductive systems.
  - The 1-assertional logic  $\mathcal{S}^1_{\mathsf{H}^\wedge}.$
  - The logic  $\mathcal{S}_{\mathsf{H}^{\wedge}}^{\leq}$  of the  $\{x \to y \approx 1\}$ -order of  $\mathsf{H}^{\wedge}$ .
  - The logic  $\mathcal{S}_{\mathsf{H}^{\wedge}}^{\leq^{\partial}}$  of the dual  $\{x \to y \approx 1\}$ -order of  $\mathsf{H}^{\wedge}$ .

### Definition

- ▶ The class of Hilbert algebras with infimum H<sup>∧</sup> is a variety.
- ▶ We have four deductive systems.
  - The 1-assertional logic  $\mathcal{S}^1_{\mathsf{H}^\wedge}.$
  - The logic  $\mathcal{S}_{\mathsf{H}^{\wedge}}^{\leq}$  of the  $\{x \to y \approx 1\}$ -order of  $\mathsf{H}^{\wedge}$ .
  - The logic  $\mathcal{S}_{H^{\wedge}}^{\leq^{\partial}}$  of the dual  $\{x \to y \approx 1\}$ -order of H^.
  - $\bullet\,$  The logic  $\mathcal{S}_{H^\wedge}^{\to}$  defined by

$$\begin{split} \Gamma \vdash_{\mathcal{S}_{\mathsf{H}^{\wedge}}} \varphi \quad \text{iff} \quad (\forall \mathsf{A} \in \mathsf{H}^{\wedge})(\forall v \in \operatorname{Hom}(\mathsf{Fm},\mathsf{A})) \ v(\varphi) &= 1^{\mathsf{A}} \text{ or} \\ (\exists \varphi_0, \dots, \varphi_n \in \Gamma)(\forall \mathsf{A} \in \mathsf{K})(\forall v \in \operatorname{Hom}(\mathsf{Fm},\mathsf{A})) \\ v(\varphi_0 \to (\dots (\varphi_n \to \varphi) \dots)) &= 1^{\mathsf{A}}. \end{split}$$

▶ 
$$S_{H^{\wedge}}^{\leq}$$
,  $S_{H^{\wedge}}^{\leq^{\partial}}$  and  $S_{H^{\wedge}}^{\rightarrow}$  are congruential.
► 
$$S_{H^{\wedge}}^{\leq}$$
,  $S_{H^{\wedge}}^{\leq^{\partial}}$  and  $S_{H^{\wedge}}^{\rightarrow}$  are congruential.

As we will see the four deductive systems are different.

▶  $S_{H^{\wedge}}^{\leq}$ ,  $S_{H^{\wedge}}^{\leq^{\partial}}$  and  $S_{H^{\wedge}}^{\rightarrow}$  are congruential.

As we will see the four deductive systems are different.

The 1-assertional logic  $\mathcal{S}^1_{H^\wedge}$  of  $H^\wedge$  can be axiomatized (Figallo Jr. A., Ramón, G. and Saad, S.) by the axioms

▶  $S_{H^{\wedge}}^{\leq}$ ,  $S_{H^{\wedge}}^{\leq^{\partial}}$  and  $S_{H^{\wedge}}^{\rightarrow}$  are congruential.

As we will see the four deductive systems are different.

The 1-assertional logic  $\mathcal{S}^1_{H^\wedge}$  of  $H^\wedge$  can be axiomatized (Figallo Jr. A., Ramón, G. and Saad, S.) by the axioms

▶  $S_{H^{\wedge}}^{\leq}$ ,  $S_{H^{\wedge}}^{\leq^{\partial}}$  and  $S_{H^{\wedge}}^{\rightarrow}$  are congruential.

As we will see the four deductive systems are different.

The 1-assertional logic  $\mathcal{S}^1_{H^\wedge}$  of  $H^\wedge$  can be axiomatized (Figallo Jr. A., Ramón, G. and Saad, S.) by the axioms

and the rules

$$\frac{\varphi, \varphi \to \psi}{\psi} \quad (MP) \qquad \qquad \frac{\varphi \to \psi}{\varphi \to (\varphi \land \psi)} \quad (AB).$$

## Proposition

## The four deductive systems $\mathcal{S}^{1}_{H^{\wedge}}$ , $\mathcal{S}^{\rightarrow}_{H^{\wedge}}$ , $\mathcal{S}^{\leq}_{H^{\wedge}}$ and $\mathcal{S}^{\leq^{\partial}}_{H^{\wedge}}$ are different.

- $\mathcal{S}^1_{H^{\wedge}}$ ,  $\mathcal{S}^{\rightarrow}_{H^{\wedge}}$  and  $\mathcal{S}^{\leq}_{H^{\wedge}}$  have the same theorems.
- $\mathcal{S}_{H^{\wedge}}^{\leq^{\partial}}$  does not have theorems.
- $S^{1}_{H^{\wedge}}$  does not have the deduction theorem for  $\rightarrow$ . If it would have it, since  $p, q \vdash_{S^{1}_{H^{\wedge}}} p \wedge q$ , it would follow that  $\vdash_{S^{1}_{H^{\wedge}}} p \rightarrow (q \rightarrow (p \wedge q))$ . But this is not a theorem of  $S^{1}_{H^{\wedge}}$ . In the Hilbert algebra with infimum given by the lattice



and  $\rightarrow$  defined by setting

$$x \to y = \begin{cases} 1, & \text{if } x \leq y \\ y, & \text{otherwise.} \end{cases}$$

we have  $b \rightarrow^{\mathsf{A}} (c \rightarrow^{\mathsf{A}} (b \wedge^{\mathsf{A}} c)) = 0.$ 

- $S_{H^{\wedge}}^{\rightarrow}$  has the deduction-detachment theorem for  $\rightarrow$ . All logics defined from a quasivariety of algebras with a Hilbert algebra reduct using the schema of definition we used to define  $S_{H^{\wedge}}^{\rightarrow}$  have it.
- $\mathcal{S}_{H^{\wedge}}^{\leq}$  does not have the deduction-detachment therorem for  $\rightarrow$ . If it had it, then every  $\mathbf{A} \in H^{\wedge}$  would be an implicative semilattice.
- The rule (AB) does not hold for  $S_{H^{\wedge}}^{\leq}$ . In the algebra  $\bigcirc$  holds:  $c \rightarrow b = b$ ,  $c \rightarrow (c \wedge b) = c \rightarrow 0 = 0$ , but  $b \leq 0$ .

CONJECTURE:  $\mathcal{S}_{H^{\wedge}}^{\leq}$  is not protoalgebraic.