On deductive systems associated with some equationally orderable quasivarieties

RAMON JANSANA

International Workshop on Algebraic Logic in Computer Science as part of

19h International Conference on Logic for Programming, Artificial Intelligence and Reasoning

Stellenbosch, December 14th, 2013.

Outline

- Preliminaries
- Part I: General results
- Equationally orderable quasivarieties.
- The deductive system of the order of an equationally orderable quasivariety.
- When it is congruential (or fully selfextensional).
- Part II: Discussion of some examples.
- BCK algebras.
- BCK algebras with infimum and BCK algebras with supremum.
- Hilbert algebras.
- Hilbert algebras with infimum and Hilbert algebras with supremum.

Preliminaries

Preliminaries

- A (finitary) deductive system (or logic) is a pair $\mathcal{S}=\left\langle\mathbf{F m}, \vdash_{\mathcal{S}}\right\rangle$ where $\mathbf{F m}$ is the algebra of formulas of an algebraic similarity type and $\vdash_{\mathcal{S}}$ is a consequence relation between sets of formulas and formulas, i.e. it satisfies

Preliminaries

- A (finitary) deductive system (or logic) is a pair $\mathcal{S}=\left\langle\mathbf{F m}, \vdash_{\mathcal{S}}\right\rangle$ where $\mathbf{F m}$ is the algebra of formulas of an algebraic similarity type and $\vdash_{\mathcal{S}}$ is a consequence relation between sets of formulas and formulas, i.e. it satisfies
(c) if $\varphi \in \Gamma$, then $\Gamma \vdash_{\mathcal{S}} \varphi$,

Preliminaries

- A (finitary) deductive system (or logic) is a pair $\mathcal{S}=\left\langle\mathbf{F m}, \vdash_{\mathcal{S}}\right\rangle$ where $\mathbf{F m}$ is the algebra of formulas of an algebraic similarity type and $\vdash_{\mathcal{S}}$ is a consequence relation between sets of formulas and formulas, i.e. it satisfies
(c) if $\varphi \in \Gamma$, then $\Gamma \vdash_{\mathcal{S}} \varphi$,
(2) if $\Gamma \vdash_{\mathcal{S}} \varphi$ and for every $\psi \in \Gamma, \Delta \vdash_{\mathcal{S}} \psi$, then $\Delta \vdash_{\mathcal{S}} \varphi$,

Preliminaries

- A (finitary) deductive system (or logic) is a pair $\mathcal{S}=\left\langle\mathbf{F m}, \vdash_{\mathcal{S}}\right\rangle$ where $\mathbf{F m}$ is the algebra of formulas of an algebraic similarity type and $\vdash_{\mathcal{S}}$ is a consequence relation between sets of formulas and formulas, i.e. it satisfies
(3) if $\varphi \in \Gamma$, then $\Gamma \vdash_{\mathcal{S}} \varphi$,
(3) if $\Gamma \vdash_{\mathcal{S}} \varphi$ and for every $\psi \in \Gamma, \Delta \vdash_{\mathcal{S}} \psi$, then $\Delta \vdash_{\mathcal{S}} \varphi$,
(3) if $\Gamma \vdash_{\mathcal{S}} \varphi$, then for any substitution $\sigma, \sigma[\Gamma] \vdash_{\mathcal{S}} \sigma(\varphi)$,
(a substitution is an homomorphism from the formula algebra Fm into itself.)

Preliminaries

- A (finitary) deductive system (or logic) is a pair $\mathcal{S}=\left\langle\mathbf{F m}, \vdash_{\mathcal{S}}\right\rangle$ where $\mathbf{F m}$ is the algebra of formulas of an algebraic similarity type and $\vdash_{\mathcal{S}}$ is a consequence relation between sets of formulas and formulas, i.e. it satisfies
(3) if $\varphi \in \Gamma$, then $\Gamma \vdash_{\mathcal{S}} \varphi$,
(3) if $\Gamma \vdash_{\mathcal{S}} \varphi$ and for every $\psi \in \Gamma, \Delta \vdash_{\mathcal{S}} \psi$, then $\Delta \vdash_{\mathcal{S}} \varphi$,
(3) if $\Gamma \vdash_{\mathcal{S}} \varphi$, then for any substitution $\sigma, \sigma[\Gamma] \vdash_{\mathcal{S}} \sigma(\varphi)$,
(a substitution is an homomorphism from the formula algebra $\mathbf{F m}$ into itself.)
(0) if $\Gamma \vdash_{\mathcal{S}} \varphi$, then $\Gamma^{\prime} \vdash_{\mathcal{S}} \varphi$ for some finite $\Gamma^{\prime} \subseteq \Gamma$.

Preliminaries

- A (finitary) deductive system (or logic) is a pair $\mathcal{S}=\left\langle\mathbf{F m}, \vdash_{\mathcal{S}}\right\rangle$ where $\mathbf{F m}$ is the algebra of formulas of an algebraic similarity type and $\vdash_{\mathcal{S}}$ is a consequence relation between sets of formulas and formulas, i.e. it satisfies
(2) if $\varphi \in \Gamma$, then $\Gamma \vdash_{\mathcal{S}} \varphi$,
(3) if $\Gamma \vdash_{\mathcal{S}} \varphi$ and for every $\psi \in \Gamma, \Delta \vdash_{\mathcal{S}} \psi$, then $\Delta \vdash_{\mathcal{S}} \varphi$,
(3) if $\Gamma \vdash_{\mathcal{S}} \varphi$, then for any substitution $\sigma, \sigma[\Gamma] \vdash_{\mathcal{S}} \sigma(\varphi)$,
(a substitution is an homomorphism from the formula algebra $\mathbf{F m}$ into itself.)
(-) if $\Gamma \vdash_{\mathcal{S}} \varphi$, then $\Gamma^{\prime} \vdash_{\mathcal{S}} \varphi$ for some finite $\Gamma^{\prime} \subseteq \Gamma$.
- A deductive system \mathcal{S} has the congruence property if the relation on $\mathbf{F m}$ given by $\varphi \Vdash_{\mathcal{S}} \psi$ is a congruence.
- Let \mathcal{S} be a deductive system and let \mathbf{A} be an algebra.

Preliminaries

- A (finitary) deductive system (or logic) is a pair $\mathcal{S}=\left\langle\mathbf{F m}, \vdash_{\mathcal{S}}\right\rangle$ where $\mathbf{F m}$ is the algebra of formulas of an algebraic similarity type and $\vdash_{\mathcal{S}}$ is a consequence relation between sets of formulas and formulas, i.e. it satisfies
(2) if $\varphi \in \Gamma$, then $\Gamma \vdash_{\mathcal{S}} \varphi$,
(3) if $\Gamma \vdash_{\mathcal{S}} \varphi$ and for every $\psi \in \Gamma, \Delta \vdash_{\mathcal{S}} \psi$, then $\Delta \vdash_{\mathcal{S}} \varphi$,
(3) if $\Gamma \vdash_{\mathcal{S}} \varphi$, then for any substitution $\sigma, \sigma[\Gamma] \vdash_{\mathcal{S}} \sigma(\varphi)$,
(a substitution is an homomorphism from the formula algebra $\mathbf{F m}$ into itself.)
(0) if $\Gamma \vdash_{\mathcal{S}} \varphi$, then $\Gamma^{\prime} \vdash_{\mathcal{S}} \varphi$ for some finite $\Gamma^{\prime} \subseteq \Gamma$.
- A deductive system \mathcal{S} has the congruence property if the relation on $\mathbf{F m}$ given by $\varphi \Vdash_{\mathcal{S}} \psi$ is a congruence.
- Let \mathcal{S} be a deductive system and let \mathbf{A} be an algebra.

A set $F \subseteq A$ is an \mathcal{S}-filter if for every valuation v on \mathbf{A}, and every $\Gamma \cup\{\varphi\} \subseteq F m$ if $\Gamma \vdash_{\mathcal{S}} \varphi$ and $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

Preliminaries

- A (finitary) deductive system (or logic) is a pair $\mathcal{S}=\left\langle\mathbf{F m}, \vdash_{\mathcal{S}}\right\rangle$ where $\mathbf{F m}$ is the algebra of formulas of an algebraic similarity type and $\vdash_{\mathcal{S}}$ is a consequence relation between sets of formulas and formulas, i.e. it satisfies
(2) if $\varphi \in \Gamma$, then $\Gamma \vdash_{\mathcal{S}} \varphi$,
(3) if $\Gamma \vdash_{\mathcal{S}} \varphi$ and for every $\psi \in \Gamma, \Delta \vdash_{\mathcal{S}} \psi$, then $\Delta \vdash_{\mathcal{S}} \varphi$,
(3) if $\Gamma \vdash_{\mathcal{S}} \varphi$, then for any substitution $\sigma, \sigma[\Gamma] \vdash_{\mathcal{S}} \sigma(\varphi)$,
(a substitution is an homomorphism from the formula algebra $\mathbf{F m}$ into itself.)
(0) if $\Gamma \vdash_{\mathcal{S}} \varphi$, then $\Gamma^{\prime} \vdash_{\mathcal{S}} \varphi$ for some finite $\Gamma^{\prime} \subseteq \Gamma$.
- A deductive system \mathcal{S} has the congruence property if the relation on $\mathbf{F m}$ given by $\varphi \Vdash_{\mathcal{S}} \psi$ is a congruence.
- Let \mathcal{S} be a deductive system and let \mathbf{A} be an algebra.

A set $F \subseteq A$ is an \mathcal{S}-filter if for every valuation v on \mathbf{A}, and every $\Gamma \cup\{\varphi\} \subseteq F m$ if $\Gamma \vdash_{\mathcal{S}} \varphi$ and $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.
We denote by $\mathrm{Fi}_{\mathcal{S}} \mathbf{A}$ the set of \mathcal{S}-filters of \mathbf{A} (which is a complete lattice).

Let \mathcal{S} be a deductive system.

Let \mathcal{S} be a deductive system.
An algebra \mathbf{A} is an \mathcal{S}-algebra if the only congruence included in the relation

$$
\Lambda_{\mathcal{S}}^{\mathbf{A}}=\left\{\langle a, b\rangle \in A \times A: \forall F \in \operatorname{Fi}_{\mathcal{S}} \mathbf{A}(a \in F \Leftrightarrow b \in F)\right\}
$$

is the identity.

Let \mathcal{S} be a deductive system.
An algebra \mathbf{A} is an \mathcal{S}-algebra if the only congruence included in the relation

$$
\Lambda_{\mathcal{S}}^{\mathbf{A}}=\left\{\langle a, b\rangle \in A \times A: \forall F \in \mathrm{Fi}_{\mathcal{S}} \mathbf{A}(a \in F \Leftrightarrow b \in F)\right\}
$$

is the identity.
The algebraic counterpart of \mathcal{S} is the class of \mathcal{S}-algebras, denoted by $\operatorname{Alg} \mathcal{S}$.

Let \mathcal{S} be a deductive system.
An algebra \mathbf{A} is an \mathcal{S}-algebra if the only congruence included in the relation

$$
\Lambda_{\mathcal{S}}^{\mathbf{A}}=\left\{\langle a, b\rangle \in A \times A: \forall F \in \mathrm{Fi}_{\mathcal{S}} \mathbf{A}(a \in F \Leftrightarrow b \in F)\right\}
$$

is the identity.
The algebraic counterpart of \mathcal{S} is the class of \mathcal{S}-algebras, denoted by $\operatorname{Alg} \mathcal{S}$.

Definition

A deductive system \mathcal{S} is congruential (or fully selfextensional) if for every \mathbf{A} the relation

$$
\Lambda_{\mathcal{S}}^{\mathbf{A}}=\left\{\langle a, b\rangle: \forall F \in \operatorname{Fi}_{\mathcal{S}} \mathbf{A}(a \in F \Leftrightarrow b \in F)\right\}
$$

is a congruence.

Let \mathcal{S} be a deductive system.
An algebra \mathbf{A} is an \mathcal{S}-algebra if the only congruence included in the relation

$$
\Lambda_{\mathcal{S}}^{\mathbf{A}}=\left\{\langle a, b\rangle \in A \times A: \forall F \in \mathrm{Fi}_{\mathcal{S}} \mathbf{A}(a \in F \Leftrightarrow b \in F)\right\}
$$

is the identity.
The algebraic counterpart of \mathcal{S} is the class of \mathcal{S}-algebras, denoted by $\operatorname{Alg} \mathcal{S}$.

Definition

A deductive system \mathcal{S} is congruential (or fully selfextensional) if for every \mathbf{A} the relation

$$
\Lambda_{\mathcal{S}}^{\mathbf{A}}=\left\{\langle a, b\rangle: \forall F \in \operatorname{Fi}_{\mathcal{S}} \mathbf{A}(a \in F \Leftrightarrow b \in F)\right\}
$$

is a congruence.

Proposition

A deductive system \mathcal{S} is congruential if and only if for every $\mathbf{A} \in \mathbf{A l g} \mathcal{S}$ the relation $\wedge_{\mathcal{S}}^{\mathrm{A}}$ is the identity.

Theorem (Font, J. (1996))

Let \mathcal{S} be a deductive system.
(1) If \mathcal{S} has the property of conjunction for a term \wedge and the congruence property, then it is congruential and $\mathrm{Alg} \mathcal{S}$ is a variety.
(2) If \mathcal{S} has the deduction-detachment theorem for a term \rightarrow and the congruence property, then it is congruential and $\operatorname{Alg} \mathcal{S}$ is a variety.

In both cases the algebras in $\operatorname{Alg} \mathcal{S}$ carry an equationally definable partial order, defined by

- $x \wedge y \approx x$, in the first case
- $x \rightarrow y \approx x \rightarrow x$, in the second case.

In the first case the deductive system is given by the order (in a sense we will make precise), but not necessarily in the second.

PART I

General results

Equationally orderable quasivarieties

Equationally orderable quasivarieties

Definition

Let K be a class of algebras of a fixed algebraic similarity type \mathcal{L}.
Let $\mu(x, y)$ be a finite set of \mathcal{L}-equations in two variables.
We say that K is μ-equationally orderable, or admits a μ-order, if for every $\mathbf{A} \in \mathrm{K}$

$$
\leq_{\mu}^{\mathbf{A}}:=\left\{\langle a, b\rangle \in A^{2}: \mathbf{A} \models \mu(x, y)[a, b]\right\}
$$

is a partial order of A.

Equationally orderable quasivarieties

Definition

Let K be a class of algebras of a fixed algebraic similarity type \mathcal{L}.
Let $\mu(x, y)$ be a finite set of \mathcal{L}-equations in two variables.
We say that K is μ-equationally orderable, or admits a μ-order, if for every $\mathbf{A} \in \mathrm{K}$

$$
\leq_{\mu}^{\mathbf{A}}:=\left\{\langle a, b\rangle \in A^{2}: \mathbf{A} \models \mu(x, y)[a, b]\right\}
$$

is a partial order of A.
Note that every class of algebras is $\{x \approx y\}$-equationally orderable.

Equationally orderable quasivarieties

Definition

Let K be a class of algebras of a fixed algebraic similarity type \mathcal{L}.
Let $\mu(x, y)$ be a finite set of \mathcal{L}-equations in two variables.
We say that K is μ-equationally orderable, or admits a μ-order, if for every $\mathbf{A} \in \mathrm{K}$

$$
\leq_{\mu}^{\mathbf{A}}:=\left\{\langle a, b\rangle \in A^{2}: \mathbf{A} \models \mu(x, y)[a, b]\right\}
$$

is a partial order of A.
Note that every class of algebras is $\{x \approx y\}$-equationally orderable.
We say that K is properly equationally orderable if it is μ-equationally orderable for some finite set $\mu(x, y)$ of \mathcal{L}-equations different from $\{x \approx y\}$.

Proposition

Let K be a class of algebras and $\mu(x, y)$ a finite set of equations in two variables. K is μ-equationally orderable if and only if the following holds:
(1) $=_{\mathrm{K} \mu} \mu(x, x)$,
(2) $\mu(x, y) \cup \mu(y, z) \models_{\kappa} \mu(y, z)$,
(3) $\mu(x, y) \cup \mu(y, x) \models{ }_{\kappa} x \approx y$.

Proposition

Let K be a class of algebras and $\mu(x, y)$ a finite set of equations in two variables. K is μ-equationally orderable if and only if the following holds:
(1) $=_{\mathrm{K}} \mu(x, x)$,
(2) $\mu(x, y) \cup \mu(y, z) \models_{\kappa} \mu(y, z)$,
(0) $\mu(x, y) \cup \mu(y, x) \models_{\mathrm{K}} x \approx y$.

Proposition

If K is μ-equationally orderable, the quasivariety generated by K is also μ-equationally orderable.

A canonical way to associate a deductive system with a μ-equationally orderable quasivariety.

A canonical way to associate a deductive system with a μ-equationally orderable quasivariety.

Definition

Let Q be a μ-equationally orderable quasivariety. The relation $\vdash_{\mathcal{S}_{Q}^{\leq \mu}} \subseteq \mathcal{P}(F m) \times F m$ is defined by:

$$
\begin{gathered}
\Gamma \vdash_{\mathcal{S}_{Q} \leq \mu} \varphi \text { iff } \forall \mathbf{A} \in \mathbf{Q} \forall v \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A}) \forall a \in A \\
\left.\left((\forall \psi \in \Gamma) a \leq_{\mu}^{\mathbf{A}} v(\psi)\right) \Longrightarrow a \leq_{\mu}^{\mathbf{A}} v(\varphi)\right),
\end{gathered}
$$

for every $\Gamma \cup\{\varphi\} \subseteq F m$.

A canonical way to associate a deductive system with a μ-equationally orderable quasivariety.

Definition

Let Q be a μ-equationally orderable quasivariety. The relation $\vdash_{\mathcal{S}_{Q}^{\leq \mu}} \subseteq \mathcal{P}(F m) \times F m$ is defined by:

$$
\begin{gathered}
\Gamma \vdash_{\mathcal{S}_{Q} \leq \mu} \varphi \text { iff } \forall \mathbf{A} \in \mathbf{Q} \forall v \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A}) \forall a \in A \\
\left.\left((\forall \psi \in \Gamma) a \leq_{\mu}^{\mathbf{A}} v(\psi)\right) \Longrightarrow a \leq_{\mu}^{\mathbf{A}} v(\varphi)\right),
\end{gathered}
$$

for every $\Gamma \cup\{\varphi\} \subseteq F m$.

It is easy to check that:

A canonical way to associate a deductive system with a μ-equationally orderable quasivariety.

Definition

Let Q be a μ-equationally orderable quasivariety. The relation $\vdash_{\mathcal{S}_{Q}^{\leq \mu}} \subseteq \mathcal{P}(F m) \times F m$ is defined by:

$$
\begin{gathered}
\Gamma \vdash_{\mathcal{S}_{Q} \leq \mu} \varphi \text { iff } \forall \mathbf{A} \in \mathbf{Q} \forall v \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A}) \forall a \in A \\
\left.\left((\forall \psi \in \Gamma) a \leq_{\mu}^{\mathbf{A}} v(\psi)\right) \Longrightarrow a \leq_{\mu}^{\mathbf{A}} v(\varphi)\right),
\end{gathered}
$$

for every $\Gamma \cup\{\varphi\} \subseteq F m$.

It is easy to check that:

- The relation $\vdash_{\mathcal{S}_{Q} \leq \mu}$ is a substitution-invariant consequence relation.

A canonical way to associate a deductive system with a μ-equationally orderable quasivariety.

Definition

Let Q be a μ-equationally orderable quasivariety. The relation $\vdash_{\mathcal{S}_{Q}^{\leq \mu}} \subseteq \mathcal{P}(F m) \times F m$ is defined by:

$$
\begin{gathered}
\Gamma \vdash_{\mathcal{S}_{Q} \leq \mu} \varphi \text { iff } \forall \mathbf{A} \in \mathbf{Q} \forall v \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A}) \forall a \in A \\
\left.\left((\forall \psi \in \Gamma) a \leq_{\mu}^{\mathbf{A}} v(\psi)\right) \Longrightarrow a \leq_{\mu}^{\mathbf{A}} v(\varphi)\right),
\end{gathered}
$$

for every $\Gamma \cup\{\varphi\} \subseteq F m$.

It is easy to check that:

- The relation $\vdash_{\mathcal{S}_{Q} \leq \mu}$ is a substitution-invariant consequence relation.
- Since Q is closed under ultraproducts and μ is finite, $\vdash_{\mathcal{S}_{Q} \leq \mu}$ is finitary.
- The deductive system of the μ-order of \mathbf{Q} is $\mathcal{S}_{\mathbf{Q}}^{\leq \mu}=\left\langle\mathbf{F m}, \vdash_{\mathcal{S}_{Q}^{\leq \mu}}\right\rangle$.
- The deductive system of the μ-order of \mathbf{Q} is $\mathcal{S}_{\mathbf{Q}}^{\leq \mu}=\left\langle\mathbf{F m}, \vdash_{\mathcal{S}_{Q}^{\leq \mu}}\right\rangle$. If μ is obvious from the context we write: $\mathcal{S}_{\mathrm{Q}}^{\leq}$.
- The deductive system of the μ-order of Q is $\mathcal{S}_{\mathrm{Q}}^{\leq \mu}=\left\langle\mathbf{F} \mathbf{m}, \vdash_{\mathcal{S}_{Q} \leq \mu}\right\rangle$.

If μ is obvious from the context we write: $\mathcal{S}_{\mathrm{Q}}^{\leq}$.
\rightarrow It immediately follows that $\mathcal{S}_{\mathrm{Q}}^{\leq_{\mu}}$ is the deductive system determined by the class of matrices

$$
\{\langle\mathbf{A},[a)\rangle: \mathbf{A} \in \mathbf{Q} \text { and } a \in A\}
$$

- The deductive system of the μ-order of Q is $\mathcal{S}_{\mathrm{Q}}^{\leq \mu}=\left\langle\mathbf{F} \mathbf{m}, \vdash_{\mathcal{S}_{Q} \leq \mu}\right\rangle$.

If μ is obvious from the context we write: $\mathcal{S}_{\mathrm{Q}}^{\leq}$.
It immediately follows that $\mathcal{S}_{\mathrm{Q}}{ }^{-\mu}$ is the deductive system determined by the class of matrices

$$
\{\langle\mathbf{A},[a)\rangle: \mathbf{A} \in \mathrm{Q} \text { and } a \in A\} .
$$

- If some $\mathbf{A} \in \mathrm{Q}$ has no upper-bound w.r.t. \leq_{μ} then $\mathcal{S}_{\mathrm{Q}}^{\leq_{\mu}}$ does not have theorems.
- The deductive system of the μ-order of Q is $\mathcal{S}_{\mathrm{Q}}^{\leq \mu}=\left\langle\mathbf{F m}, \vdash_{\mathcal{S}_{Q}^{\leq \mu}}\right\rangle$. If μ is obvious from the context we write: $\mathcal{S}_{\mathrm{Q}}^{\leq}$.
- It immediately follows that $\mathcal{S}_{\mathrm{Q}}{ }^{\prime}{ }^{\mu}$ is the deductive system determined by the class of matrices

$$
\{\langle\mathbf{A},[a)\rangle: \mathbf{A} \in \mathrm{Q} \text { and } a \in A\} .
$$

- If some $\mathbf{A} \in \mathrm{Q}$ has no upper-bound w.r.t. \leq_{μ} then $\mathcal{S}_{\mathrm{Q}}^{\leq_{\mu}}$ does not have theorems.

Proposition

$\mathcal{S}_{\mathrm{Q}}^{\leq_{\mu}}$ has theorems if and only if every $\mathbf{A} \in \mathrm{Q}$ has an upper-bound w.r.t. \leq_{μ} and this largest element is term definable.

Let Q be a μ-equationally orderable quasivariety.

Let Q be a μ-equationally orderable quasivariety.
Let $\mu^{\partial}(x, y)=\mu(y, x)$, i.e. the set of equations obtained by swapping x and y.

Let Q be a μ-equationally orderable quasivariety.
Let $\mu^{\partial}(x, y)=\mu(y, x)$, i.e. the set of equations obtained by swapping x and y. $\mu^{\partial}(x, y)$ defines in every $\mathbf{A} \in \mathbf{Q}$ the dual order \leq_{μ}^{∂} of the partial order \leq_{μ} defined by $\mu(y, x)$. So, $\leq_{\mu}^{\partial}=\leq_{\mu^{2}}$.

Let Q be a μ-equationally orderable quasivariety.
Let $\mu^{\partial}(x, y)=\mu(y, x)$, i.e. the set of equations obtained by swapping x and y. $\mu^{\partial}(x, y)$ defines in every $\mathbf{A} \in \mathbf{Q}$ the dual order \leq_{μ}^{∂} of the partial order \leq_{μ} defined by $\mu(y, x)$. So, $\leq_{\mu}^{\partial}=\leq_{\mu^{2}}$.

Therefore, for any μ-equationally orderable quasivariety we have

Let Q be a μ-equationally orderable quasivariety.
Let $\mu^{\partial}(x, y)=\mu(y, x)$, i.e. the set of equations obtained by swapping x and y. $\mu^{\partial}(x, y)$ defines in every $\mathbf{A} \in \mathbf{Q}$ the dual order \leq_{μ}^{∂} of the partial order \leq_{μ} defined by $\mu(y, x)$. So, $\leq_{\mu}^{\partial}=\leq_{\mu^{\partial}}$.

Therefore, for any μ-equationally orderable quasivariety we have

- the logic $\mathcal{S}_{Q}^{\leq \mu}$ of the μ-order,

Let Q be a μ-equationally orderable quasivariety.
Let $\mu^{\partial}(x, y)=\mu(y, x)$, i.e. the set of equations obtained by swapping x and y. $\mu^{\partial}(x, y)$ defines in every $\mathbf{A} \in \mathbf{Q}$ the dual order \leq_{μ}^{∂} of the partial order \leq_{μ} defined by $\mu(y, x)$. So, $\leq_{\mu}^{\partial}=\leq_{\mu^{\partial}}$.

Therefore, for any μ-equationally orderable quasivariety we have

- the logic $\mathcal{S}_{Q}^{\leq \mu}$ of the μ-order,
- the logic $\mathcal{S}_{\mathrm{Q}}^{\leq_{\mu} \partial}$ of the μ^{∂}-order.

Let Q be a μ-equationally orderable quasivariety.
Let $\mu^{\partial}(x, y)=\mu(y, x)$, i.e. the set of equations obtained by swapping x and y. $\mu^{\partial}(x, y)$ defines in every $\mathbf{A} \in \mathrm{Q}$ the dual order \leq_{μ}^{∂} of the partial order \leq_{μ} defined by $\mu(y, x)$. So, $\leq_{\mu}^{\partial}=\leq_{\mu^{\partial}}$.

Therefore, for any μ-equationally orderable quasivariety we have

- the logic $\mathcal{S}_{Q}^{\leq \mu}$ of the μ-order,
- the logic $\mathcal{S}_{\mathrm{Q}}^{\leq_{\mu} \partial}$ of the μ^{∂}-order.

Note that

$$
\mathrm{Q} \models \varphi \approx \psi \text { iff } \quad \varphi \Vdash_{\mathcal{S}_{Q}^{\leq \mu}} \psi \text { iff } \quad \psi \dashv \Vdash_{\mathcal{S}_{Q}^{\leq} \mu^{\partial} \partial} \varphi .
$$

- In general $\mathcal{S}_{\mathrm{Q}}^{\leq}$and $\mathcal{S}_{\bar{Q}}^{\leq^{\partial}}$ may be different.
- In general $\mathcal{S}_{\mathrm{Q}}^{\leq}$and $\mathcal{S}_{\bar{Q}}^{\leq^{\partial}}$ may be different.

Example

Let SL be the variety of semilattices.
SL is $\{x \cdot y \approx x\}$-equationally orderable.
The logic $\mathcal{S}_{\mathcal{S L}}^{\leq}$is a logic of conjunction and the logic $\mathcal{S}_{\mathcal{S L}}^{\leq^{\partial}}$ is a logic of disjunction. They are different. For example

$$
x \cdot y \vdash_{\mathcal{S}_{\mathrm{sL}}^{\leq}} x \text { but } x \cdot y \vdash_{\mathcal{S}_{\text {Si }}^{\leq \partial}} x .
$$

Proposition

The deductive system \mathcal{S}_{Q}^{\leq}has the congruence property.

Proposition

The deductive system \mathcal{S}_{Q}^{\leq}has the congruence property.
A sufficient condition on a subset of an algebra $\mathbf{A} \in Q$ to be an $\mathcal{S}_{\mathrm{Q}}^{\leq}$-filter is:

Proposition

The deductive system $\mathcal{S}_{\mathrm{Q}}^{\leq}$has the congruence property.
A sufficient condition on a subset of an algebra $\mathbf{A} \in Q$ to be an $\mathcal{S}_{\mathrm{Q}}^{\leq}$-filter is:

Lemma

Let Q be a μ-equationally orderable quasivariety and let $\mathbf{A} \in \mathrm{Q}$. Then every down-directed up-set $F \subseteq A$ of the poset $\left\langle A, \leq_{\mu}^{\mathbf{A}}\right\rangle$ is an $\mathcal{S}_{\mathbb{Q}}^{\leq}$-filter.

Proposition

The deductive system $\mathcal{S}_{\mathbb{Q}}^{\leq}$has the congruence property.
A sufficient condition on a subset of an algebra $\mathbf{A} \in Q$ to be an \mathcal{S}_{Q}^{\leq}-filter is:

Lemma

Let Q be a μ-equationally orderable quasivariety and let $\mathbf{A} \in \mathrm{Q}$. Then every down-directed up-set $F \subseteq A$ of the poset $\left\langle A, \leq_{\mu}^{\mathbf{A}}\right\rangle$ is an $\mathcal{S}_{\mathbb{Q}}^{\leq}$-filter.

Thus,

$$
\{\langle\mathbf{A}, F\rangle: \mathbf{A} \in \mathrm{Q} \text { and } F \text { is a downdirected up-set }\}
$$

is a matrix semantics for $\mathcal{S}_{\mathrm{Q}}^{\leq \mu}$.

On $\operatorname{Alg} \mathcal{S}_{Q}^{\leq}$

- Let Q be a μ-equationally orderable quasivariety.

On $\operatorname{Alg} \mathcal{S}_{Q}^{\leq}$

- Let Q be a μ-equationally orderable quasivariety. Then for every $\mathbf{A} \in \mathrm{Q}$ and every $a, b \in A$,

$$
a=b \quad \text { iff } \quad \forall F \in \mathrm{Fi}_{\mathcal{S}_{\widehat{Q}}^{\leq}} \mathbf{A}(a \in F \Leftrightarrow b \in F) \quad \text { iff } \quad\langle a, b\rangle \in \Lambda_{\mathcal{S}_{Q}^{\leq}}^{\mathrm{A}} .
$$

On $\operatorname{Alg} \mathcal{S}_{Q}^{\leq}$

- Let Q be a μ-equationally orderable quasivariety. Then for every $\mathbf{A} \in \mathrm{Q}$ and every $a, b \in A$,

$$
a=b \quad \text { iff } \quad \forall F \in \mathrm{Fi}_{\mathcal{S}_{\widehat{Q}}^{\leq}} \mathbf{A}(a \in F \Leftrightarrow b \in F) \quad \text { iff } \quad\langle a, b\rangle \in \Lambda_{\mathcal{S}_{Q}^{\leq}}^{\mathrm{A}} .
$$

This holds because for every $a \in A,[a)$ is $\mathcal{S}_{\mathrm{Q}}^{\leq}$-filter.

On $\operatorname{Alg} \mathcal{S}_{Q}^{\leq}$

- Let Q be a μ-equationally orderable quasivariety. Then for every $\mathbf{A} \in \mathrm{Q}$ and every $a, b \in A$,

$$
a=b \quad \text { iff } \quad \forall F \in \mathrm{Fi}_{\mathcal{S}_{\widehat{Q}}^{\leq}} \mathbf{A}(a \in F \Leftrightarrow b \in F) \quad \text { iff } \quad\langle a, b\rangle \in \Lambda_{\mathcal{S}_{Q}^{\leq}}^{\mathrm{A}} .
$$

This holds because for every $a \in A,[a)$ is $\mathcal{S}_{\bar{Q}}^{\leq}$-filter. Therefore

Proposition

If Q is a μ-equationally orderable quasivariety, then $\mathrm{Q} \subseteq \mathbf{A l g} \mathcal{S}_{\mathcal{Q}}^{\leq}$.

On $\operatorname{Alg} \mathcal{S}_{Q}^{\leq}$

- Let Q be a μ-equationally orderable quasivariety. Then for every $\mathbf{A} \in \mathrm{Q}$ and every $a, b \in A$,

$$
a=b \quad \text { iff } \quad \forall F \in \mathrm{Fi}_{\mathcal{S}_{\widehat{Q}}^{\leq}} \mathbf{A}(a \in F \Leftrightarrow b \in F) \quad \text { iff } \quad\langle a, b\rangle \in \Lambda_{\mathcal{S}_{Q}^{\leq}}^{\mathrm{A}} .
$$

This holds because for every $a \in A,[a)$ is $\mathcal{S}_{\bar{Q}}^{\leq}$-filter. Therefore

Proposition

If Q is a μ-equationally orderable quasivariety, then $\mathrm{Q} \subseteq \mathbf{A l g} \mathcal{S}_{\mathcal{Q}}^{\leq}$.

- $\mathrm{Q}=\boldsymbol{\operatorname { A l g }} \mathcal{S}_{\mathrm{Q}}^{\leq}$may not hold.
- $\mathrm{Q}=\boldsymbol{\operatorname { A l g }} \mathcal{S}_{\mathrm{Q}}^{\leq}$may not hold.

Example.

Let Q_{\rightarrow} be the quasivariety in the language $\{\rightarrow, 1\}$ defined by

- $\mathrm{Q}=\boldsymbol{\operatorname { A l g }} \mathcal{S}_{\mathrm{Q}}^{\leq}$may not hold.

Example.

Let Q_{\rightarrow} be the quasivariety in the language $\{\rightarrow, 1\}$ defined by
(1) $x \rightarrow x \approx 1$
(2) $(x \rightarrow y \approx 1$ \& $y \rightarrow z \approx 1) \Rightarrow x \rightarrow z \approx 1$.
(3) $(x \rightarrow y \approx 1 \& y \rightarrow x \approx 1) \Rightarrow x \approx y$.

- $\mathrm{Q}=\boldsymbol{\operatorname { A l g }} \mathcal{S}_{\mathrm{Q}}^{\leq}$may not hold.

Example.

Let Q_{\rightarrow} be the quasivariety in the language $\{\rightarrow, 1\}$ defined by
(1) $x \rightarrow x \approx 1$
(2) $(x \rightarrow y \approx 1 \& y \rightarrow z \approx 1) \Rightarrow x \rightarrow z \approx 1$.
(3) $(x \rightarrow y \approx 1 \& y \rightarrow x \approx 1) \Rightarrow x \approx y$.

Let $P=\langle P, \leq, 1\rangle$ be a poset with a distinguished element 1 (not necessarily an upper-bound).

- $\mathrm{Q}=\boldsymbol{\operatorname { A l g }} \mathcal{S}_{\mathrm{Q}}^{\leq}$may not hold.

Example.

Let Q_{\rightarrow} be the quasivariety in the language $\{\rightarrow, 1\}$ defined by
(1) $x \rightarrow x \approx 1$
(2) $(x \rightarrow y \approx 1 \& y \rightarrow z \approx 1) \Rightarrow x \rightarrow z \approx 1$.
(3) $(x \rightarrow y \approx 1 \& y \rightarrow x \approx 1) \Rightarrow x \approx y$.

Let $P=\langle P, \leq, 1\rangle$ be a poset with a distinguished element 1 (not necessarily an upper-bound). Let $c \in P$.

- $\mathrm{Q}=\boldsymbol{\operatorname { A l g }} \mathcal{S}_{\mathrm{Q}}^{\leq}$may not hold.

Example.

Let Q_{\rightarrow} be the quasivariety in the language $\{\rightarrow, 1\}$ defined by
(1) $x \rightarrow x \approx 1$
(2) $(x \rightarrow y \approx 1$ \& $y \rightarrow z \approx 1) \Rightarrow x \rightarrow z \approx 1$.
(3) $(x \rightarrow y \approx 1 \& y \rightarrow x \approx 1) \Rightarrow x \approx y$.

Let $P=\langle P, \leq, 1\rangle$ be a poset with a distinguished element 1 (not necessarily an upper-bound). Let $c \in P$.
Define $\mathbf{A}_{P}^{c}=\langle P, \rightarrow, 1\rangle$ by setting

- $\mathrm{Q}=\mathbf{A l g} \mathcal{S}_{\mathcal{Q}}^{\leq}$may not hold.

Example.

Let $\mathrm{Q} \rightarrow$ be the quasivariety in the language $\{\rightarrow, 1\}$ defined by
(1) $x \rightarrow x \approx 1$
(2) $(x \rightarrow y \approx 1 \& y \rightarrow z \approx 1) \Rightarrow x \rightarrow z \approx 1$.
(3) $(x \rightarrow y \approx 1 \& y \rightarrow x \approx 1) \Rightarrow x \approx y$.

Let $P=\langle P, \leq, 1\rangle$ be a poset with a distinguished element 1 (not necessarily an upper-bound). Let $c \in P$.
Define $\mathbf{A}_{P}^{c}=\langle P, \rightarrow, 1\rangle$ by setting

$$
x \rightarrow y= \begin{cases}1 & \text { if } x \leq y \\ c & \text { if } x \not \leq y\end{cases}
$$

- $\mathrm{Q}=\boldsymbol{\operatorname { A l g }} \mathcal{S}_{\mathrm{Q}}^{\leq}$may not hold.

Example.

Let $\mathrm{Q} \rightarrow$ be the quasivariety in the language $\{\rightarrow, 1\}$ defined by
(1) $x \rightarrow x \approx 1$
(2) $(x \rightarrow y \approx 1$ \& $y \rightarrow z \approx 1) \Rightarrow x \rightarrow z \approx 1$.
(3) $(x \rightarrow y \approx 1 \& y \rightarrow x \approx 1) \Rightarrow x \approx y$.

Let $P=\langle P, \leq, 1\rangle$ be a poset with a distinguished element 1 (not necessarily an upper-bound). Let $c \in P$.
Define $\mathbf{A}_{P}^{c}=\langle P, \rightarrow, 1\rangle$ by setting

$$
x \rightarrow y= \begin{cases}1 & \text { if } x \leq y \\ c & \text { if } x \not \leq y\end{cases}
$$

Then $\mathbf{A}_{\rho}^{c} \in \mathrm{Q}_{\rightarrow}$.

Let L and L^{\prime} be the following posets (bounded lattices).

Let L and L^{\prime} be the following posets (bounded lattices).

Consider the algebra \mathbf{A}_{L}^{b} and the algebra \mathbf{B} with domain L^{\prime} and with $\rightarrow^{\mathbf{B}}$ the constant map to 1 .

Let L and L^{\prime} be the following posets (bounded lattices).

Consider the algebra \mathbf{A}_{L}^{b} and the algebra \mathbf{B} with domain L^{\prime} and with $\rightarrow^{\mathbf{B}}$ the constant map to 1 .
Then $h: L \rightarrow L^{\prime}$ defined as in the diagram

Let L and L^{\prime} be the following posets (bounded lattices).

Consider the algebra \mathbf{A}_{L}^{b} and the algebra \mathbf{B} with domain L^{\prime} and with $\rightarrow^{\mathbf{B}}$ the constant map to 1 .
Then $h: L \rightarrow L^{\prime}$ defined as in the diagram

Let L and L^{\prime} be the following posets (bounded lattices).

Consider the algebra \mathbf{A}_{L}^{b} and the algebra \mathbf{B} with domain L^{\prime} and with $\rightarrow^{\mathbf{B}}$ the constant map to 1 .
Then $h: L \rightarrow L^{\prime}$ defined as in the diagram is a homomorphism from \mathbf{A}_{L}^{b} onto \mathbf{B}

Let L and L^{\prime} be the following posets (bounded lattices).

Consider the algebra \mathbf{A}_{L}^{b} and the algebra \mathbf{B} with domain L^{\prime} and with $\rightarrow^{\mathbf{B}}$ the constant map to 1.
Then $h: L \rightarrow L^{\prime}$ defined as in the diagram is a homomorphism from \mathbf{A}_{L}^{b} onto \mathbf{B} and $\mathbf{B} \notin \mathrm{Q}_{\rightarrow}$

Let L and L^{\prime} be the following posets (bounded lattices).

Consider the algebra \mathbf{A}_{L}^{b} and the algebra \mathbf{B} with domain L^{\prime} and with $\rightarrow^{\mathbf{B}}$ the constant map to 1 .
Then $h: L \rightarrow L^{\prime}$ defined as in the diagram is a homomorphism from \mathbf{A}_{L}^{b} onto \mathbf{B} and $\mathbf{B} \notin \mathbf{Q}_{\rightarrow}(1 \rightarrow 0=0 \rightarrow 1=1$ and $1 \neq 0)$.

Let L and L^{\prime} be the following posets (bounded lattices).

Consider the algebra \mathbf{A}_{L}^{b} and the algebra \mathbf{B} with domain L^{\prime} and with $\rightarrow^{\mathbf{B}}$ the constant map to 1 .
Then $h: L \rightarrow L^{\prime}$ defined as in the diagram is a homomorphism from \mathbf{A}_{L}^{b} onto \mathbf{B} and $\mathbf{B} \notin \mathbf{Q}_{\rightarrow}(1 \rightarrow 0=0 \rightarrow 1=1$ and $1 \neq 0)$. Thus Q_{\rightarrow} is not a variety.

Let L and L^{\prime} be the following posets (bounded lattices).

Consider the algebra \mathbf{A}_{L}^{b} and the algebra \mathbf{B} with domain L^{\prime} and with $\rightarrow^{\mathbf{B}}$ the constant map to 1.
Then $h: L \rightarrow L^{\prime}$ defined as in the diagram is a homomorphism from \mathbf{A}_{L}^{b} onto \mathbf{B} and $\mathbf{B} \notin \mathbf{Q}_{\rightarrow}(1 \rightarrow 0=0 \rightarrow 1=1$ and $1 \neq 0)$. Thus Q_{\rightarrow} is not a variety.

We show that $\mathbf{B} \in \mathbf{A l g} \mathcal{S}_{\mathbf{Q}_{\rightarrow}}^{\leq}$:

Let L and L^{\prime} be the following posets (bounded lattices).

Consider the algebra \mathbf{A}_{L}^{b} and the algebra \mathbf{B} with domain L^{\prime} and with $\rightarrow^{\mathbf{B}}$ the constant map to 1 .
Then $h: L \rightarrow L^{\prime}$ defined as in the diagram is a homomorphism from \mathbf{A}_{L}^{b} onto \mathbf{B} and $\mathbf{B} \notin \mathbf{Q}_{\rightarrow}(1 \rightarrow 0=0 \rightarrow 1=1$ and $1 \neq 0)$. Thus Q_{\rightarrow} is not a variety.

We show that $\mathbf{B} \in \mathbf{A l g} \mathcal{S}_{\mathbf{Q}_{\rightarrow}}^{\leq}$:
$h^{-1}[\{1\}]=\{1, b\}$ and this set is an $\mathcal{S}_{Q_{\rightarrow}}^{\leq}$-filter of \mathbf{A}_{L}^{b}.

Let L and L^{\prime} be the following posets (bounded lattices).

Consider the algebra \mathbf{A}_{L}^{b} and the algebra \mathbf{B} with domain L^{\prime} and with $\rightarrow^{\mathbf{B}}$ the constant map to 1 .
Then $h: L \rightarrow L^{\prime}$ defined as in the diagram is a homomorphism from \mathbf{A}_{L}^{b} onto \mathbf{B} and $\mathbf{B} \notin \mathbf{Q}_{\rightarrow}(1 \rightarrow 0=0 \rightarrow 1=1$ and $1 \neq 0)$. Thus Q_{\rightarrow} is not a variety.

We show that $\mathbf{B} \in \mathbf{A l g} \mathcal{S}_{\mathbf{Q}_{\rightarrow}}^{\leq}$:
$h^{-1}[\{1\}]=\{1, b\}$ and this set is an $\mathcal{S}_{Q_{\rightarrow}}^{\leq}$-filter of \mathbf{A}_{L}^{b}. Since h is onto, $\{1\}$ is an $\mathcal{S}_{\mathbf{Q}_{\rightarrow}}^{\leq}$-filter of \mathbf{B}.

Let L and L^{\prime} be the following posets (bounded lattices).

Consider the algebra \mathbf{A}_{L}^{b} and the algebra \mathbf{B} with domain L^{\prime} and with $\rightarrow^{\mathbf{B}}$ the constant map to 1.
Then $h: L \rightarrow L^{\prime}$ defined as in the diagram is a homomorphism from \mathbf{A}_{L}^{b} onto \mathbf{B} and $\mathbf{B} \notin \mathbf{Q}_{\rightarrow}(1 \rightarrow 0=0 \rightarrow 1=1$ and $1 \neq 0)$. Thus Q_{\rightarrow} is not a variety.

We show that $\mathbf{B} \in \mathbf{A l g} \mathcal{S}_{\mathbf{Q}_{\rightarrow}}^{\leq}$:
$h^{-1}[\{1\}]=\{1, b\}$ and this set is an $\mathcal{S}_{Q_{\rightarrow}}^{\leq}$-filter of \mathbf{A}_{L}^{b}. Since h is onto, $\{1\}$ is an $\mathcal{S}_{\mathbf{Q}_{\rightarrow}}^{\leq}$-filter of \mathbf{B}. This implies that $\Lambda_{\mathcal{S}_{Q}^{\leq}}^{\mathrm{B}}$ is the identity.

Let L and L^{\prime} be the following posets (bounded lattices).

Consider the algebra \mathbf{A}_{L}^{b} and the algebra \mathbf{B} with domain L^{\prime} and with $\rightarrow^{\mathbf{B}}$ the constant map to 1.
Then $h: L \rightarrow L^{\prime}$ defined as in the diagram is a homomorphism from \mathbf{A}_{L}^{b} onto \mathbf{B} and $\mathbf{B} \notin \mathbf{Q}_{\rightarrow}(1 \rightarrow 0=0 \rightarrow 1=1$ and $1 \neq 0)$. Thus Q_{\rightarrow} is not a variety.

We show that $\mathbf{B} \in \mathbf{A l g} \mathcal{S}_{\mathbf{Q}_{\rightarrow}}^{\leq}$:
$h^{-1}[\{1\}]=\{1, b\}$ and this set is an $\mathcal{S}_{Q_{\rightarrow}}^{\leq}$-filter of \mathbf{A}_{L}^{b}. Since h is onto, $\{1\}$ is an $\mathcal{S}_{\bar{Q}_{\rightarrow}}^{\leq}$-filter of \mathbf{B}. This implies that $\Lambda_{\mathcal{S}_{\mathrm{Q}}^{\leq}}^{\mathrm{B}}$ is the identity. Hence $\mathbf{B} \in \mathbf{A l g} \mathcal{S}_{\mathbf{Q}_{\rightarrow}}^{\leq}$.

On congruential deductive systems

On congruential deductive systems

Theorem

If Q is a μ-equationally orderable quasivariety and $\mathbf{A l g} \mathcal{S}_{\mathrm{Q}}^{\leq}=\mathrm{Q}$, then $\mathcal{S}_{\mathrm{Q}}^{\leq}$is congruential.

On congruential deductive systems

Theorem

If Q is a μ-equationally orderable quasivariety and $\mathbf{A l g} \mathcal{S}_{\mathrm{Q}}^{\leq}=\mathrm{Q}$, then $\mathcal{S}_{\mathrm{Q}}^{\leq}$is congruential.

Theorem
If Q is a μ-equationally orderable variety, then $\mathrm{Q}=\mathbf{A l g} \mathcal{S}_{\mathrm{Q}}^{\leq}$.

On congruential deductive systems

Theorem

If Q is a μ-equationally orderable quasivariety and $\mathbf{A l g} \mathcal{S}_{\mathrm{Q}}^{\leq}=\mathrm{Q}$, then $\mathcal{S}_{\mathrm{Q}}^{\leq}$is congruential.

Theorem

If Q is a μ-equationally orderable variety, then $\mathrm{Q}=\mathbf{A l g} \mathcal{S}_{\mathrm{Q}}^{\leq}$.

Proof.

The intrinsic variety of $\mathcal{S}_{\mathrm{Q}}^{\leq}$is the variety $\mathrm{V}\left(\mathcal{S}_{\mathrm{Q}}^{\leq}\right)$axiomatized by the equations $\varphi \approx \psi$ such that

$$
\varphi^{\dashv} \mathcal{S}_{\widehat{Q}} \leq \vdash \psi .
$$

We recall: $\mathrm{Q} \vDash \varphi \approx \psi$ iff $\varphi \dashv_{\mathcal{S}_{Q}^{\leq}} \vdash \psi$.
Therefore $\mathrm{V}\left(\mathcal{S}_{\mathrm{Q}}^{\leq}\right)$is the variety generated by Q . Also $\mathrm{V}\left(\mathcal{S}_{\mathrm{Q}}^{\leq}\right)$is the variety generated by $\mathbf{A l g} \mathcal{S}_{\mathrm{Q}}^{\leq}$. Since $\mathrm{Q} \subseteq \mathbf{A l g} \mathcal{S}_{\mathrm{Q}}^{\leq}, \mathrm{Q}$ and $\mathbf{A l g} \mathcal{S}_{\mathrm{Q}}^{\leq}$generate the same variety.

As a corollary:

Theorem

If Q is a μ-equationally orderable variety, then $\mathcal{S}_{\mathrm{Q}}^{\leq}$and $\mathcal{S}_{\mathrm{Q}}^{\leq^{\delta}}$ are congruential.

As a corollary:

Theorem

If Q is a μ-equationally orderable variety, then $\mathcal{S}_{\bar{Q}}^{\leq}$and $\mathcal{S}_{\overline{\mathrm{Q}}}^{\leq^{\circ}}$ are congruential.

There exists a μ-equationally orderable quasivariety Q such that

- Q is not a variety,
- $\mathrm{Q} \subsetneq \mathbf{A l g} \mathcal{S}_{\mathrm{Q}}^{\leq}$,
- $\mathcal{S}_{\mathrm{Q}}^{\leq}$congruential.

Let Q_{\rightarrow}^{\wedge} be the quasivariety of algebras $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$, in the language $\{\rightarrow, \wedge, 1\}$, such that

Let Q_{\rightarrow}^{\wedge} be the quasivariety of algebras $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$, in the language $\{\rightarrow, \wedge, 1\}$, such that
(1) $\langle A, \rightarrow, 1\rangle \in \mathrm{Q}_{\rightarrow}$,
(2) $\langle A, \wedge\rangle$ is a meet-semilattice,
(3) $a \wedge b=a$ iff $a \rightarrow b=1$, for all $a, b \in A$.

Let Q_{\rightarrow}^{\wedge} be the quasivariety of algebras $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$, in the language $\{\rightarrow, \wedge, 1\}$, such that
(1) $\langle A, \rightarrow, 1\rangle \in \mathrm{Q}_{\rightarrow}$,
(2) $\langle A, \wedge\rangle$ is a meet-semilattice,
(3) $a \wedge b=a$ iff $a \rightarrow b=1$, for all $a, b \in A$.

Then:

- Q_{\rightarrow}^{\wedge} is not a variety.

Let $\mathrm{Q}_{\rightarrow}^{\wedge}$ be the quasivariety of algebras $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$, in the language $\{\rightarrow, \wedge, 1\}$, such that
(1) $\langle A, \rightarrow, 1\rangle \in \mathrm{Q}_{\rightarrow}$,
(2) $\langle A, \wedge\rangle$ is a meet-semilattice,
(3) $a \wedge b=a$ iff $a \rightarrow b=1$, for all $a, b \in A$.

Then:

- Q_{\rightarrow}^{\wedge} is not a variety.

The example discussed to show that Q_{\rightarrow} is not a variety shows also this.

Let $\mathrm{Q}_{\rightarrow}^{\wedge}$ be the quasivariety of algebras $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$, in the language $\{\rightarrow, \wedge, 1\}$, such that
(1) $\langle A, \rightarrow, 1\rangle \in \mathrm{Q}_{\rightarrow}$,
(2) $\langle A, \wedge\rangle$ is a meet-semilattice,
(3) $a \wedge b=a$ iff $a \rightarrow b=1$, for all $a, b \in A$.

Then:

- Q_{\rightarrow}^{\wedge} is not a variety.

The example discussed to show that Q_{\rightarrow} is not a variety shows also this.

- The deductive system $\mathcal{S}_{\underset{\mathrm{Q}}{ }}^{\leq}$is congruential and $\mathbf{A l g} \mathcal{S}_{\bar{Q}}^{\leq}$is a variety.

Let Q_{\rightarrow}^{\wedge} be the quasivariety of algebras $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$, in the language $\{\rightarrow, \wedge, 1\}$, such that
(1) $\langle A, \rightarrow, 1\rangle \in Q_{\rightarrow}$,
(2) $\langle A, \wedge\rangle$ is a meet-semilattice,
(3) $a \wedge b=a$ iff $a \rightarrow b=1$, for all $a, b \in A$.

Then:

- Q_{\rightarrow}^{\wedge} is not a variety.

The example discussed to show that Q_{\rightarrow} is not a variety shows also this.

It follows because $\mathcal{S}_{\mathbf{Q} \wedge}^{\leq}$has the congruence property and the property of conjunction.

Let Q_{\rightarrow}^{\wedge} be the quasivariety of algebras $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$, in the language $\{\rightarrow, \wedge, 1\}$, such that
(1) $\langle A, \rightarrow, 1\rangle \in Q_{\rightarrow}$,
(2) $\langle A, \wedge\rangle$ is a meet-semilattice,
(3) $a \wedge b=a$ iff $a \rightarrow b=1$, for all $a, b \in A$.

Then:

- Q_{\rightarrow}^{\wedge} is not a variety.

The example discussed to show that Q_{\rightarrow} is not a variety shows also this.
 It follows because $\mathcal{S}_{\mathbf{Q} \widehat{\rightarrow}}^{\leq}$has the congruence property and the property of conjunction.

Open problem: In general, if $\mathcal{S}_{\mathrm{Q}}^{\leq}$is congruential, is $\mathbf{A l g} \mathcal{S}_{\mathrm{Q}}^{\leq}$a variety?

PART II

Discussion of some examples:
BCK algebras and Hilbert algebras, possibly with extra lattice operations.

BCK algebras

Definition

The quasivariety BCK of BCK-algebras is axiomatized by the following equations and quasiequation:
(1) $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z)) \approx 1$,
(2) $x \rightarrow x \approx 1$,
(3) $x \rightarrow 1 \approx 1$,
(1) if $x \rightarrow y \approx 1$ and $y \rightarrow x \approx 1$, then $x \approx y$.

- BCK is $\{x \rightarrow y \approx 1\}$-equationally orderable.

BCK algebras

Definition

The quasivariety BCK of BCK-algebras is axiomatized by the following equations and quasiequation:
(1) $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z)) \approx 1$,
(2) $x \rightarrow x \approx 1$,
(3) $x \rightarrow 1 \approx 1$,
(1) if $x \rightarrow y \approx 1$ and $y \rightarrow x \approx 1$, then $x \approx y$.

- BCK is $\{x \rightarrow y \approx 1\}$-equationally orderable.
- $\mathcal{S}_{\mathrm{BCK}}^{1}$ is algebraizable.

BCK algebras

Definition

The quasivariety BCK of BCK-algebras is axiomatized by the following equations and quasiequation:
(1) $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z)) \approx 1$,
(2) $x \rightarrow x \approx 1$,
(3) $x \rightarrow 1 \approx 1$,
(9) if $x \rightarrow y \approx 1$ and $y \rightarrow x \approx 1$, then $x \approx y$.

- BCK is $\{x \rightarrow y \approx 1\}$-equationally orderable.
- $\mathcal{S}_{\mathrm{BCK}}^{1}$ is algebraizable.
- $\mathcal{S}_{\mathrm{BCK}}^{\leq}$is not protoalgebraic and has theorems.

BCK algebras

Definition

The quasivariety BCK of BCK-algebras is axiomatized by the following equations and quasiequation:
(1) $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z)) \approx 1$,
(2) $x \rightarrow x \approx 1$,
(3) $x \rightarrow 1 \approx 1$,
(1) if $x \rightarrow y \approx 1$ and $y \rightarrow x \approx 1$, then $x \approx y$.

- BCK is $\{x \rightarrow y \approx 1\}$-equationally orderable.
- $\mathcal{S}_{\mathrm{BCK}}^{1}$ is algebraizable.
- $\mathcal{S}_{\mathrm{BCK}}^{\leq}$is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathrm{BCK}}^{\leq^{\circ}}$ does not have theorems.

BCK algebras

Definition

The quasivariety BCK of BCK-algebras is axiomatized by the following equations and quasiequation:
(1) $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z)) \approx 1$,
(2) $x \rightarrow x \approx 1$,
(3) $x \rightarrow 1 \approx 1$,
(1) if $x \rightarrow y \approx 1$ and $y \rightarrow x \approx 1$, then $x \approx y$.

- BCK is $\{x \rightarrow y \approx 1\}$-equationally orderable.
- $\mathcal{S}_{\mathrm{BCK}}^{1}$ is algebraizable.
- $\mathcal{S}_{\mathrm{BCK}}^{\leq}$is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathrm{BCK}}^{\leq^{\circ}}$ does not have theorems.
- The three logics $\mathcal{S}_{\mathrm{BCK}}^{1}, \mathcal{S}_{\mathrm{BCK}}^{\leq}, \mathcal{S}_{\mathrm{BCK}}^{\leq^{\partial}}$ are different.

Let us consider the BCK algebra we obtain by defining in the lattice below the operation \rightarrow by the next table

\rightarrow	0	3	2	1	α	β
0	1	1	1	1	1	1
3	2	1	1	1	2	2
2	3	2	1	1	2	2
1	0	3	2	1	α	β
α	2	1	1	1	1	2
β	2	1	1	1	2	1

The principal up-sets are obviously $\mathcal{S}_{\mathrm{BCK}}^{\leq}$-filters.
Let

$$
F=\{2,1\} \subseteq G=\{\beta, 3,2,1\} .
$$

It is not difficult to see that

$$
\langle\alpha, \beta\rangle \in \boldsymbol{\Omega}(F) \text {, but }\langle\alpha, \beta\rangle \notin \boldsymbol{\Omega}(G) \text {. }
$$

Thus $\mathcal{S}_{\mathrm{BCK}}^{\leq}$is not ptrotoalgebraic.

Problems.

- Are $\mathcal{S}_{\mathrm{BCK}}^{\leq}$and $\mathcal{S}_{\mathrm{BCK}}^{\leq^{2}}$ congruential ?
- Is $\operatorname{Alg} \mathcal{S}_{\mathrm{BCK}}^{\leq}=\mathrm{BCK}$?
- Is $\mathbf{A l g} \mathcal{S}_{\mathrm{BCK}}^{\leq^{\partial}}=\mathrm{BCK}$?
- Is $\mathbf{A l g} \mathcal{S}_{\mathrm{BCK}}^{\leq^{\circ}}=\mathrm{Alg} \mathcal{S}_{\mathrm{BCK}}^{\leq}$?

BCK meet-semilattices

BCK meet-semilattices

BCK meet-semilattices are in essence the BCK algebras whose order defined by $x \rightarrow y \approx 1$ is a meet-semilattice.

BCK meet-semilattices

BCK meet-semilattices are in essence the BCK algebras whose order defined by $x \rightarrow y \approx 1$ is a meet-semilattice.

Definition

An algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ is a BCK meet-semilattice if $\langle A, \rightarrow, 1\rangle$ is a BCK algebra and the following equations and quasiequation are valid on \mathbf{A}
(1) $(x \wedge y) \rightarrow x \approx 1$,
(2) $(x \wedge y) \rightarrow y \approx 1$,
(0) if $x \rightarrow y \approx 1$ and $x \rightarrow z \approx 1$, then $x \rightarrow(y \wedge z) \approx 1$.

BCK meet-semilattices

BCK meet-semilattices are in essence the BCK algebras whose order defined by $x \rightarrow y \approx 1$ is a meet-semilattice.

Definition

An algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ is a BCK meet-semilattice if $\langle A, \rightarrow, 1\rangle$ is a BCK algebra and the following equations and quasiequation are valid on \mathbf{A}
(1) $(x \wedge y) \rightarrow x \approx 1$,
(2) $(x \wedge y) \rightarrow y \approx 1$,
(0) if $x \rightarrow y \approx 1$ and $x \rightarrow z \approx 1$, then $x \rightarrow(y \wedge z) \approx 1$.

- The class BCK^{\wedge} of BCK -meet-semilattices is a variety (P. Idziak).

BCK meet-semilattices

BCK meet-semilattices are in essence the BCK algebras whose order defined by $x \rightarrow y \approx 1$ is a meet-semilattice.

Definition

An algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ is a BCK meet-semilattice if $\langle A, \rightarrow, 1\rangle$ is a BCK algebra and the following equations and quasiequation are valid on \mathbf{A}
(1) $(x \wedge y) \rightarrow x \approx 1$,
(2) $(x \wedge y) \rightarrow y \approx 1$,
(0) if $x \rightarrow y \approx 1$ and $x \rightarrow z \approx 1$, then $x \rightarrow(y \wedge z) \approx 1$.

- The class BCK^{\wedge} of BCK -meet-semilattices is a variety (P. Idziak).
- $\mathcal{S}_{\mathrm{BCK}} 1{ }^{1}$ is algebraizable.

BCK meet-semilattices

BCK meet-semilattices are in essence the BCK algebras whose order defined by $x \rightarrow y \approx 1$ is a meet-semilattice.

Definition

An algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ is a BCK meet-semilattice if $\langle A, \rightarrow, 1\rangle$ is a BCK algebra and the following equations and quasiequation are valid on \mathbf{A}
(1) $(x \wedge y) \rightarrow x \approx 1$,
(2) $(x \wedge y) \rightarrow y \approx 1$,
(0) if $x \rightarrow y \approx 1$ and $x \rightarrow z \approx 1$, then $x \rightarrow(y \wedge z) \approx 1$.

- The class BCK^{\wedge} of BCK -meet-semilattices is a variety (P. Idziak).
- $\mathcal{S}_{\mathrm{BCK}}^{1}$ is algebraizable.
- $\mathcal{S}_{\mathrm{BCK}} \mathrm{S}^{\wedge}$ is not protoalgebraic and has theorems.

BCK meet-semilattices

BCK meet-semilattices are in essence the BCK algebras whose order defined by $x \rightarrow y \approx 1$ is a meet-semilattice.

Definition

An algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ is a BCK meet-semilattice if $\langle A, \rightarrow, 1\rangle$ is a BCK algebra and the following equations and quasiequation are valid on \mathbf{A}
(1) $(x \wedge y) \rightarrow x \approx 1$,
(2) $(x \wedge y) \rightarrow y \approx 1$,
(0) if $x \rightarrow y \approx 1$ and $x \rightarrow z \approx 1$, then $x \rightarrow(y \wedge z) \approx 1$.

- The class BCK^{\wedge} of BCK -meet-semilattices is a variety (P. Idziak).
- $\mathcal{S}_{\mathrm{BCK}}^{1}$ is algebraizable.
- $\mathcal{S}_{\mathrm{BCK}} \mathcal{S}^{\leq}$is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathrm{B}^{\prime} \mathrm{CK}^{\wedge}}^{\text {® }}$ does not have theorems.

BCK meet-semilattices

BCK meet-semilattices are in essence the BCK algebras whose order defined by $x \rightarrow y \approx 1$ is a meet-semilattice.

Definition

An algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ is a BCK meet-semilattice if $\langle A, \rightarrow, 1\rangle$ is a BCK algebra and the following equations and quasiequation are valid on \mathbf{A}
(1) $(x \wedge y) \rightarrow x \approx 1$,
(2) $(x \wedge y) \rightarrow y \approx 1$,
(0) if $x \rightarrow y \approx 1$ and $x \rightarrow z \approx 1$, then $x \rightarrow(y \wedge z) \approx 1$.

- The class BCK^{\wedge} of BCK -meet-semilattices is a variety (P. Idziak).
- $\mathcal{S}_{\mathrm{BCK}}^{1}$ is algebraizable.
- $\mathcal{S}_{\mathrm{BCK}} \leq$ is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathrm{BCK}} \mathrm{S}^{\circ}$ does not have theorems.

- $\mathcal{S}_{\mathrm{BCK}^{\wedge}}^{\leq}$is congruential and $\mathrm{Alg} \mathcal{S}_{\mathrm{BCK}^{\wedge}}^{\leq}=\mathrm{BCK}^{\wedge}$.
- $\mathcal{S}_{\mathrm{BCK}}{ }^{\leq}$is congruential and $\mathrm{Alg} \mathcal{S}_{\mathrm{BCK}^{\wedge}}^{\leq}=\mathrm{BCK}^{\wedge}$.

BCK-join-semilattices

BCK-join-semilattices

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak). Thus the logic of the order is congruential as well as the logic of the dual order.

- $\mathcal{S}_{\mathrm{BCK}}^{1}$, is algebraizable.

BCK-join-semilattices

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak). Thus the logic of the order is congruential as well as the logic of the dual order.

- $\mathcal{S}_{\mathrm{BCK}}^{1}$ is algebraizable.
- $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq}$is not protoalgebraic and has theorems.

BCK-join-semilattices

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak). Thus the logic of the order is congruential as well as the logic of the dual order.

- $\mathcal{S}_{\mathrm{BCK}}^{1}$ is algebraizable.
- $\mathcal{S}_{\mathrm{BCK}}{ }^{\Sigma}$ is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq^{\partial}}$ does not have theorems.

BCK-join-semilattices

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak). Thus the logic of the order is congruential as well as the logic of the dual order.

- $\mathcal{S}_{\mathrm{BCK}}^{1}$ is algebraizable.
- $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq}$is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq^{\partial}}$ does not have theorems.
- The three deductive systems $\mathcal{S}_{\mathrm{BCK}}^{1}, \mathcal{S}_{\mathrm{BCK}} \leq$ and $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq^{\partial}}$ are different.

BCK-join-semilattices

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak). Thus the logic of the order is congruential as well as the logic of the dual order.

- $\mathcal{S}_{\mathrm{BCK}}^{1}$ is algebraizable.
- $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq}$is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq^{2}}$ does not have theorems.
- The three deductive systems $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{1}, \mathcal{S}_{\mathrm{BCK}} \leq$ and $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq^{\partial}}$ are different.
- $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq}$is congruential and $\mathbf{A l g} \mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq}=\mathrm{BCK}^{\vee}$.

BCK-join-semilattices

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak). Thus the logic of the order is congruential as well as the logic of the dual order.

- $\mathcal{S}_{\mathrm{BCK}}^{1}$ is algebraizable.
- $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq}$is not protoalgebraic and has theorems.
- $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq^{2}}$ does not have theorems.
- The three deductive systems $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{1}, \mathcal{S}_{\mathrm{BCK}}{ }^{\leq}$and $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq^{\partial}}$ are different.
- $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq}$is congruential and $\mathbf{A l g} \mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq}=\mathrm{BCK}^{\vee}$.
- $\mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq^{ə}}$ is congruential and $\mathrm{Alg} \mathcal{S}_{\mathrm{BCK}^{\vee}}^{\leq^{ə}}=\mathrm{BCK}^{\vee}$.

Hilbert algebras

Hilbert algebras

Definition

An algebra \mathbf{A} in the language $\{\rightarrow, 1\}$ is a Hilbert algebra if the following equations and quasiequation are valid on \mathbf{A}.

H1. $x \rightarrow(y \rightarrow x) \approx 1$,
H2. $x \rightarrow(y \rightarrow z) \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z)) \approx 1$,
H3. if $x \rightarrow y \approx y \rightarrow x \approx 1$, then $x \approx y$.

Hilbert algebras

Definition

An algebra \mathbf{A} in the language $\{\rightarrow, 1\}$ is a Hilbert algebra if the following equations and quasiequation are valid on \mathbf{A}.

H1. $x \rightarrow(y \rightarrow x) \approx 1$,
H2. $x \rightarrow(y \rightarrow z) \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z)) \approx 1$,
H3. if $x \rightarrow y \approx y \rightarrow x \approx 1$, then $x \approx y$.

- The class H of Hilbert algebras is a variety of BCK-algebras.

Hilbert algebras

Definition

An algebra \mathbf{A} in the language $\{\rightarrow, 1\}$ is a Hilbert algebra if the following equations and quasiequation are valid on \mathbf{A}.

H1. $x \rightarrow(y \rightarrow x) \approx 1$,
H2. $x \rightarrow(y \rightarrow z) \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z)) \approx 1$,
H3. if $x \rightarrow y \approx y \rightarrow x \approx 1$, then $x \approx y$.

- The class H of Hilbert algebras is a variety of BCK-algebras.
- The 1 -assertional logic $\mathcal{S}_{\mathrm{H}}^{1}$ of H is the $(\rightarrow, 1)$-fragment of intuitionistic logic.

Hilbert algebras

Definition

An algebra \mathbf{A} in the language $\{\rightarrow, 1\}$ is a Hilbert algebra if the following equations and quasiequation are valid on \mathbf{A}.

H1. $x \rightarrow(y \rightarrow x) \approx 1$,
H2. $x \rightarrow(y \rightarrow z) \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z)) \approx 1$,
H3. if $x \rightarrow y \approx y \rightarrow x \approx 1$, then $x \approx y$.

- The class H of Hilbert algebras is a variety of BCK-algebras.
- The 1 -assertional logic $\mathcal{S}_{\mathrm{H}}^{1}$ of H is the $(\rightarrow, 1)$-fragment of intuitionistic logic.
- has the congruence property,

Hilbert algebras

Definition

An algebra \mathbf{A} in the language $\{\rightarrow, 1\}$ is a Hilbert algebra if the following equations and quasiequation are valid on \mathbf{A}.

H1. $x \rightarrow(y \rightarrow x) \approx 1$,
H2. $x \rightarrow(y \rightarrow z) \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z)) \approx 1$,
H3. if $x \rightarrow y \approx y \rightarrow x \approx 1$, then $x \approx y$.

- The class H of Hilbert algebras is a variety of BCK-algebras.
- The 1 -assertional logic $\mathcal{S}_{\mathrm{H}}^{1}$ of H is the $(\rightarrow, 1)$-fragment of intuitionistic logic.
- has the congruence property,
- has the \rightarrow-deduction-detachment property: for all sets of formulas Γ and all formulas φ, ψ

$$
\Gamma \cup\{\varphi\} \vdash_{\mathcal{S}_{\mathrm{H}}^{1}} \psi \quad \text { iff } \quad \Gamma \vdash_{\mathcal{S}_{\mathrm{H}}^{1}} \varphi \rightarrow \psi .
$$

Hilbert algebras

Definition

An algebra \mathbf{A} in the language $\{\rightarrow, 1\}$ is a Hilbert algebra if the following equations and quasiequation are valid on \mathbf{A}.

H1. $x \rightarrow(y \rightarrow x) \approx 1$,
H2. $x \rightarrow(y \rightarrow z) \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z)) \approx 1$,
H3. if $x \rightarrow y \approx y \rightarrow x \approx 1$, then $x \approx y$.

- The class H of Hilbert algebras is a variety of BCK-algebras.
- The 1 -assertional logic $\mathcal{S}_{\mathrm{H}}^{1}$ of H is the $(\rightarrow, 1)$-fragment of intuitionistic logic.
- has the congruence property,
- has the \rightarrow-deduction-detachment property: for all sets of formulas Γ and all formulas φ, ψ

$$
\Gamma \cup\{\varphi\} \vdash_{\mathcal{S}_{\mathrm{H}}^{1}} \psi \quad \text { iff } \quad \Gamma \vdash_{\mathcal{S}_{\mathrm{H}}^{1}} \varphi \rightarrow \psi .
$$

These facts imply:

Hilbert algebras

Definition

An algebra \mathbf{A} in the language $\{\rightarrow, 1\}$ is a Hilbert algebra if the following equations and quasiequation are valid on \mathbf{A}.

H1. $x \rightarrow(y \rightarrow x) \approx 1$,
H2. $x \rightarrow(y \rightarrow z) \rightarrow((x \rightarrow y) \rightarrow(x \rightarrow z)) \approx 1$,
H3. if $x \rightarrow y \approx y \rightarrow x \approx 1$, then $x \approx y$.

- The class H of Hilbert algebras is a variety of BCK-algebras.
- The 1 -assertional logic $\mathcal{S}_{\mathrm{H}}^{1}$ of H is the $(\rightarrow, 1)$-fragment of intuitionistic logic.
- has the congruence property,
- has the \rightarrow-deduction-detachment property: for all sets of formulas Γ and all formulas φ, ψ

$$
\Gamma \cup\{\varphi\} \vdash_{\mathcal{S}_{\mathrm{H}}^{1}} \psi \quad \text { iff } \quad \Gamma \vdash_{\mathcal{S}_{\mathrm{H}}^{1}} \varphi \rightarrow \psi .
$$

These facts imply:

- $\mathcal{S}_{\mathrm{H}}^{1}$ is congruential.
- $\mathcal{S}_{\mathrm{H}}^{1}=$ the deductive system \mathcal{S}_{H} associated with H by the following definition

$$
\begin{gathered}
\Gamma \vdash_{\mathcal{S}_{\mathrm{k}}} \varphi \text { iff } \quad(\forall \mathbf{A} \in \mathrm{K})(\forall v \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A})) v(\varphi)=1^{\mathbf{A}} \text { or } \\
\left(\exists \varphi_{0}, \ldots, \varphi_{n} \in \Gamma\right)(\forall \mathbf{A} \in \mathrm{K})(\forall v \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A})) \\
v\left(\varphi_{0} \rightarrow\left(\ldots\left(\varphi_{n} \rightarrow \varphi\right) \ldots\right)\right)=1^{\mathbf{A}} .
\end{gathered}
$$

- The variety H is $\{x \rightarrow y \approx 1\}$-equationally orderable.
- The variety H is $\{x \rightarrow y \approx 1\}$-equationally orderable.
- The deductive systems $\mathcal{S}_{\mathrm{H}}^{\leq}$and $\mathcal{S}_{\mathrm{H}}^{\leq^{\theta}}$ are congruential.
- The variety H is $\{x \rightarrow y \approx 1\}$-equationally orderable.
- The deductive systems $\mathcal{S}_{\mathrm{H}}^{\leq}$and $\mathcal{S}_{\mathrm{H}}^{\leq^{\theta}}$ are congruential.
- $\mathcal{S}_{\mathrm{H}^{-}}^{\text {® }^{a}}$ does not have theorems.
- The variety H is $\{x \rightarrow y \approx 1\}$-equationally orderable.
- The deductive systems $\mathcal{S}_{\mathrm{H}}^{\leq}$and $\mathcal{S}_{\mathrm{H}}^{\leq^{\partial}}$ are congruential.
- $\mathcal{S}_{\mathrm{H}^{-}}^{<^{\partial}}$ does not have theorems.

Proposition

The deductive system $\mathcal{S}_{\mathrm{H}}^{\leq}$enjoys Modus Ponens for \rightarrow.

- The variety H is $\{x \rightarrow y \approx 1\}$-equationally orderable.
- The deductive systems $\mathcal{S}_{\mathrm{H}}^{\leq}$and $\mathcal{S}_{\mathrm{H}}^{\leq^{\partial}}$ are congruential.
- $\mathcal{S}_{\mathrm{H}^{-}}^{<^{\partial}}$ does not have theorems.

Proposition

The deductive system $\mathcal{S}_{\mathrm{H}}^{\leq}$enjoys Modus Ponens for \rightarrow.

Proof.

Let \mathbf{A} be any Hilbert algebra. We show that for every $a, b, c \in A$

$$
a \leq b \& a \leq b \rightarrow c \Longrightarrow a \leq c .
$$

This implies that $\mathcal{S}_{\mathrm{H}}^{\leq}$enjoys Modus Ponens for \rightarrow. Suppose that $a \leq b$ and $a \leq b \rightarrow c$. Then $a \rightarrow b=1$ and $a \rightarrow(b \rightarrow c)=1$. Therefore, $(a \rightarrow b) \rightarrow(a \rightarrow c)=1$; hence, $1 \rightarrow(a \rightarrow c)=1$. This implies that $a \rightarrow c=1$ and so $a \leq c$.

Proposition

The deductive system $\mathcal{S}_{\mathrm{H}}^{\leq}$is equal to $\mathcal{S}_{\mathrm{H}}^{1}$.

Proof.

$\mathcal{S}_{\mathrm{H}}^{1}$ is an extension of $\mathcal{S}_{\mathrm{H}}^{\leq}$with the same theorems, because 1 is a maximum element in every Hilbert algebra. Now note that all axioms of the axiomatization of $\mathcal{S}_{\mathrm{H}}^{1}$ are theorems of $\mathcal{S}_{\mathrm{H}}^{\leq}$. Since Modus Ponens is valid in $\mathcal{S}_{\mathrm{H}}^{\leq}, \mathcal{S}_{\mathrm{H}}^{\leq}$is an extension of $\mathcal{S}_{\mathrm{H}}^{1}$. Thus $\mathcal{S}_{\mathrm{H}}^{\leq}=\mathcal{S}_{\mathrm{H}}^{1}$.

Proposition

The deductive system $\mathcal{S}_{\mathrm{H}}^{\leq}$is equal to $\mathcal{S}_{\mathrm{H}}^{1}$.

Proof.

$\mathcal{S}_{\mathrm{H}}^{1}$ is an extension of $\mathcal{S}_{\mathrm{H}}^{\leq}$with the same theorems, because 1 is a maximum element in every Hilbert algebra. Now note that all axioms of the axiomatization of $\mathcal{S}_{\mathrm{H}}^{1}$ are theorems of $\mathcal{S}_{\mathrm{H}}^{\leq}$. Since Modus Ponens is valid in $\mathcal{S}_{\mathrm{H}}^{\leq}, \mathcal{S}_{\mathrm{H}}^{\leq}$is an extension of $\mathcal{S}_{\mathrm{H}}^{1}$. Thus $\mathcal{S}_{\mathrm{H}}^{\leq}=\mathcal{S}_{\mathrm{H}}^{1}$.

Therefore,

Proposition

The deductive system $\mathcal{S}_{\mathrm{H}}^{1}$ is congruential.

Hilbert algebras with supremum

Definition

A Hilbert algebra with supremum is an algebra $\mathbf{A}=\langle A, \rightarrow, \vee, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-join-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

Hilbert algebras with supremum

Definition

A Hilbert algebra with supremum is an algebra $\mathbf{A}=\langle A, \rightarrow, \vee, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-join-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with supremum H^{\vee} is a variety.

Hilbert algebras with supremum

Definition

A Hilbert algebra with supremum is an algebra $\mathbf{A}=\langle A, \rightarrow, \vee, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-join-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with supremum H^{\vee} is a variety.
- We have four deductive systems.

Hilbert algebras with supremum

Definition

A Hilbert algebra with supremum is an algebra $\mathbf{A}=\langle A, \rightarrow, \vee, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-join-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with supremum H^{\vee} is a variety.
- We have four deductive systems.
- The 1-assertional logic $\mathcal{S}_{\mathrm{H}^{1}}^{1}$

Hilbert algebras with supremum

Definition

A Hilbert algebra with supremum is an algebra $\mathbf{A}=\langle A, \rightarrow, \vee, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-join-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with supremum H^{\vee} is a variety.
- We have four deductive systems.
- The 1-assertional logic $\mathcal{S}_{\mathrm{H}} \vee$ (has axiomatization with Modus Ponens as the only rule).

Hilbert algebras with supremum

Definition

A Hilbert algebra with supremum is an algebra $\mathbf{A}=\langle A, \rightarrow, \vee, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-join-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with supremum H^{\vee} is a variety.
- We have four deductive systems.
- The 1-assertional logic $\mathcal{S}_{\mathrm{H}} \vee$ (has axiomatization with Modus Ponens as the only rule).
- The logic $\mathcal{S}_{\mathrm{H}^{\vee}}^{\leq}$of the $\{x \rightarrow y \approx 1\}$-order of H^{\wedge}.

Hilbert algebras with supremum

Definition

A Hilbert algebra with supremum is an algebra $\mathbf{A}=\langle A, \rightarrow, \vee, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-join-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with supremum H^{\vee} is a variety.
- We have four deductive systems.
- The 1-assertional logic $\mathcal{S}_{\mathrm{H}} \vee$ (has axiomatization with Modus Ponens as the only rule).
- The logic $\mathcal{S}_{\mathrm{H}^{\vee}}^{\leq}$of the $\{x \rightarrow y \approx 1\}$-order of H^{\wedge}.
- The logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq^{\partial}}$ of the dual $\{x \rightarrow y \approx 1\}$-order of H^{\wedge}.

Hilbert algebras with supremum

Definition

A Hilbert algebra with supremum is an algebra $\mathbf{A}=\langle A, \rightarrow, \vee, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-join-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with supremum H^{\vee} is a variety.
- We have four deductive systems.
- The 1-assertional logic $\mathcal{S}_{\mathrm{H}}{ }^{1}$ (has axiomatization with Modus Ponens as the only rule).
- The logic $\mathcal{S}_{\mathrm{H}^{\vee}}^{\leq}$of the $\{x \rightarrow y \approx 1\}$-order of H^{\wedge}.
- The logic $\mathcal{S}_{\mathrm{H}^{2} \vee}^{<^{\partial}}$ of the dual $\{x \rightarrow y \approx 1\}$-order of H^{\wedge}.
- The logic $\mathcal{S}_{\mathrm{H}^{\checkmark}}^{\vec{V}}$ defined by

$$
\begin{gathered}
\Gamma \vdash_{\mathcal{S}_{\mathrm{H}^{\wedge}}} \varphi \text { iff } \quad\left(\forall \mathbf{A} \in \mathrm{H}^{\wedge}\right)(\forall v \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A})) v(\varphi)=1^{\mathbf{A}} \text { or } \\
\left(\exists \varphi_{0}, \ldots, \varphi_{n} \in \Gamma\right)(\forall \mathbf{A} \in \mathrm{K})(\forall v \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A})) \\
v\left(\varphi_{0} \rightarrow\left(\ldots\left(\varphi_{n} \rightarrow \varphi\right) \ldots\right)\right)=1^{\mathbf{A}} .
\end{gathered}
$$

Hilbert algebras with supremum

Definition

A Hilbert algebra with supremum is an algebra $\mathbf{A}=\langle A, \rightarrow, \vee, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-join-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with supremum H^{\vee} is a variety.
- We have four deductive systems.
- The 1-assertional logic $\mathcal{S}_{\mathrm{H}} \vee$ (has axiomatization with Modus Ponens as the only rule).
- The logic $\mathcal{S}_{\mathrm{H}^{\vee}}^{\leq}$of the $\{x \rightarrow y \approx 1\}$-order of H^{\wedge}.
- The logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{<^{\partial}}$ of the dual $\{x \rightarrow y \approx 1\}$-order of H^{\wedge}.
- The logic $\mathcal{S}_{\mathrm{H}^{\checkmark}}^{\vec{V}}$ defined by

$$
\begin{gathered}
\Gamma \vdash_{\mathcal{S}_{\mathrm{H}^{\wedge}}} \varphi \quad \text { iff } \quad\left(\forall \mathbf{A} \in \mathrm{H}^{\wedge}\right)(\forall v \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A})) v(\varphi)=1^{\mathbf{A}} \text { or } \\
\left(\exists \varphi_{0}, \ldots, \varphi_{n} \in \Gamma\right)(\forall \mathbf{A} \in \mathrm{K})(\forall v \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A})) \\
v\left(\varphi_{0} \rightarrow\left(\ldots\left(\varphi_{n} \rightarrow \varphi\right) \ldots\right)\right)=1^{\mathbf{A}} .
\end{gathered}
$$

- As with Hilbert algebras, $\mathcal{S}_{\mathrm{H}^{\vee}}^{\leq}, \mathcal{S}_{\mathrm{H}^{\vee}}^{1}$ and $\mathcal{S}_{\mathrm{H}^{\vee}}$ are equal and congruential.

Hilbert algebras with infimum

Definition

A Hilbert algebra with infimum is an algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-meet-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

Hilbert algebras with infimum

Definition

A Hilbert algebra with infimum is an algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-meet-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with infimum H^{\wedge} is a variety.

Hilbert algebras with infimum

Definition

A Hilbert algebra with infimum is an algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-meet-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with infimum H^{\wedge} is a variety.
- We have four deductive systems.

Hilbert algebras with infimum

Definition

A Hilbert algebra with infimum is an algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-meet-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with infimum H^{\wedge} is a variety.
- We have four deductive systems.
- The 1 -assertional logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{1}$.

Hilbert algebras with infimum

Definition

A Hilbert algebra with infimum is an algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-meet-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with infimum H^{\wedge} is a variety.
- We have four deductive systems.
- The 1 -assertional logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{1}$.
- The logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}$of the $\{x \rightarrow y \approx 1\}$-order of H^{\wedge}.

Hilbert algebras with infimum

Definition

A Hilbert algebra with infimum is an algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-meet-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with infimum H^{\wedge} is a variety.
- We have four deductive systems.
- The 1-assertional logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{1}$.
- The logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}$of the $\{x \rightarrow y \approx 1\}$-order of H^{\wedge}.
- The logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq^{\partial}}$ of the dual $\{x \rightarrow y \approx 1\}$-order of H^{\wedge}.

Hilbert algebras with infimum

Definition

A Hilbert algebra with infimum is an algebra $\mathbf{A}=\langle A, \rightarrow, \wedge, 1\rangle$ in the language $\{\rightarrow, \wedge, 1\}$ which is a BCK-meet-semilattice such that $\langle A, \rightarrow, 1\rangle$ is a Hilbert algebra.

- The class of Hilbert algebras with infimum H^{\wedge} is a variety.
- We have four deductive systems.
- The 1 -assertional logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{1}$.
- The logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}$of the $\{x \rightarrow y \approx 1\}$-order of H^{\wedge}.
- The logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq^{\partial}}$ of the dual $\{x \rightarrow y \approx 1\}$-order of H^{\wedge}.
- The logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\vec{~}}$ defined by

$$
\begin{gathered}
\Gamma \vdash_{\mathcal{S}_{\mathrm{H}^{\wedge}} \varphi} \quad \text { iff } \quad\left(\forall \mathbf{A} \in \mathrm{H}^{\wedge}\right)(\forall v \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A})) v(\varphi)=1^{\mathbf{A}} \text { or } \\
\left(\exists \varphi_{0}, \ldots, \varphi_{n} \in \Gamma\right)(\forall \mathbf{A} \in \mathrm{K})(\forall v \in \operatorname{Hom}(\mathbf{F m}, \mathbf{A})) \\
v\left(\varphi_{0} \rightarrow\left(\ldots\left(\varphi_{n} \rightarrow \varphi\right) \ldots\right)\right)=1^{\mathbf{A}} .
\end{gathered}
$$

- $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}, \mathcal{S}_{\mathrm{H}^{\wedge}}^{<^{\partial}}$ and $\mathcal{S}_{\mathrm{H}^{\wedge}}$ are congruential.
- $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}, \mathcal{S}_{\mathrm{H}^{\wedge}}^{<^{\partial}}$ and $\mathcal{S}_{\mathrm{H}^{\wedge}}$ are congruential.

As we will see the four deductive systems are different.

- $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}, \mathcal{S}_{\mathrm{H}^{\wedge}}^{<^{\partial}}$ and $\mathcal{S}_{\mathrm{H}^{\wedge}}$ are congruential.

As we will see the four deductive systems are different.
The 1-assertional logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{1}$ of H^{\wedge} can be axiomatized (Figallo Jr. A., Ramón, G. and Saad, S.) by the axioms

- $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}, \mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}$and $\mathcal{S}_{\mathrm{H}^{\wedge}}$ are congruential.

As we will see the four deductive systems are different.
The 1-assertional logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{1}$ of H^{\wedge} can be axiomatized (Figallo Jr. A., Ramón, G. and Saad, S.) by the axioms
(1) 1 ,
(2) $\varphi \rightarrow(\psi \rightarrow \varphi)$
(0) $(\varphi \rightarrow(\psi \rightarrow \delta)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \delta))$,
(9) $(\varphi \wedge \psi) \rightarrow \psi$,

- $(\varphi \wedge(\varphi \rightarrow \psi)) \rightarrow \psi$,
- $(\varphi \wedge \psi) \rightarrow(\psi \wedge \varphi)$,
© $((\varphi \wedge \psi) \wedge \delta) \rightarrow((\varphi \wedge \delta) \wedge \psi)$,
- $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}, \mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}$and $\mathcal{S}_{\mathrm{H}^{\wedge}}$ are congruential.

As we will see the four deductive systems are different.
The 1-assertional logic $\mathcal{S}_{\mathrm{H}^{\wedge}}^{1}$ of H^{\wedge} can be axiomatized (Figallo Jr. A., Ramón, G. and Saad, S.) by the axioms
(1) 1 ,
(2) $\varphi \rightarrow(\psi \rightarrow \varphi)$
(3) $(\varphi \rightarrow(\psi \rightarrow \delta)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \delta))$,

- $(\varphi \wedge \psi) \rightarrow \psi$,
(0) $(\varphi \wedge(\varphi \rightarrow \psi)) \rightarrow \psi$,
- $(\varphi \wedge \psi) \rightarrow(\psi \wedge \varphi)$,
© $((\varphi \wedge \psi) \wedge \delta) \rightarrow((\varphi \wedge \delta) \wedge \psi)$,
and the rules

$$
\frac{\varphi, \varphi \rightarrow \psi}{\psi} \quad(M P) \quad \frac{\varphi \rightarrow \psi}{\varphi \rightarrow(\varphi \wedge \psi)} \quad(A B) .
$$

Proposition

The four deductive systems $\mathcal{S}_{\mathrm{H}^{\wedge}}^{1}, \mathcal{S}_{\mathrm{H}^{\wedge}}, \mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}$and $\mathcal{S}_{\mathrm{H}^{\wedge}}^{<^{\partial}}$ are different.

- $\mathcal{S}_{\mathrm{H}^{\wedge}}^{1}, \mathcal{S}_{\mathrm{H}^{\wedge}}$ and $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}$have the same theorems.
- $\mathcal{S}_{\mathrm{H} \wedge}^{\leq^{\partial}}$ does not have theorems.
- $\mathcal{S}_{\mathrm{H}^{\wedge}}^{1}$ does not have the deduction theorem for \rightarrow. If it would have it, since $p, q \vdash_{\mathcal{S}_{H^{\wedge}}^{1}} p \wedge q$, it would follow that $\vdash_{\mathcal{S}_{H^{\wedge}}^{1}} p \rightarrow(q \rightarrow(p \wedge q))$. But this is not a theorem of $\mathcal{S}_{\mathrm{H}^{\wedge}}^{1}$. In the Hilbert algebra with infimum given by the lattice

and \rightarrow defined by setting

$$
x \rightarrow y= \begin{cases}1, & \text { if } x \leq y \\ y, & \text { otherwise }\end{cases}
$$

we have $b \rightarrow^{\mathbf{A}}\left(c \rightarrow^{\mathbf{A}}\left(b \wedge^{\mathbf{A}} c\right)\right)=0$.

- $\mathcal{S}_{\mathrm{H}^{\wedge}}$ has the deduction-detachment theorem for \rightarrow. All logics defined from a quasivariety of algebras with a Hilbert algebra reduct using the schema of definition we used to define $\mathcal{S}_{\mathrm{H}^{\wedge}}$ have it.
- $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}$does not have the deduction-detachment therorem for \rightarrow. If it had it, then every $\mathbf{A} \in \mathbf{H}^{\wedge}$ would be an implicative semilattice.
- The rule (AB) does not hold for $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}$. In the algebra (${ }^{\circ}$ holds:

$$
c \rightarrow b=b
$$

$$
c \rightarrow(c \wedge b)=c \rightarrow 0=0, \text { but }
$$

$$
b \not \leq 0
$$

Conjecture: $\mathcal{S}_{\mathrm{H}^{\wedge}}^{\leq}$is not protoalgebraic.

