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Preliminaries

I A (finitary) deductive system (or logic) is a pair S = 〈Fm,`S〉 where Fm is the
algebra of formulas of an algebraic similarity type and `S is a consequence
relation between sets of formulas and formulas, i.e. it satisfies

1 if ϕ ∈ Γ, then Γ `S ϕ,

2 if Γ `S ϕ and for every ψ ∈ Γ, ∆ `S ψ, then ∆ `S ϕ,

3 if Γ `S ϕ, then for any substitution σ, σ[Γ] `S σ(ϕ),
(a substitution is an homomorphism from the formula algebra Fm into itself.)

4 if Γ `S ϕ, then Γ′ `S ϕ for some finite Γ′ ⊆ Γ.

I A deductive system S has the congruence property if the relation on Fm given
by ϕ a`S ψ is a congruence.

I Let S be a deductive system and let A be an algebra.

A set F ⊆ A is an S-filter if for every valuation v on A, and every Γ ∪ {ϕ} ⊆ Fm
if Γ `S ϕ and v [Γ] ⊆ F , then v(ϕ) ∈ F .

We denote by FiSA the set of S-filters of A (which is a complete lattice).
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Let S be a deductive system.

An algebra A is an S-algebra if the only congruence included in the relation

ΛA
S = {〈a, b〉 ∈ A× A : ∀F ∈ FiSA(a ∈ F ⇔ b ∈ F )}

is the identity.

The algebraic counterpart of S is the class of S-algebras, denoted by AlgS.

Definition

A deductive system S is congruential (or fully selfextensional) if for every A the
relation

ΛA
S = {〈a, b〉 : ∀F ∈ FiSA(a ∈ F ⇔ b ∈ F )}

is a congruence.

Proposition

A deductive system S is congruential if and only if for every A ∈ AlgS the
relation ΛA

S is the identity.
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Theorem (Font, J. (1996))

Let S be a deductive system.

1 If S has the property of conjunction for a term ∧ and the congruence
property, then it is congruential and AlgS is a variety.

2 If S has the deduction-detachment theorem for a term → and the
congruence property, then it is congruential and AlgS is a variety.

In both cases the algebras in AlgS carry an equationally definable partial order,
defined by

x ∧ y ≈ x , in the first case

x → y ≈ x → x , in the second case.

In the first case the deductive system is given by the order (in a sense we will
make precise), but not necessarily in the second.
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PART I

General results
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Equationally orderable quasivarieties

Definition
Let K be a class of algebras of a fixed algebraic similarity type L.
Let µ(x , y) be a finite set of L-equations in two variables.
We say that K is µ-equationally orderable, or admits a µ-order, if for every A ∈ K

≤A
µ:= {〈a, b〉 ∈ A2 : A |= µ(x , y)[a, b]}

is a partial order of A.

Note that every class of algebras is {x ≈ y}-equationally orderable.

We say that K is properly equationally orderable if it is µ-equationally orderable
for some finite set µ(x , y) of L-equations different from {x ≈ y}.
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Proposition

Let K be a class of algebras and µ(x , y) a finite set of equations in two variables.
K is µ-equationally orderable if and only if the following holds:

1 |=K µ(x , x),

2 µ(x , y) ∪ µ(y , z) |=K µ(y , z),

3 µ(x , y) ∪ µ(y , x) |=K x ≈ y .

Proposition

If K is µ-equationally orderable, the quasivariety generated by K is also
µ-equationally orderable.
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A canonical way to associate a deductive system with a
µ-equationally orderable quasivariety.

Definition
Let Q be a µ-equationally orderable quasivariety. The relation
`S≤µQ

⊆ P(Fm)× Fm is defined by:

Γ `S≤µQ

ϕ iff ∀A ∈ Q ∀v ∈ Hom(Fm,A) ∀a ∈ A

((∀ψ ∈ Γ) a ≤A
µ v(ψ)) =⇒ a ≤A

µ v(ϕ)),

for every Γ ∪ {ϕ} ⊆ Fm.

It is easy to check that:

The relation `S≤µQ

is a substitution-invariant consequence relation.

Since Q is closed under ultraproducts and µ is finite, `S
Q≤µ

is finitary.
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I The deductive system of the µ-order of Q is S≤µQ = 〈Fm,`S≤µQ

〉.

If µ is obvious from the context we write: S≤Q .

I It immediately follows that S≤µQ is the deductive system determined by the
class of matrices

{〈A, [a)〉 : A ∈ Q and a ∈ A}.

I If some A ∈ Q has no upper-bound w.r.t. ≤µ then S≤µQ does not have theorems.

Proposition

S≤µQ has theorems if and only if every A ∈ Q has an upper-bound w.r.t. ≤µ and
this largest element is term definable.
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Let Q be a µ-equationally orderable quasivariety.

Let µ∂(x , y) = µ(y , x), i.e. the set of equations obtained by swapping x and y .

µ∂(x , y) defines in every A ∈ Q the dual order ≤∂µ of the partial order ≤µ defined

by µ(y , x). So, ≤∂µ = ≤µ∂ .

Therefore, for any µ-equationally orderable quasivariety we have

the logic S≤µQ of the µ-order,

the logic S
≤
µ∂

Q of the µ∂-order.

Note that
Q |= ϕ ≈ ψ iff ϕ a`S≤µQ

ψ iff ψ a`
S
≤
µ∂

Q

ϕ.
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I In general S≤Q and S≤
∂

Q may be different.

Example

Let SL be the variety of semilattices.

SL is {x · y ≈ x}-equationally orderable.

The logic S≤SL is a logic of conjunction and the logic S≤
∂

SL is a logic of disjunction.
They are different. For example

x · y `S≤SL x but x · y 6`
S≤

∂

SL

x .
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Proposition

The deductive system S≤Q has the congruence property.

A sufficient condition on a subset of an algebra A ∈ Q to be an S≤Q -filter is:

Lemma
Let Q be a µ-equationally orderable quasivariety and let A ∈ Q. Then every
down-directed up-set F ⊆ A of the poset 〈A,≤A

µ〉 is an S≤Q -filter.

Thus,
{〈A,F 〉 : A ∈ Q and F is a downdirected up-set}

is a matrix semantics for S≤µQ .
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On AlgS≤Q
I Let Q be a µ-equationally orderable quasivariety.

Then for every A ∈ Q and
every a, b ∈ A,

a = b iff ∀F ∈ FiS≤Q
A(a ∈ F ⇔ b ∈ F ) iff 〈a, b〉 ∈ ΛA

S≤Q
.

This holds because for every a ∈ A, [a) is S≤Q -filter. Therefore

Proposition

If Q is a µ-equationally orderable quasivariety, then Q ⊆ AlgS≤Q .
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I Q = AlgS≤Q may not hold.

Example.

Let Q→ be the quasivariety in the language {→, 1} defined by

1 x → x ≈ 1

2 (x → y ≈ 1 & y → z ≈ 1) ⇒ x → z ≈ 1.

3 (x → y ≈ 1 & y → x ≈ 1) ⇒ x ≈ y .

Let P = 〈P,≤, 1〉 be a poset with a distinguished element 1 (not necessarily an
upper-bound). Let c ∈ P.
Define Ac

P = 〈P,→, 1〉 by setting

x → y =

{
1 if x ≤ y
c if x 6≤ y

Then Ac
P ∈ Q→.
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Let L and L′ be the following posets (bounded lattices).

0

a b

1

0

1

Consider the algebra Ab
L and the algebra B with domain L′ and with →B the

constant map to 1.
Then h : L→ L′ defined as in the diagram is a homomorphism from Ab

L onto B
and B 6∈ Q→ (1→ 0 = 0→ 1 = 1 and 1 6= 0). Thus Q→ is not a variety.

We show that B ∈ AlgS≤Q→ :

h−1[{1}] = {1, b} and this set is an S≤Q→-filter of Ab
L. Since h is onto, {1} is an

S≤Q→ -filter of B. This implies that ΛB
S≤Q→

is the identity. Hence B ∈ AlgS≤Q→ .
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On congruential deductive systems

Theorem

If Q is a µ-equationally orderable quasivariety and AlgS≤Q = Q, then S≤Q is
congruential.

Theorem

If Q is a µ-equationally orderable variety, then Q = AlgS≤Q .

Proof.

The intrinsic variety of S≤Q is the variety V(S≤Q ) axiomatized by the equations
ϕ ≈ ψ such that

ϕ aS≤Q ` ψ.

We recall: Q |= ϕ ≈ ψ iff ϕ aS≤Q ` ψ.

Therefore V(S≤Q ) is the variety generated by Q. Also V(S≤Q ) is the variety

generated by AlgS≤Q . Since Q ⊆ AlgS≤Q , Q and AlgS≤Q generate the same
variety.
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As a corollary:

Theorem

If Q is a µ-equationally orderable variety, then S≤Q and S≤
∂

Q are congruential.

There exists a µ-equationally orderable quasivariety Q such that

Q is not a variety,

Q ( AlgS≤Q ,

S≤Q congruential.
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Let Q∧→ be the quasivariety of algebras A = 〈A,→,∧, 1〉, in the language
{→,∧, 1}, such that

1 〈A,→, 1〉 ∈ Q→,

2 〈A,∧〉 is a meet-semilattice,

3 a ∧ b = a iff a→ b = 1, for all a, b ∈ A.

Then:

I Q∧→ is not a variety.

The example discussed to show that Q→ is not a variety shows also this.

I The deductive system S≤Q∧→ is congruential and AlgS≤Q is a variety.

It follows because S≤Q∧→ has the congruence property and the property of
conjunction.

Open problem: In general, if S≤Q is congruential, is AlgS≤Q a variety?
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PART II

Discussion of some examples:
BCK algebras and Hilbert algebras, possibly with extra

lattice operations.
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BCK algebras

Definition
The quasivariety BCK of BCK-algebras is axiomatized by the following equations
and quasiequation:

1 (x → y)→ ((y → z)→ (x → z)) ≈ 1,

2 x → x ≈ 1,

3 x → 1 ≈ 1,

4 if x → y ≈ 1 and y → x ≈ 1, then x ≈ y .

I BCK is {x → y ≈ 1}-equationally orderable.

I S1BCK is algebraizable.

I S≤BCK is not protoalgebraic and has theorems.

I S≤
∂

BCK does not have theorems.

I The three logics S1BCK, S≤BCK, S≤
∂

BCK are different.
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Let us consider the BCK algebra we obtain by defining in the lattice below the
operation → by the next table

0

α β

3

2

1

→ 0 3 2 1 α β
0 1 1 1 1 1 1
3 2 1 1 1 2 2
2 3 2 1 1 2 2
1 0 3 2 1 α β
α 2 1 1 1 1 2
β 2 1 1 1 2 1

The principal up-sets are obviously S≤BCK-filters.
Let

F = {2, 1} ⊆ G = {β, 3, 2, 1}.

It is not difficult to see that

〈α, β〉 ∈ Ω(F ), but 〈α, β〉 6∈ Ω(G ).

Thus S≤BCK is not ptrotoalgebraic.
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Problems.

Are S≤BCK and S≤
∂

BCK congruential ?

Is AlgS≤BCK = BCK?

Is AlgS≤
∂

BCK = BCK?

Is AlgS≤
∂

BCK = AlgS≤BCK?
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BCK meet-semilattices

BCK meet-semilattices are in essence the BCK algebras whose order defined by
x → y ≈ 1 is a meet-semilattice.

Definition

An algebra A = 〈A,→,∧, 1〉 in the language {→,∧, 1} is a BCK meet-semilattice
if 〈A,→, 1〉 is a BCK algebra and the following equations and quasiequation are
valid on A

1 (x ∧ y)→ x ≈ 1,

2 (x ∧ y)→ y ≈ 1,

3 if x → y ≈ 1 and x → z ≈ 1, then x → (y ∧ z) ≈ 1.

The class BCK∧ of BCK-meet-semilattices is a variety (P. Idziak).

S1BCK∧ is algebraizable.

S≤BCK∧ is not protoalgebraic and has theorems.

S≤
∂

BCK∧ does not have theorems.

The three deductive systems S1BCK∧ , S≤BCK∧ and S≤
∂

BCK∧ are different.
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S≤BCK∧ is congruential and AlgS≤BCK∧ = BCK∧.

S≤
∂

BCK∧ is congruential and AlgS≤
∂

BCK∧ = BCK∧.
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BCK-join-semilattices

In a dual way, we have BCK-join-semilattices. They also form a variety (P. Idziak).
Thus the logic of the order is congruential as well as the logic of the dual order.

S1BCK∨ is algebraizable.

S≤BCK∨ is not protoalgebraic and has theorems.

S≤
∂

BCK∨ does not have theorems.

The three deductive systems S1BCK∨ , S≤BCK∨ and S≤
∂

BCK∨ are different.

S≤BCK∨ is congruential and AlgS≤BCK∨ = BCK∨.

S≤
∂

BCK∨ is congruential and AlgS≤
∂

BCK∨ = BCK∨.
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Hilbert algebras

Definition

An algebra A in the language {→, 1} is a Hilbert algebra if the following
equations and quasiequation are valid on A.

H1. x → (y → x) ≈ 1,

H2. x → (y → z)→ ((x → y)→ (x → z)) ≈ 1,

H3. if x → y ≈ y → x ≈ 1, then x ≈ y .

I The class H of Hilbert algebras is a variety of BCK-algebras.
I The 1-assertional logic S1H of H is the (→, 1)-fragment of intuitionistic logic.

has the congruence property,

has the →-deduction-detachment property: for all sets of formulas Γ and all
formulas ϕ,ψ

Γ ∪ {ϕ} `S1
H
ψ iff Γ `S1

H
ϕ→ ψ.

These facts imply:

S1H is congruential.
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S1H = the deductive system S→H associated with H by the following definition

Γ `S→K ϕ iff (∀A ∈ K)(∀v ∈ Hom(Fm,A)) v(ϕ) = 1A or

(∃ϕ0, . . . , ϕn ∈ Γ)(∀A ∈ K)(∀v ∈ Hom(Fm,A))

v(ϕ0 → (. . . (ϕn → ϕ) . . .)) = 1A.
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I The variety H is {x → y ≈ 1}-equationally orderable.

I The deductive systems S≤H and S≤
∂

H are congruential.

I S≤
∂

H does not have theorems.

Proposition

The deductive system S≤H enjoys Modus Ponens for →.

Proof.
Let A be any Hilbert algebra. We show that for every a, b, c ∈ A

a ≤ b & a ≤ b → c =⇒ a ≤ c .

This implies that S≤H enjoys Modus Ponens for →.
Suppose that a ≤ b and a ≤ b → c . Then a→ b = 1 and a→ (b → c) = 1.
Therefore, (a→ b)→ (a→ c) = 1; hence, 1→ (a→ c) = 1. This implies that
a→ c = 1 and so a ≤ c .
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Proposition

The deductive system S≤H is equal to S1H.

Proof.

S1H is an extension of S≤H with the same theorems, because 1 is a maximum
element in every Hilbert algebra. Now note that all axioms of the axiomatization
of S1H are theorems of S≤H . Since Modus Ponens is valid in S≤H , S≤H is an extension

of S1H. Thus S≤H = S1H.

Therefore,

Proposition

The deductive system S1H is congruential.

R. Jansana On deductive systems associated with some equationally orderable quasivarieties 30 / 35



Proposition

The deductive system S≤H is equal to S1H.

Proof.

S1H is an extension of S≤H with the same theorems, because 1 is a maximum
element in every Hilbert algebra. Now note that all axioms of the axiomatization
of S1H are theorems of S≤H . Since Modus Ponens is valid in S≤H , S≤H is an extension

of S1H. Thus S≤H = S1H.

Therefore,

Proposition

The deductive system S1H is congruential.

R. Jansana On deductive systems associated with some equationally orderable quasivarieties 30 / 35



Hilbert algebras with supremum

Definition

A Hilbert algebra with supremum is an algebra A = 〈A,→,∨, 1〉 in the language
{→,∧, 1} which is a BCK-join-semilattice such that 〈A,→, 1〉 is a Hilbert algebra.

I The class of Hilbert algebras with supremum H∨ is a variety.

I We have four deductive systems.

The 1-assertional logic S1H∨ (has axiomatization with Modus Ponens as the
only rule).

The logic S≤H∨ of the {x → y ≈ 1}-order of H∧.

The logic S≤
∂

H∨ of the dual {x → y ≈ 1}-order of H∧.
The logic S→H∨ defined by

Γ `S→
H∧
ϕ iff (∀A ∈ H∧)(∀v ∈ Hom(Fm,A)) v(ϕ) = 1A or

(∃ϕ0, . . . , ϕn ∈ Γ)(∀A ∈ K)(∀v ∈ Hom(Fm,A))

v(ϕ0 → (. . . (ϕn → ϕ) . . .)) = 1A.

I As with Hilbert algebras, S≤H∨ , S1H∨ and S→H∨ are equal and congruential.
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The 1-assertional logic S1H∨ (has axiomatization with Modus Ponens as the
only rule).

The logic S≤H∨ of the {x → y ≈ 1}-order of H∧.

The logic S≤
∂

H∨ of the dual {x → y ≈ 1}-order of H∧.
The logic S→H∨ defined by

Γ `S→
H∧
ϕ iff (∀A ∈ H∧)(∀v ∈ Hom(Fm,A)) v(ϕ) = 1A or

(∃ϕ0, . . . , ϕn ∈ Γ)(∀A ∈ K)(∀v ∈ Hom(Fm,A))

v(ϕ0 → (. . . (ϕn → ϕ) . . .)) = 1A.

I As with Hilbert algebras, S≤H∨ , S1H∨ and S→H∨ are equal and congruential.
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Hilbert algebras with infimum

Definition

A Hilbert algebra with infimum is an algebra A = 〈A,→,∧, 1〉 in the language
{→,∧, 1} which is a BCK-meet-semilattice such that 〈A,→, 1〉 is a Hilbert
algebra.

I The class of Hilbert algebras with infimum H∧ is a variety.

I We have four deductive systems.

The 1-assertional logic S1H∧ .

The logic S≤H∧ of the {x → y ≈ 1}-order of H∧.

The logic S≤
∂

H∧ of the dual {x → y ≈ 1}-order of H∧.

The logic S→H∧ defined by

Γ `S→
H∧
ϕ iff (∀A ∈ H∧)(∀v ∈ Hom(Fm,A)) v(ϕ) = 1A or

(∃ϕ0, . . . , ϕn ∈ Γ)(∀A ∈ K)(∀v ∈ Hom(Fm,A))
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I S≤H∧ , S≤
∂

H∧ and S→H∧ are congruential.

As we will see the four deductive systems are different.

The 1-assertional logic S1H∧ of H∧ can be axiomatized (Figallo Jr. A., Ramón, G.
and Saad, S.) by the axioms

1 1,

2 ϕ→ (ψ → ϕ)

3 (ϕ→ (ψ → δ))→ ((ϕ→ ψ)→ (ϕ→ δ)),

4 (ϕ ∧ ψ)→ ψ,

5 (ϕ ∧ (ϕ→ ψ))→ ψ,

6 (ϕ ∧ ψ)→ (ψ ∧ ϕ),

7 ((ϕ ∧ ψ) ∧ δ)→ ((ϕ ∧ δ) ∧ ψ),

and the rules

ϕ,ϕ→ ψ

ψ
(MP)

ϕ→ ψ

ϕ→ (ϕ ∧ ψ)
(AB).
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Proposition

The four deductive systems S1H∧ , S→H∧ , S≤H∧ and S≤
∂

H∧ are different.

S1H∧ , S→H∧ and S≤H∧ have the same theorems.

S≤
∂

H∧ does not have theorems.

S1H∧ does not have the deduction theorem for →. If it would have it, since
p, q `S1

H∧
p ∧ q, it would follow that `S1

H∧
p → (q → (p ∧ q)). But this is not

a theorem of S1H∧ . In the Hilbert algebra with infimum given by the lattice

0

a

b
c

1

and → defined by setting

x → y =

{
1, if x ≤ y
y , otherwise.

we have b →A (c →A (b ∧A c)) = 0.
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S→H∧ has the deduction-detachment theorem for →. All logics defined from a
quasivariety of algebras with a Hilbert algebra reduct using the schema of
definition we used to define S→H∧ have it.

S≤H∧ does not have the deduction-detachment therorem for →. If it had it,
then every A ∈ H∧ would be an implicative semilattice.

The rule (AB) does not hold for S≤H∧ . In the algebra Go holds:
c → b = b,
c → (c ∧ b) = c → 0 = 0, but
b 6≤ 0.

Conjecture: S≤H∧ is not protoalgebraic.
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