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The beginnings

The original three fuzzy logics (Ł, G, and Π) are complete w.r.t.
a standard semantics on [0, 1] of a particular (continuous)
residuated t-norm, and w.r.t. algebraic semantics (MV-, G-,
and Π-algebras).
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Hájek logic

Hájek logic BL (1998): complete w.r.t. standard semantics
given by all continuous t-norms, and w.r.t. BL-algebras
(semilinear divisible integral commutative lattice-ordered
residuated monoids).

A BL-algebra is a structure B = 〈B,∧,∨,&,→, 0, 1〉 such that:

(1) 〈B,∧,∨, 0, 1〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a commutative monoid,
(3) z ≤ x→ y iff x & z ≤ y, (residuation)

(4) x & (x→ y) = x ∧ y (divisibility)

(5) (x→ y) ∨ (y→ x) = 1 (prelinearity)
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Basic fuzzy logic?

BL was basic in the following two senses:
1 it could not be made weaker without losing essential

properties and
2 it provided a base for the study of all fuzzy logics.

Because:

BL is complete w.r.t. the semantics given by all continuous
t-norms
Ł, G, and Π are axiomatic extensions of BL. The methods to
introduce, algebraize, and study BL could be utilized for any
other logic based on continuous t-norms. Hájek developed a
uniform mathematical theory for MFL

fuzzy logics = axiomatic extensions of BL
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Monoidal t-norm logic MTL

Left-continuity of the t-norm is sufficient for residuation (i.e. so we
can define x⇒ y = max{z ∈ [0, 1] | z ∗ x ≤ y}).

MTL (2001): complete w.r.t. standard semantics given by all
left-continuous t-norms, and w.r.t. MTL-algebras (semilinear
integral commutative lattice-ordered residuated monoids).

An MTL-algebra is a structure B = 〈B,∧,∨,&,→, 0, 1〉 such that:

(1) 〈B,∧,∨, 0, 1〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a commutative monoid,
(3) z ≤ x→ y iff x & z ≤ y, (residuation)

(4) (x→ y) ∨ (y→ x) = 1 (prelinearity)

fuzzy logics = axiomatic expansions of MTL

MTL = FL`ew.
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“Pulling legs from the flea”

psMTLr = FL`w (2003): logic of semilinear integral
lattice-ordered residuated monoids. It is standard complete.

UL = FL`e (2007): logic of semilinear commutative
lattice-ordered residuated monoids. It is standard complete.
FL` (2009): logic of semilinear lattice-ordered residuated
monoids. It is NOT standard complete.

What is the basic fuzzy logic?
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The hidden thing

Associativity is always assumed.

What if we pull this final leg? Will the flea jump again?

Some works on non-associative substructural logics:

Lambek (1961)
Buszkowski and Farulewski (2009)
Galatos and Ono. Cut elimination and strong separation for
substructural logics: An algebraic approach, Annals of Pure
and Applied Logic, 161(9):1097–1133, 2010.
Botur (2011)
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A basic substructural logic

SL: Galatos-Ono logic

Non-associative full Lambek logic

Aims
1 Find an algebraic semantics for SL.
2 Axiomatize its semilinear extension SL`.
3 Proof standard completeness for SL`.

Petr Cintula, Rostislav Horčík, and Carles Noguera The quest for the basic fuzzy logic



A basic substructural logic

SL: Galatos-Ono logic

Non-associative full Lambek logic

Aims
1 Find an algebraic semantics for SL.
2 Axiomatize its semilinear extension SL`.
3 Proof standard completeness for SL`.
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Algebraic semantics – 1

Lattice-ordered residuated unital groupoid or SL-algebra is an
algebra A = 〈A,∧,∨, ·, \, /, 0, 1〉 such that 〈A,∧,∨, 0, 1〉 is a doubly
pointed lattice satisfying x = 1 · x = x · 1 and for all a, b, c ∈ A we
have

a · b ≤ c iff b ≤ a\c iff a ≤ c/b .

SL-chain: linearly ordered SL-algebra.

Variety of all SL-algebras: SL.

Given a class K ⊆ SL, a set of formulae Γ and a formula ϕ, Γ |=K ϕ
if for every A ∈ K and every A-evaluation e, if e(ψ) ≥ 1 for every
ψ ∈ Γ, then e(ϕ) ≥ 1.
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Algebraic semantics – 2

Theorem
For every set of formulae Γ and every formula ϕ we have:

Γ `SL ϕ if, and only if, Γ |=SL ϕ.

SL is an algebraizable logic and SL is its equivalent algebraic
semantics with translations:

E(p, q) = {p→ q, q→ p} and E(p) = {p ∧ 1 ≈ 1}.

Finitary extensions of SL correspond to quasivarieties of
SL-algebras.
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Almost (MP)-based logics: definition

Definition
Let bDT be a set of ?-formulae. A substructural logic L is almost
(MP)-based w.r.t. the set of basic deduction terms bDT if:

L has a presentation where the only deduction rules are
modus ponens and {ϕ ` γ(ϕ) | ϕ ∈ FmLSL , γ ∈ bDT},

the set bDT is closed under all ?-substitutions σ such that
σ(?) = ? , and

for each β ∈ bDT and each formulae ϕ,ψ, there exist
β1, β2 ∈ bDT∗ such that:

`L β1(ϕ→ ψ)→ (β2(ϕ)→ β(ψ)).

L is called (MP)-based if it admits the empty set as a set of basic
deduction terms.
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New Hilbert-system AS for SL – axioms

(Adj&) ϕ→ (ψ → ψ & ϕ)

(Adj& ) ϕ→ (ψ  ϕ& ψ)

(&∧) (ϕ ∧ 1) & (ψ ∧ 1)→ ϕ ∧ ψ
(∧1) ϕ ∧ ψ → ϕ

(∧2) ϕ ∧ ψ → ψ

(∧3) (χ→ ϕ) ∧ (χ→ ψ)→ (χ→ ϕ ∧ ψ)

(∨1) ϕ→ ϕ ∨ ψ
(∨2) ψ → ϕ ∨ ψ
(∨3) (ϕ→ χ) ∧ (ψ → χ)→ (ϕ ∨ ψ → χ)

(Push) ϕ→ (1→ ϕ)

(Pop) (1→ ϕ)→ ϕ

(Res′) ψ & (ϕ& (ϕ→ (ψ → χ)))→ χ

(Res′ ) (ϕ& (ϕ→ (ψ  χ))) & ψ → χ

(T′) (ϕ→ (ϕ& (ϕ→ ψ)) & (ψ → χ))→ (ϕ→ χ)

(T′
 ) (ϕ ((ϕ ψ) & ϕ) & (ψ → χ))→ (ϕ χ)
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New Hilbert-system AS for SL – rules

(MP) ϕ,ϕ→ ψ ` ψ
(Adju) ϕ ` ϕ ∧ 1

(α) ϕ ` δ & ε→ δ & (ε& ϕ)

(α′) ϕ ` δ & ε→ (δ & ϕ) & ε

(β) ϕ ` δ → (ε→ (ε& δ) & ϕ)

(β′) ϕ ` δ → (ε (δ & ε) & ϕ)
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SL is almost (MP)-based

Theorem
AS is an axiomatic system for SL.

Definition
Given arbitrary formulae δ, ε, we define the following ?-formulae:

αδ,ε = (δ & ε→ δ & (ε& ?))

α′δ,ε = (δ & ε→ (δ & ?) & ε)

βδ,ε = (δ → (ε→ (ε& δ) & ?)

β′δ,ε = (δ → (ε (δ & ε) & ?)

Theorem
SL is almost (MP)-based with respect to the set

bDTSL = {αδ,ε, α′δ,ε, βδ,ε, β′δ,ε, ? ∧ 1, | δ, ε formulae}.
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Simplifications in extensions

Logic L bDTL

SL {αδ,ε, α′δ,ε, βδ,ε, β′δ,ε, ? ∧ 1 | δ, ε formulae}
SLw {αδ,ε, α′δ,ε, βδ,ε, β′δ,ε | δ, ε formulae}
SLe {αδ,ε, βδ,ε, ? ∧ 1 | δ, ε formulae}
SLew {αδ,ε, βδ,ε | δ, ε formulae}
SLa {λε, ρε, ? ∧ 1 | ε a formula}
SLae {? ∧ 1}
SLaew ∅

Recall the conjugates in FL: λε = ε→ ?& ε and ρε = ε ε& ?.
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Semilinear logics

Definition
Let L be a expansion of SL and let K be the class of all L-chains.
We say that L is semilinear if one of the following equivalent
conditions is met:

For every set of formulae Γ ∪ {ϕ} we have:

Γ `L ϕ if, and only if, Γ |=K ϕ.

For every set of formulae Γ ∪ {ϕ,ψ, χ} we have:

Γ, ϕ→ ψ `L χ and Γ, ψ → ϕ `L χ imply Γ `L χ.

K is the class of all relatively finitely subdirectly irreducible
L-algebras.
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Axiomatization of semilinear extensions

Given L, we define L` as the least semilinear logic extending L (i.e.
the logic of L-chains).

Theorem
Let L be an almost (MP)-based logic with the set bDT of basic
deductive terms. Then L` is axiomatized, relatively to L, by any of
the following four sets of axioms/rules:

A γ1(ϕ→ ψ) ∨ γ2(ψ → ϕ), for every γ1, γ2 ∈ (bDT ∪ {? ∧ 1})∗

B (ϕ→ ψ) ∨ (ψ → ϕ)

(ϕ→ ψ) ∨ χ, ϕ ∨ χ ` ψ ∨ χ
ϕ ∨ ψ ` γ(ϕ) ∨ ψ, for every γ ∈ bDT

C ((ϕ→ ψ) ∧ 1) ∨ γ((ψ → ϕ) ∧ 1), for every γ ∈ bDT ∪ {?}

D (ϕ ∨ ψ → ψ) ∨ γ(ϕ ∨ ψ → ψ), for every γ ∈ bDT ∪ {? ∧ 1}
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Proof of strong completeness w.r.t. standard chains

dp-chain

Doubly pointed chain: A = 〈A,∧,∨, 0, 1〉 a chain endowed with
additional constants 0, 1.

rt-groupoid

Semiunital residuated totally ordered groupoid:
A = 〈A,∧,∨, ·, \, /, 0, 1〉 such that 〈A,∧,∨, 0, 1〉 is a dp-chain
satisfying x ≤ (1 · x) ∧ (x · 1) and for all a, b, c ∈ A we have

a · b ≤ c iff b ≤ a\c iff a ≤ c/b .

SL-chain
Unital residuated totally ordered groupoid: rt-groupoid satisfying
1 · x = x = x · 1
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The proof – 1

Suppose that we have a countable nontrivial SL-chain
A = 〈A,∧,∨, ◦A, \A, /A, 0, 1〉

We extend its reduct 〈A,∧,∨, 0, 1〉 to a bounded countably
infinite dense dp-chain 〈D,∧,∨, 0, 1〉 and get closure and
interior operators γ and σ s.t. γ[D] = σ[D] = A.

a′

a

=⇒

σ(x)

γ(x)

x Q ∩ (0, 1)

A D
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Petr Cintula, Rostislav Horčík, and Carles Noguera The quest for the basic fuzzy logic



The proof – 2

We build a bounded rt-groupoid
D = 〈D,∧,∨, ◦D, \D, /D, 0, 1〉

x◦Dy = γ(x)◦Aγ(y) x/Dy = σ(x)/Aγ(y) x\Dy = γ(x)\Aσ(y)

We build a bounded SL-chain
M(D) = 〈D,∧,∨,�,→, 0, 1〉

x� y =


> if x, y > 1,
⊥ if x = ⊥ or y = ⊥,
x ∧ y if x, y ≤ 1,
x ∨ y otherwise.
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The proof – 3

Then we we build
D ∧M(D) = 〈D,∧,∨, ◦, \, /, 0, 1〉

a ◦ b = (a ◦D b) ∧ (a ◦M(D) b) ,

a\b = (a\Db) ∨ (a\M(D)b) , a/b = (a/Db) ∨ (a/M(D)b) .

which is a bounded countably infinite dense SL-chain.

The identity map is an embedding of A into D ∧M(D).
Finally we embed [Galatos-Jipsen] D ∧M(D) into a complete
SL-chain which has to be isomorphic with some standard one.
Morever, the embedding preserves existing suprema and
infima.
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The identity map is an embedding of A into D ∧M(D).
Finally we embed [Galatos-Jipsen] D ∧M(D) into a complete
SL-chain which has to be isomorphic with some standard one.

Morever, the embedding preserves existing suprema and
infima.
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Core semilinear logics

Definition

A logic L is a core semilinear logic if it expands SL` by some sets of
axioms Ax and rules R such that for each 〈Γ, ϕ〉 ∈ R and every
formula ψ we have:

Γ ∨ ψ `L ϕ ∨ ψ,
where by Γ ∨ ψ we denote the set {χ ∨ ψ | χ ∈ Γ}.
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Conclusions

SL` is a very weak logic (it does not even satisfy associativity)

SL` is a basic fuzzy logic:
1 SL` has standard completness (even at first-order level).
2 Core semilinear logics are a framework (based on SL`)

encompassing virtually all fuzzy logics.

BL should be renamed to HL (Hájek Logic).
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