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• Zadeh introduced his Fuzzy Sets in 1965.
• In 1968–9 Goguen outlined some characteristic features fuzzy
logic should obey; in his article The logic of inexact concepts he
game to a conclusion that complete residuated lattices should have
a similar role to fuzzy logic than Boolean algebras have to Classical
Logic.
• In 1979 Pavelka published a series of articles On Fuzzy Logic I,
II, III, in which he discussed the matter in depth. This meant a
generalization of Classical Logic in such a way that axioms,
theories, theorems, and tautologies need not be only fully true or
fully false, but may be also true to a degree and, therefore, giving
rise to such concepts as fuzzy theories, fuzzy set of axioms,
many-valued rules of inference, provability degree, truth degree,
fuzzy consequence operation etc.
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Pavelka’s definitions and concepts are meaningful in any fixed
complete residuated lattice L. Given L-valued (fuzzy sub-)sets
X ,Y , a fuzzy consequence operation C satisfies

I X ≤ C(X ),

I if X ≤ Y then C(X ) ≤ C(Y ),

I C(X ) = C(C(X )).

The main question is: how to define a semantic consequence
operation Csem and a syntactic consequence operation Csyn and
when do they coincide, i.e.

Csem(X )(α) = Csyn(X )(α) for all X and all α ∈ X .

Pavelka 1979: If L = [0, 1] the answer is affirmative iff L is an
MV-algebra.
Turunen 1995: affirmative if L is an injective MV-algebra.
New: the answer is affirmative iff L is a complete MV-algebra.
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The set of atomic formulas F0 is composed of propositional
variables p, q, r, s, · · · and truth constants a corresponding to
elements a ∈ L; they generalize the classical truth constants ⊥ and
>. The set F of all formulas is then constructed in the usual way.
Any mapping v : F0 → L such that v(a) = a for all truth constants
a can be extended recursively into the whole F by setting

v(α imp β) = v(α)→ v(β) and
v(α and β) = v(α)� v(β).

Such mappings v are called valuations. The truth degree of a wff
α is the infimum of all values v(α), that is

Csem(α) =
∧
{v(α) | v is a valuation }.
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We may also fix some set T ⊆ F of wffs and associate to each
α ∈ T a value T (α) determining its degree of truth. We consider
valuations v such that T (α) ≤ v(α) for all wffs α. If such a
valuation exists, then T is called satisfiable and v satisfies T . We
say that T is a fuzzy theory and the corresponding formulae α are
the special axioms Then we consider values

Csem(T )(α) =
∧
{v(α) | v is a valuation, v satisfies T }.
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The set of logical axioms in Pavelka’s Fuzzy Logic, denoted by A,
is composed by the following eleven forms of formulae; they receive
the value 1 in any valuation v (except (Ax. 7))

(Ax. 1) α imp α,
(Ax. 2) (α imp β) imp [(β imp γ) imp (α imp γ)],
(Ax. 3) (α1 imp β1) imp {(β2 imp α2) imp [(β1 imp β2) imp (α1 imp α2)]},
(Ax. 4) α imp 1,
(Ax. 5) 0 imp α,
(Ax. 6) (α and notα) imp β,
(Ax. 7) a,
(Ax. 8) α imp (β imp α),
(Ax. 9) (1 imp α) imp α,
(Ax. 10) [(α imp β) imp β] imp [(β imp α) imp α],
(Ax. 11) (notα imp notβ) imp (β imp α).
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A fuzzy rule of inference is a scheme

α1, · · · , αn , a1, · · · , an
r syn(α1, · · · , αn) r sem(a1, · · · , an)

where the wffs α1, · · · , αn are premises and the wff
r syn(α1, · · · , αn) is the conclusion. The values a1, · · · , an and
r sem(a1, · · · , an) ∈ L are the corresponding truth values. The
mappings r sem : Ln → L are semi-continuous, i.e.

r sem(a1, · · · ,
∨
j∈Γ

akj , · · · , an) =
∨
j∈Γ

r sem(a1, · · · , akj , · · · , an) (1)

holds for all 1 ≤ k ≤ n. Moreover, the fuzzy rules are required to
be sound in the sense that

r sem(v(α1), · · · , v(αn)) ≤ v(r syn(α1, · · · , αn))

holds for all valuations v .
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Remark 1 The semi-continuity condition (1) can be replaced
without any dramatic consequences by isotonicity condition (which
is a weaker condition): if ak ≤ bk , then

r sem(a1, · · · , ak , · · · , an) ≤ r sem(a1, · · · , bk , · · · , an) (2)

for each index 1 ≤ k ≤ n.
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The following Pavelka’s fuzzy rules of inference, a set R.
Generalized Modus Ponens:

α, α imp β , a, b

β a� b

a-Consistency testing rules:

a , b
0 c

where a is a truth constant and c = 0 if b ≤ a and c = 1 otherwise.
a-Lifting rules:

α , b
a imp α a→ b

where a is a truth constant.
Rule of Bold Conjunction:

α, β , a, b
α and β a� b
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It is easy to see that also a Rule of Bold Disjunction (not included
in the list of Pavelka)

α, β , a, b

α or β a⊕ b

is a rule of inference in Pavelka’s sense. Indeed, isotonicity of r sem

follows by the isotonicity of the MV-operation ⊕ and soundness
can be verified by taking a valuation v and observing that

r sem(v(α), v(β)) = v(α)⊕ v(β)
= v(α or β)
= v(r syn(α, β)).

This rule will be essential in Perfect Pavelka Logic.
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A meta proof (called R-proof by Pavelka) w of a wff α in a fuzzy
theory T is a finite sequence

α1 , a1
...

...
αm , am, the degree of the meta proof w

(i) αm = α,
(ii) for each i , 1 ≤ i ≤ m, αi is a logical axiom, or is a special
axiom of a fuzzy theory T , or there is a fuzzy rule of inference and
well formed formulae αi1 , · · · , αin with i1, · · · , in < i such that
αi = r syn(αi1 , · · · , αin),
(iii) for each i , 1 ≤ i ≤ m, the value ai ∈ L is given by

ai =


a if αi is the truth constant axiom a,
1 if αi is some other logical axiom in the set A,
T (αi ) if αi is a special axiom of a fuzzy theory T ,
r sem(ai1 , · · · , ain ) if αi = r syn(αi1 , · · · , αin ).
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Since a wff α may have various meta proofs with different degrees,
we define the provability degree of a formula α to be the
supremum of all such values, i.e.,

Csyn(T )(α) =
∨
{am | w is a meta proof for α in T }.
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In particular, Csyn(T )(α) = 0 means that either α does not have
any meta proof or that for any meta proof w of α the value
am = 0. A fuzzy theory T is consistent if Csem(T )(a) = a for all
truth constants a. Any satisfiable fuzzy theory is consistent.
Completeness of Pavelka’s Sentential Logic:

If T is consistent, then Csem(T )(α) = Csyn(T )(α) for any wff α.

Thus, in Pavelka’s Fuzzy Sentential Logic we may talk about
theorems of a degree a and tautologies of a degree b for a, b ∈ L,
and these two values coincide for any formula α.
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Let us now modify Pavelka approach such that L is a complete
MV-algebra.
Axioms and rules of inference are the schemas (Ax.1) – (Ax.11)
and the following

(Ax.12) [α or (notα and β)] imp [(α imp β) imp β],
(Ax.13) a imp b,

where α, β are wffs and a, b are truth constants.

The axioms (Ax.12) obtain value 1 in all valuations, and axioms
(Ax.13), called book–keeping axioms, obtain a value a→ b.

Rules of inference are those of the original Pavelka logic and the
Rule of Bold Disjunction
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We need the following definitions and results to obtain
Completeness of Complete MV–algebra valued Pavelka logic.

A fuzzy theory T is consistent if CsemT (a) = a for all truth
constants a, otherwise it is inconsistent.

Proposition 2 A fuzzy theory T is inconsistent iff T `1 α holds
for any wff α.

Proposition 3 A fuzzy theory T is inconsistent iff the following
condition holds:

(C) There is a wff α and meta proofs w ,w ′ with degrees am, bm′

for α and notα, respectively, such that 0 < am � bm′ .
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Proposition 4 A satisfiable fuzzy theory T is consistent.

Proposition 5 If T `a α then T `1 (a imp α).

Proposition 6 T `1 [(α and β) imp α] holds for any fuzzy
theory T .

Proposition 7 If T is a consistent fuzzy theory and T `a α,
then it holds that T `0 (nota and α).
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Assume T is a consistent fuzzy theory. Define

α ≡ β if, and only if T `1 (α imp β) and T `1 (β imp α).

We obtain a congruence relation; denote the equivalence classes by
|α| and by F/≡ the set of all equivalence classes. Then we have

Proposition 8 Define |α| → |β| = |α imp β| and
|α|∗ = |notα|.
Then 〈F/≡,→,∗ , |1|〉 is a Wajsberg algebra and, hence, an
MV–algebra.

Even more can be proved:

Proposition 9 Assume T is a consistent fuzzy theory. If
T `a α then |α| = |a| in F/≡.
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Thus F/≡ is completely determined by the truth constants, which
in turn are in one–to–one correspondence with the elements of L.
Therefore there is an MV–isomorphism κ : (F/≡)→ L given by
κ(|a|) = a, in particular κ(|1|) = 1.

Let π be the canonical mapping π : F → F/≡. Then κ ◦ π is the
valuation in demand; if T `a α then κ ◦ π(α) = κ(|a|) = a. In
conclusion, we write

Completeness Theorem 1
Consider complete MV–algebra valued Pavelka style fuzzy
sentential logic. If a formula α is provable at a degree a ∈ L in a
consistent fuzzy theory T , then α is also a tautology at a degree a
i.e. its truth degree is a.
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As well known, a necessary condition for Pavelka style
completeness is that the truth value set is a complete MV–algebra.
By Completeness Theorem 1 we have that it is also a sufficient
condition, i.e. we have

Completeness Theorem 2
Pavelka style fuzzy sentential logic is semantically complete if, and
only if the set of truth values constitutes a complete MV–algebra.
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We have studied Pavelka’s fuzzy sentential logic and proved that it
is semantically complete if, and only if the set of truth values
constitutes a complete MV–algebra. However, a number of issues
are still open, first of them concerns the completeness of first order
logic. We conjecture that a similar result also applies to the first
order Pavelka style fuzzy logic. Also the simplification of the
presentation of is an open question; the set of inference rules can
probably be reduced and the set of logical axioms is not a minimal
one; the new axiom (Ax 12.) is redundant. From an application
point of view it is also important that the set of truth constants
could be reduced to a countable set; in this study the language
under consideration is uncountable. All these issues are topics for a
future work.
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