Models of set theory in Łukasiewicz logic

Zuzana Haniková

Institute of Computer Science
Academy of Sciences of the Czech Republic

Prague seminar on non-classical mathematics
11 – 13 June 2015

(joint work with Petr Hájek)
Why fuzzy set theory?

- try to capture a mathematical world: develop fuzzy mathematics (indicate a direction)
- study the notion of a set, and rudimentary notions of set theory (some properties may be available on a limited scale; classically equivalent notions need not be available in a weak setting)
- wider set-theoretic universe: recast the classical universe of sets as a subuniverse of the universe of fuzzy sets
- Explore the limits of (relative) consistency. (Which logics allow for an interpretation of classical ZF? Which logics give a consistent system?)
Why fuzzy set theory?

- **try to capture a mathematical world**: develop fuzzy mathematics (indicate a direction)
- study the notion of a set, and rudimentary notions of set theory (some properties may be available on a limited scale; classically equivalent notions need not be available in a weak setting)
- wider set-theoretic universe: recast the classical universe of sets as a subuniverse of the universe of fuzzy sets
- Explore the limits of (relative) consistency. (Which logics allow for an interpretation of classical ZF? Which logics give a consistent system?)
Why fuzzy set theory?

- try to **capture a mathematical world**: develop fuzzy mathematics (indicate a direction)
- study the notion of a set, and rudimentary notions of set theory (some properties may be available on a limited scale; classically equivalent notions need not be available in a weak setting)
- wider set-theoretic universe: recast the classical universe of sets as a subuniverse of the universe of fuzzy sets
- Explore the limits of (relative) consistency. (Which logics allow for an interpretation of classical ZF? Which logics give a consistent system?)
Why fuzzy set theory?

- try to **capture a mathematical world**: develop fuzzy mathematics (indicate a direction)
- study the notion of a set, and rudimentary notions of set theory (some properties may be available on a limited scale; classically equivalent notions need not be available in a weak setting)
- wider set-theoretic universe: recast the classical universe of sets as a subuniverse of the universe of fuzzy sets
- Explore the limits of (relative) consistency. (Which logics allow for an interpretation of classical ZF? Which logics give a consistent system?)
Why fuzzy set theory?

- try to **capture a mathematical world**: develop fuzzy mathematics (indicate a direction)

- study the notion of a set, and rudimentary notions of set theory (some properties may be available on a limited scale; classically equivalent notions need not be available in a weak setting)

- wider set-theoretic universe: recast the classical universe of sets as a subuniverse of the universe of fuzzy sets

- **Explore the limits of (relative) consistency**. (Which logics allow for an interpretation of classical ZF? Which logics give a consistent system?)
Programme

Work with classical metamathematics.

Consider a logic L, magenta weaker than classical logic. (Also, with well-developed algebraic semantics.)

Consider an axiomatic set theory T, governed by L.

The theory T should:
- generate a cumulative universe of sets
- be provably distinct from the classical set theory
- be reasonably strong
- be consistent (relative to ZF)

Between classical and non-classical:
classical set-theoretic universe is a sub-universe of the non-classical one
Programme

Work with classical metamathematics.

Consider a logic L, magenta weaker than classical logic. (Also, with well-developed algebraic semantics.)

Consider an axiomatic set theory T, governed by L.

The theory T should:
- generate a cumulative universe of sets
- be provably distinct from the classical set theory
- be reasonably strong
- be consistent (relative to ZF)

Between classical and non-classical: classical set-theoretic universe is a sub-universe of the non-classical one
Work with classical metamathematics.

Consider a logic L, magenta weaker than classical logic.
(Also, with well-developed algebraic semantics.)

Consider an axiomatic set theory T, governed by L.

The theory T should:

- generate a cumulative universe of sets
- be provably distinct from the classical set theory
- be reasonably strong
- be consistent (relative to ZF)

Between classical and non-classical:

classical set-theoretic universe is a sub-universe of the non-classical one
Work with classical metamathematics.

Consider a logic L, magenta weaker than classical logic. (Also, with well-developed algebraic semantics.)

Consider an axiomatic set theory T, governed by L.

The theory T should:

- generate a cumulative universe of sets
- be provably distinct from the classical set theory
- be reasonably strong
- be consistent (relative to ZF)

Between classical and non-classical:

classical set-theoretic universe is a sub-universe of the non-classical one
Programme

Work with classical metamathematics.

Consider a logic L, magenta weaker than classical logic. (Also, with well-developed algebraic semantics.)

Consider an axiomatic set theory T, governed by L.

The theory T should:

- generate a cumulative universe of sets
- be provably distinct from the classical set theory
- be reasonably strong
- be consistent (relative to ZF)

Between classical and non-classical:

classical set-theoretic universe is a sub-universe of the non-classical one
Work with classical metamathematics.

Consider a logic L, magenta weaker than classical logic.
(Also, with well-developed algebraic semantics.)

Consider an axiomatic set theory T, governed by L.

The theory T should:

- generate a cumulative universe of sets
- be provably distinct from the classical set theory
- be reasonably strong
- be consistent (relative to ZF)

Between classical and non-classical:

classical set-theoretic universe is a sub-universe of the non-classical one
Plan for talk

1. Logics without the contraction rule
2. Łukasiewicz logic
3. A set theory can strengthen its logic
4. A-valued universes
5. the theory FST (over Ł)
6. generalizations
Consider propositional language \mathcal{F}.
(FL_{ew}-language: $\{\cdot, \rightarrow, \land, \lor, 0, 1\}$.)

A logic in a language \mathcal{F} is a set of formulas closed under substitution and deduction.

“Substructural” — absence of some structural rules (of the Gentzen calculus for INT).
In particular, FL_{ew} is contraction free.

Structural rules:

\[
\begin{array}{c}
\frac{\Gamma, \phi, \psi, \Delta \Rightarrow \chi}{\Gamma, \psi, \phi, \Delta \Rightarrow \chi} \quad (e) \\
\frac{\Gamma, \Delta \Rightarrow \chi}{\Gamma, \phi, \Delta \Rightarrow \chi} \quad (w) \\
\frac{\Gamma, \phi, \psi, \Delta \Rightarrow \chi}{\Gamma, \phi, \Delta \Rightarrow \chi} \quad (c)
\end{array}
\]

Removal of these rules calls for some changes:

- splitting of connectives
- changes to interpretation of a sequent

NB: FL_{ew} is equivalent to Höhle’s monoidal logic (ML).
A family of substructural logics: FL_{ew} and extensions

Consider propositional language \mathcal{F}.
(FL_{ew}-language: $\{\cdot, \to, \land, \lor, 0, 1\}$.)

A logic in a language \mathcal{F} is a set of formulas closed under substitution and deduction.

"Substructural" — absence of some structural rules (of the Gentzen calculus for INT).
In particular, FL_{ew} is contraction free.

Structural rules:

\[
\frac{\Gamma, \varphi, \psi, \Delta \Rightarrow \chi}{\Gamma, \psi, \varphi, \Delta \Rightarrow \chi} \quad (e)
\]
\[
\frac{\Gamma, \Delta \Rightarrow \chi}{\Gamma, \varphi, \Delta \Rightarrow \chi} \quad (w)
\]
\[
\frac{\Gamma, \varphi, \varphi, \Delta \Rightarrow \chi}{\Gamma, \varphi, \Delta \Rightarrow \chi} \quad (c)
\]

Removal of these rules calls for some changes:
- splitting of connectives
- changes to interpretation of a sequent

NB: FL_{ew} is equivalent to H"ohle’s monoidal logic (ML).
Consider propositional language \mathcal{F}.

(FL_{ew}-language: $\{\cdot, \to, \land, \lor, 0, 1\}$.)

A logic in a language \mathcal{F} is a set of formulas closed under substitution and deduction.

"Substructural" — absence of some structural rules (of the Gentzen calculus for INT).

In particular, FL_{ew} is contraction free.

Structural rules:

$$\frac{\Gamma, \varphi, \psi, \Delta \Rightarrow \chi}{\Gamma, \psi, \varphi, \Delta \Rightarrow \chi} \quad (e) \quad \frac{\Gamma, \Delta \Rightarrow \chi}{\Gamma, \varphi, \Delta \Rightarrow \chi} \quad (w) \quad \frac{\Gamma, \varphi, \varphi, \Delta \Rightarrow \chi}{\Gamma, \varphi, \Delta \Rightarrow \chi} \quad (c)$$

Removal of these rules calls for some changes:

- splitting of connectives
- changes to interpretation of a sequent

NB: FL_{ew} is equivalent to Höhle’s monoidal logic (ML).
Consider propositional language \mathcal{F}.
(FL_{ew}-language: $\{\cdot, \rightarrow, \land, \lor, 0, 1\}$.)

A logic in a language \mathcal{F} is a set of formulas closed under substitution and deduction.

“Substructural” — absence of some structural rules (of the Gentzen calculus for INT). In particular, FL_{ew} is contraction free.

Structural rules:

\[
\frac{\Gamma, \varphi, \psi, \Delta \Rightarrow \chi}{\Gamma, \psi, \varphi, \Delta \Rightarrow \chi} \quad (e) \quad \frac{\Gamma, \Delta \Rightarrow \chi}{\Gamma, \varphi, \Delta \Rightarrow \chi} \quad (w) \quad \frac{\Gamma, \varphi, \varphi, \Delta \Rightarrow \chi}{\Gamma, \varphi, \Delta \Rightarrow \chi} \quad (c)
\]

Removal of these rules calls for some changes:

- splitting of connectives
- changes to interpretation of a sequent

NB: FL_{ew} is equivalent to H"ohle’s monoidal logic (ML).
A family of substructural logics: FL_{ew} and extensions

Consider propositional language \mathcal{F}.
(FL_{ew}-language: $\{\cdot, \rightarrow, \wedge, \vee, 0, 1\}$.)

A logic in a language \mathcal{F} is a set of formulas closed under substitution and deduction.

“Substructural” — absence of some structural rules (of the Gentzen calculus for INT).
In particular, FL_{ew} is contraction free.

Structural rules:

\begin{align*}
&\Gamma, \varphi, \psi, \Delta \Rightarrow \chi \\
&\frac{\Gamma, \varphi, \psi, \Delta \Rightarrow \chi}{\Gamma, \psi, \varphi, \Delta \Rightarrow \chi} \quad (e) \\
&\frac{\Gamma, \Delta \Rightarrow \chi}{\Gamma, \varphi, \Delta \Rightarrow \chi} \quad (w) \\
&\frac{\Gamma, \varphi, \varphi, \Delta \Rightarrow \chi}{\Gamma, \varphi, \Delta \Rightarrow \chi} \quad (c)
\end{align*}

Removal of these rules calls for some changes:

- splitting of connectives
- changes to interpretation of a sequent

NB: FL_{ew} is equivalent to H"ohle’s monoidal logic (ML).
Consider propositional language \mathcal{F}.
(FL_{ew}-language: $\{\cdot, \to, \wedge, \vee, 0, 1\}$.)

A logic in a language \mathcal{F} is a set of formulas closed under substitution and deduction.

“Substructural” — absence of some structural rules (of the Gentzen calculus for INT). In particular, FL_{ew} is contraction free.

Structural rules:

\[
\begin{align*}
\frac{\Gamma, \varphi, \psi, \Delta \Rightarrow \chi}{\Gamma, \psi, \varphi, \Delta \Rightarrow \chi} \quad (e) \quad \frac{\Gamma, \Delta \Rightarrow \chi}{\Gamma, \varphi, \Delta \Rightarrow \chi} \quad (w) \quad \frac{\Gamma, \varphi, \psi, \Delta \Rightarrow \chi}{\Gamma, \varphi, \Delta \Rightarrow \chi} \quad (c)
\end{align*}
\]

Removal of these rules calls for some changes:

- splitting of connectives
- changes to interpretation of a sequent

NB: FL_{ew} is equivalent to Höhle’s monoidal logic (ML).
Consider propositional language \mathcal{F}.
(FL$_{ew}$-language: $\{\cdot, \rightarrow, \land, \lor, 0, 1\}$.)

A logic in a language \mathcal{F} is a set of formulas closed under substitution and deduction.

“Substructural” — absence of some structural rules (of the Gentzen calculus for INT). In particular, FL$_{ew}$ is contraction free.

Structural rules:

$$
\frac{\Gamma, \varphi, \psi, \Delta \Rightarrow \chi}{\Gamma, \psi, \varphi, \Delta \Rightarrow \chi} \quad (e) \\
\frac{\Gamma, \Delta \Rightarrow \chi}{\Gamma, \varphi, \Delta \Rightarrow \chi} \quad (w) \\
\frac{\Gamma, \varphi, \varphi, \Delta \Rightarrow \chi}{\Gamma, \varphi, \Delta \Rightarrow \chi} \quad (c)
$$

Removal of these rules calls for some changes:

- splitting of connectives
- changes to interpretation of a sequent

NB: FL$_{ew}$ is equivalent to H"ohle’s monoidal logic (ML).
A FL_{ew}-algebra is an algebra $A = \langle A, \cdot, \rightarrow, \wedge, \vee, 0, 1 \rangle$ such that:

1. $\langle A, \wedge, \vee, 0, 1 \rangle$ is a bounded lattice, 1 is the greatest and 0 the least element
2. $\langle A, \cdot, 1 \rangle$ is a commutative monoid
3. for all $x, y, z \in A$, $z \leq (x \rightarrow y)$ iff $x \cdot z \leq y$

FL_{ew} is the logic of FL_{ew}-algebras.

FL_{ew}-algebras form a variety;

the subvarieties correspond to axiomatic extensions of FL_{ew}.

A **FL\textsubscript{ew}-algebra** is an algebra $A = \langle A, \cdot, \to, \land, \lor, 0, 1 \rangle$ such that:

1. $\langle A, \land, \lor, 0, 1 \rangle$ is a bounded lattice, 1 is the greatest and 0 the least element
2. $\langle A, \cdot, 1 \rangle$ is a commutative monoid
3. for all $x, y, z \in A$, $z \leq (x \to y)$ iff $x \cdot z \leq y$

FL\textsubscript{ew} is the logic of FL\textsubscript{ew}-algebras.

FL\textsubscript{ew}-algebras form a variety;

the subvarieties correspond to axiomatic extensions of FL\textsubscript{ew}.
A FL\textsubscript{ew}-algebra is an algebra $A = \langle A, \cdot, \rightarrow, \wedge, \vee, 0, 1 \rangle$ such that:

1. $\langle A, \wedge, \vee, 0, 1 \rangle$ is a bounded lattice, 1 is the greatest and 0 the least element
2. $\langle A, \cdot, 1 \rangle$ is a commutative monoid
3. For all $x, y, z \in A$, $z \leq (x \rightarrow y)$ iff $x \cdot z \leq y$

FL\textsubscript{ew} is the logic of FL\textsubscript{ew}-algebras.

FL\textsubscript{ew}-algebras form a variety;

the subvarieties correspond to axiomatic extensions of FL\textsubscript{ew}.
Łukasiewicz logic

(More precisely, Łukasiewicz’s infinite-valued logic, ca. 1920. Denoted \(L \).)

Usually conceived in a narrower language, such as:

- \(\{+, \neg\} \)
- \(\{\rightarrow, \neg\} \) or \(\{\rightarrow, 0\} \)
- \(\{\cdot, \rightarrow, 0\} \)
- \(\ldots \)

Propositionally, the logic is given by the algebra

\[[0, 1]_L = \langle [0, 1], \cdot_L, \rightarrow_L, \min, \max, 0, 1 \rangle \]

with the natural order of the reals on \([0, 1]\), and

\[x \cdot_L y = \max(x + y - 1, 0) \]
\[x \rightarrow_L y = \min(1, 1 - x + y) \]

NB: all operations of \([0, 1]_L\) are continuous.
Hence, no two-valued operator is term-definable.
Łukasiewicz logic

(More precisely, Łukasiewicz’s infinite-valued logic, ca. 1920. Denoted L.)

Usually conceived in a narrower language, such as:

- $\{+, \neg\}$
- $\{\to, \neg\}$ or $\{\to, 0\}$
- $\{\cdot, \to, 0\}$
- \ldots

Propositionally, the logic is given by the algebra

$$[0, 1]_L = \langle [0, 1], \cdot_L, \to_L, \min, \max, 0, 1 \rangle$$

with the natural order of the reals on $[0, 1]$, and

- $x \cdot_L y = \max(x + y - 1, 0)$
- $x \to_L y = \min(1, 1 - x + y)$

NB: all operations of $[0, 1]_L$ are continuous.
Hence, no two-valued operator is term-definable.
More precisely, Łukasiewicz’s infinite-valued logic, ca. 1920. Denoted \(L \).

Usually conceived in a narrower language, such as:

- \(\{+, \neg\} \)
- \(\{\rightarrow, \neg\} \) or \(\{\rightarrow, 0\} \)
- \(\{\cdot, \rightarrow, 0\} \)
- \(\ldots \)

Propositionally, the logic is given by the algebra

\[
[0, 1]_L = \langle [0, 1], \cdot_L, \rightarrow_L, \min, \max, 0, 1 \rangle
\]

with the natural order of the reals on \([0, 1]\), and

\[
x \cdot_L y = \max(x + y - 1, 0)
\]
\[
x \rightarrow_L y = \min(1, 1 - x + y)
\]

NB: all operations of \([0, 1]_L\) are continuous.
Hence, no two-valued operator is term-definable.
Łukasiewicz logic

(More precisely, Łukasiewicz’s infinite-valued logic, ca. 1920. Denoted \mathbb{L}.)

Usually conceived in a narrower language, such as:

- $\{+, \neg\}$
- $\{\rightarrow, \neg\}$ or $\{\rightarrow, 0\}$
- $\{\cdot, \rightarrow, 0\}$
- \ldots

Propositionally, the logic is given by the algebra

$$[0, 1]_L = \langle [0, 1], \cdot_L, \rightarrow_L, \min, \max, 0, 1 \rangle$$

with the natural order of the reals on $[0, 1]$, and

\[x \cdot_L y = \max(x + y - 1, 0) \]
\[x \rightarrow_L y = \min(1, 1 - x + y) \]

NB: all operations of $[0, 1]_L$ are continuous.
Hence, no two-valued operator is term-definable.
Łukasiewicz logic — propositional axioms, completeness

Axioms:

- (Ł1) $\varphi \rightarrow (\psi \rightarrow \varphi)$
- (Ł2) $(\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$
- (Ł3) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$
- (Ł4) $((\varphi \rightarrow \psi) \rightarrow \psi) \rightarrow ((\psi \rightarrow \varphi) \rightarrow \varphi)$

Deduction rule: modus ponens.

General algebraic semantics: MV-algebras.

Propositional Łukasiewicz logic is
- strongly complete w.r.t. MV-algebras
- finitely strongly complete w.r.t. $[0, 1]_L$
Łukasiewicz logic — propositional axioms, completeness

Axioms:

- (Ł1) $\varphi \rightarrow (\psi \rightarrow \varphi)$
- (Ł2) $(\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$
- (Ł3) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$
- (Ł4) $((\varphi \rightarrow \psi) \rightarrow \psi) \rightarrow ((\psi \rightarrow \varphi) \rightarrow \varphi)$

Deduction rule: modus ponens.

General algebraic semantics: MV-algebras.

Propositional Łukasiewicz logic is

- strongly complete w.r.t. MV-algebras
- finitely strongly complete w.r.t. $[0, 1]_L$
Łukasiewicz logic with the Δ-projection

Semantics of Δ in a linearly ordered algebra A:

- $\Delta(x) = 1$ if $x = 1$
- $\Delta(x) = 0$ otherwise

Axioms:

- $(\Delta 1)$ $\Delta \varphi \lor \neg \Delta \varphi$
- $(\Delta 2)$ $\Delta(\varphi \lor \psi) \rightarrow (\Delta \varphi \lor \Delta \psi)$
- $(\Delta 3)$ $\Delta \varphi \rightarrow \varphi$
- $(\Delta 4)$ $\Delta \varphi \rightarrow \Delta \Delta \varphi$
- $(\Delta 5)$ $\Delta(\varphi \rightarrow \psi) \rightarrow (\Delta \varphi \rightarrow \Delta \psi)$

A deduction rule: $\varphi / \Delta \varphi$.

Models of set theory in Łukasiewicz logic
Semantics of Δ in a linearly ordered algebra A:

- $\Delta(x) = 1$ if $x = 1$
- $\Delta(x) = 0$ otherwise

Axioms:

- $(\Delta 1) \quad \Delta \varphi \lor \neg \Delta \varphi$
- $(\Delta 2) \quad \Delta (\varphi \lor \psi) \rightarrow (\Delta \varphi \lor \Delta \psi)$
- $(\Delta 3) \quad \Delta \varphi \rightarrow \varphi$
- $(\Delta 4) \quad \Delta \varphi \rightarrow \Delta \Delta \varphi$
- $(\Delta 5) \quad \Delta (\varphi \rightarrow \psi) \rightarrow (\Delta \varphi \rightarrow \Delta \psi)$

A deduction rule: $\varphi / \Delta \varphi$.
Łukasiewicz logic with the Δ-projection

Semantics of Δ in a linearly ordered algebra A:

- $\Delta(x) = 1$ if $x = 1$
- $\Delta(x) = 0$ otherwise

Axioms:

- ($\Delta 1$) $\Delta\varphi \lor \neg\Delta\varphi$
- ($\Delta 2$) $\Delta(\varphi \lor \psi) \rightarrow (\Delta\varphi \lor \Delta\psi)$
- ($\Delta 3$) $\Delta\varphi \rightarrow \varphi$
- ($\Delta 4$) $\Delta\varphi \rightarrow \Delta\Delta\varphi$
- ($\Delta 5$) $\Delta(\varphi \rightarrow \psi) \rightarrow (\Delta\varphi \rightarrow \Delta\psi)$

A deduction rule: $\varphi/\Delta\varphi$.
Assume the language \(\{\in, =\} \).

Let \(A \) be an MV-chain.

Tarski-style definition of the value \(\|\varphi\|_{A, M, v} \) of a formula \(\varphi \) in an \(A \)-structure \(M \) and evaluation \(v \) in \(M \); in particular,

- \(\ldots \)
- \(\|\forall x \varphi\|_{A, M, v} = \bigwedge_{v \equiv x, v'} \|\varphi\|_{A, M, v'} \)
- \(\|\exists x \varphi\|_{A, M, v} = \bigvee_{v \equiv x, v'} \|\varphi\|_{A, M, v'} \)

An \(A \)-structure \(M \) is safe if \(\|\varphi\|_{A, M, v} \) is defined for each \(\varphi \) and \(v \).

The truth value of a formula \(\varphi \) of a predicate language \(L \) in a safe \(A \)-structure \(M \) for \(L \) is

\[
\|\varphi\|_{A, M} = \bigwedge_{v \text{ an } M-\text{evaluation}} \|\varphi\|_{A, M, v}
\]
Assume the language \(\{\in, =\} \).

Let \(A \) be an MV-chain.

Tarski-style definition of the value \(\| \varphi \|_{M,v}^A \) of a formula \(\varphi \) in an \(A \)-structure \(M \) and evaluation \(v \) in \(M \); in particular,

\[
\| \forall x \varphi \|_{M,v}^A = \bigwedge_{v \in \mathcal{V} \backslash \{x\}} \| \varphi \|_{M,v'}^A \\
\| \exists x \varphi \|_{M,v}^A = \bigvee_{v \in \mathcal{V} \backslash \{x\}} \| \varphi \|_{M,v'}^A
\]

An \(A \)-structure \(M \) is safe if \(\| \varphi \|_{M,v}^A \) is defined for each \(\varphi \) and \(v \).

The truth value of a formula \(\varphi \) of a predicate language \(\mathcal{L} \) in a safe \(A \)-structure \(M \) for \(\mathcal{L} \) is

\[
\| \varphi \|_M^A = \bigwedge_{v \text{ an } M-\text{evaluation}} \| \varphi \|_{M,v}^A
\]
Assume the language \{\in, =\}.

Let \(A \) be an MV-chain.

Tarski-style definition of the value \(\| \varphi \|_{A, M, v} \) of a formula \(\varphi \) in an \(A \)-structure \(M \) and evaluation \(v \) in \(M \); in particular,

\[\begin{align*}
\| \forall x \varphi \|_{A, M, v} &= \bigwedge_{v \equiv x, v'} \| \varphi \|_{A, M, v'} \\
\| \exists x \varphi \|_{A, M, v} &= \bigvee_{v \equiv x, v'} \| \varphi \|_{A, M, v'}
\end{align*} \]

An \(A \)-structure \(M \) is safe if \(\| \varphi \|_{A, M, v} \) is defined for each \(\varphi \) and \(v \).

The truth value of a formula \(\varphi \) of a predicate language \(L \) in a safe \(A \)-structure \(M \) for \(L \) is

\[\| \varphi \|_{A, M} = \bigwedge_{v \text{ an } M-\text{evaluation}} \| \varphi \|_{A, M, v} \]
Assume the language \(\{\in, =\} \).

Let \(A \) be an MV-chain.

Tarski-style definition of the value \(\|\varphi\|_{A, M, v} \) of a formula \(\varphi \) in an \(A \)-structure \(M \) and evaluation \(v \) in \(M \); in particular,

- \(\ldots \)\)
- \(\|\forall x \varphi\|_{A, M, v} = \bigwedge_{v \equiv x, v'} \|\varphi\|_{A, M, v'} \)
- \(\|\exists x \varphi\|_{A, M, v} = \bigvee_{v \equiv x, v'} \|\varphi\|_{A, M, v'} \)

An \(A \)-structure \(M \) is safe if \(\|\varphi\|_{A, M, v} \) is defined for each \(\varphi \) and \(v \).

The truth value of a formula \(\varphi \) of a predicate language \(L \) in a safe \(A \)-structure \(M \) for \(L \) is

\[
\|\varphi\|_M = \bigwedge_{v \text{ an } M \text{—evaluation}} \|\varphi\|_{A, M, v}
\]
Assume the language \{\in, =\}.

Let \(A\) be an MV-chain.

Tarski-style definition of the value \(\|\varphi\|^A_{M, v}\) of a formula \(\varphi\) in an \(A\)-structure \(M\) and evaluation \(v\) in \(M\); in particular,

- \(\cdots\)
- \(\|\forall x \varphi\|^A_{M, v} = \bigwedge_{v \equiv x, v'} \|\varphi\|^A_{M, v'}\)
- \(\|\exists x \varphi\|^A_{M, v} = \bigvee_{v \equiv x, v'} \|\varphi\|^A_{M, v'}\)

An \(A\)-structure \(M\) is safe if \(\|\varphi\|^A_{M, v}\) is defined for each \(\varphi\) and \(v\).

The truth value of a formula \(\varphi\) of a predicate language \(L\) in a safe \(A\)-structure \(M\) for \(L\) is

\[\|\varphi\|^A_M = \bigwedge_{v \text{ an } M-\text{evaluation}} \|\varphi\|^A_{M, v}\]
Assume the language \{\in, =\}.

Let \(A\) be an MV-chain.

Tarski-style definition of the value \(\|\varphi\|_{M,v}^A\) of a formula \(\varphi\) in an \(A\)-structure \(M\) and evaluation \(v\) in \(M\); in particular,

- \(\ldots\)
- \(\|\forall x \varphi\|_{M,v}^A = \bigwedge_{v \equiv x v'} \|\varphi\|_{M,v'}^A\)
- \(\|\exists x \varphi\|_{M,v}^A = \bigvee_{v \equiv x v'} \|\varphi\|_{M,v'}^A\)

An \(A\)-structure \(M\) is safe if \(\|\varphi\|_{M,v}^A\) is defined for each \(\varphi\) and \(v\).

The truth value of a formula \(\varphi\) of a predicate language \(\mathcal{L}\) in a safe \(A\)-structure \(M\) for \(\mathcal{L}\) is

\[
\|\varphi\|_M^A = \bigwedge_{\nu \text{ an } M\text{-evaluation}} \|\varphi\|_{M,\nu}^A
\]
Łukasiewicz logic — first-order axioms

Axioms for quantifiers \forall, \exists:

$(\forall 1)$ $\forall x \varphi(x) \to \varphi(t)$ (t substitutable for x in φ)

$(\exists 1)$ $\varphi(t) \to \exists x \varphi(x)$ (t substitutable for x in φ)

$(\forall 2)$ $\forall x (\chi \to \varphi) \to (\chi \to \forall x \varphi)$ (x not free in χ)

$(\exists 2)$ $\forall x (\varphi \to \chi) \to (\exists x \varphi \to \chi)$ (x not free in χ)

$(\forall 3)$ $\forall x (\varphi \lor \chi) \to (\forall x \varphi \lor \chi)$ (x not free in χ)

The rule of generalization: from φ entail $\forall x \varphi$.

NB: the two quantifiers are interdefinable in \mathcal{L}.
Equality axioms for set-theoretic language:
- reflexivity
- symmetry
- transitivity
- congruence \(\forall x, y, z (x = y \land z \in x \rightarrow z \in y) \)
- congruence \(\forall x, y, z (x = y \land y \in z \rightarrow x \in z) \)

Moreover (for reasons given below), we postulate the law of the excluded middle for equality:
- \(\forall x, y (x = y \lor \neg(x = y)) \)
Theorem

Let \(T \cup \{\varphi\} \) be a set of sentences. Then \(T \vdash_L \varphi \) iff for each MV-chain \(A \) and each safe \(A \)-model \(M \) of \(T \), \(\varphi \) holds in \(M \).

NB: for a general language \(\mathcal{L} \), the truths of \([0,1]_\mathcal{L}\) are not recursively axiomatizable (in fact, they are \(\Pi_2 \)-complete).

Analogous completeness for the expansion with \(\Delta \).
Łukasiewicz logic

Theorem

Let \(T \cup \{\varphi\} \) be a set of sentences. Then \(T \vdash_{L} \varphi \) iff for each MV-chain \(A \) and each safe \(A \)-model \(M \) of \(T \), \(\varphi \) holds in \(M \).

NB: for a general language \(\mathcal{L} \), the truths of \([0,1]_{\mathcal{L}} \) are not recursively axiomatizable (in fact, they are \(\Pi_{2} \)-complete).

Analogous completeness for the expansion with \(\Delta \).
Theorem

Let $T \cup \{\varphi\}$ be a set of sentences. Then $T \vdash_L \varphi$ iff for each MV-chain A and each safe A-model M of T, φ holds in M.

NB: for a general language \mathcal{L}, the truths of $[0, 1]_\mathcal{L}$ are not recursively axiomatizable (in fact, they are Π_2-complete).

Analogous completeness for the expansion with Δ.
Let \(L \) be a consistent \(FL_{ew} \)-extension.
Let \(T \) be a theory over \(L \).
If \(T \) proves \(\varphi \lor \neg\varphi \) for an arbitrary \(\varphi \), then
\(T \) is a theory over classical logic.

In other words,

adding the law of excluded middle (LEM): \(\varphi \lor \neg\varphi \) to \(FL_{ew} \) yields classical logic.

Example: Grayson’s proof of LEM from axiom of regularity:
Let \(\{\emptyset \upharpoonright \varphi\} \) stand for \(\{x \mid x = \emptyset \land \varphi\} \).
Consider \(z = \{\emptyset \upharpoonright \varphi, 1\} \) (where \(1 = \{\emptyset\} \))
Then \(z \) is nonempty, and consequently has a \(\in \)-minimal element.
If \(\emptyset \) is minimal then \(\varphi \) holds,
while if \(1 \) is minimal then \(\varphi \) fails.

Thus, from regularity, one proves LEM for any formula.
Let L be a consistent FL_{ew}-extension.
Let T be a theory over L.
If T proves $\varphi \lor \neg \varphi$ for an arbitrary φ, then
T is a theory over classical logic.

In other words,
adding the law of excluded middle (LEM): $\varphi \lor \neg \varphi$ to FL_{ew} yields classical logic.

Example: Grayson’s proof of LEM from axiom of regularity:
Let $\{\emptyset \upharpoonright \varphi\}$ stand for $\{x \mid x = \emptyset \land \varphi\}$.
Consider $z = \{\emptyset \upharpoonright \varphi, 1\}$ (where $1 = \{\emptyset\}$)
Then z is nonempty, and consequently has a \in-minimal element.
If \emptyset is minimal then φ holds,
while if 1 is minimal then φ fails.

Thus, from regularity, one proves LEM for any formula.
Let L be a consistent FL_{ew}-extension.
Let T be a theory over L.
If T proves $\varphi \lor \neg \varphi$ for an arbitrary φ, then T is a theory over classical logic.

In other words,
adding the law of excluded middle (LEM): $\varphi \lor \neg \varphi$ to FL_{ew} yields classical logic.

Example: Grayson’s proof of LEM from axiom of regularity:
Let $\{\emptyset \uparrow \varphi\}$ stand for $\{x \mid x = \emptyset \land \varphi\}$.
Consider $z = \{\emptyset \uparrow \varphi, 1\}$ (where $1 = \{\emptyset\}$)
Then z is nonempty, and consequently has an \in-minimal element.
If \emptyset is minimal then φ holds,
while if 1 is minimal then φ fails.

Thus, from regularity, one proves LEM for any formula.
Strengthening the logic

Let L be a consistent FL_{ew}-extension.
Let T be a theory over L.
If T proves $\varphi \lor \neg \varphi$ for an arbitrary φ, then
T is a theory over classical logic.

In other words,
adding the law of excluded middle (LEM): $\varphi \lor \neg \varphi$ to FL_{ew} yields classical logic.

Example: Grayson’s proof of LEM from axiom of regularity:
Let $\{\emptyset \upharpoonright \varphi\}$ stand for $\{x \mid x = \emptyset \land \varphi\}$.
Consider $z = \{\emptyset \upharpoonright \varphi, 1\}$ (where $1 = \{\emptyset\}$)
Then z is nonempty, and consequently has a \in-minimal element.
If \emptyset is minimal then φ holds,
while if 1 is minimal then φ fails.

Thus, from regularity, one proves LEM for any formula.
Lemma (Hájek ca. 2000)

Let L be such that it proves the propositional formula $(p \rightarrow p \& p) \rightarrow (p \lor \neg p)$. Then, a set theory with

- separation (for open formulas),
- pairing (or singletons),
- congruence axiom for \in

proves $\forall xy(x = y \lor \neg(x = y))$ over L.

Proof: take x, y.
Let $z = \{ u \in \{ x \} \mid u = x \}$, whence $u \in z \equiv (u = x)^2$.
Since $(x = x)^2$, we have $x \in z$.
If $y = x$ then $y \in z$ by congruence. Then $(y = x)^2$.
We proved $y = x \rightarrow (y = x)^2$, thus (by assumption on the logic) $x = y \lor \neg(x = y)$.
Strengthening the logic

Lemma (Grishin 1999)

In a theory with

- extensionality,
- successors,
- congruence,

LEM for $=$ implies LEM for \in.

Zuzana Haniková | Models of set theory in Łukasiewicz logic
Axioms of FST

- (ext.) $\forall xy(x = y \equiv (\Delta(x \subseteq y) \& \Delta(y \subseteq x)))$
- (empty) $\exists x \Delta \forall y \neg(y \in x)$
- (pair) $\forall x \forall y \exists z \Delta \forall u(u \in z \equiv (u = x \lor u = y))$
- (union) $\forall x \exists z \Delta \forall u(u \in z \equiv \exists y (u \in y \& y \in x))$
- (weak power) $\forall x \exists z \Delta \forall u(u \in z \equiv \Delta(u \subseteq x))$
- (inf.) $\exists z \Delta(\emptyset \in z \& \forall x \in z(x \cup \{x\} \in z)$
- (sep.) $\forall x \exists z \Delta \forall u(u \in z \equiv (u \in x \& \varphi(u, x)))$
 for any φ not containing free z
- (coll.) $\forall x \exists z \Delta[\forall u \in x \exists v \varphi(u, v) \rightarrow \forall u \in x \exists v \in z \varphi(u, v)]$
 for any φ not containing free z
- (\in-ind.) $\Delta \forall x(\Delta \forall y (y \in x \rightarrow \varphi(y)) \rightarrow \varphi(x)) \rightarrow \Delta \forall x \varphi(x)$
 for any φ
- (support) $\forall x \exists z (\text{Crisp}(z) \& \Delta(x \subseteq z)))$
An A-valued universe

Work in classical ZFC. Assume A is a complete (MV-)algebra.

Define V^A by ordinal induction.

$$A^+ = A \setminus \{0^A\}.$$

- $V^A_0 = \{\emptyset\}$
- $V^A_{\alpha+1} = \{f : \text{Fnc}(f) \& \text{Dom}(f) \subseteq V^A_\alpha \& \text{Rng}(f) \subseteq A^+\}$ for any ordinal α
- $V^A_\lambda = \bigcup_{\alpha < \lambda} V^A_\alpha$ for limit ordinals λ

$$V^A = \bigcup_{\alpha \in \text{Ord}} V^A_\alpha$$

Define two binary functions from V^A into L, assigning to any $u, v \in V^A$ the values $\|u \in v\|$ and $\|u = v\|$.

$$\|u \in v\| = v(u) \text{ if } u \in D(v), \text{ otherwise } 0$$

$$\|u = v\| = 1 \text{ if } u = v, \text{ otherwise } 0$$

By induction on the complexity of formulas, define for any $\varphi(x_1, \ldots, x_n)$ an n-ary function from $(V^A)^n$ into L, assigning to an n-tuple u_1, \ldots, u_n the value $\|\varphi(u_1, \ldots, u_n)\|$.
An A-valued universe

Work in classical ZFC. Assume A is a complete (MV-)algebra.

Define V^A by ordinal induction.

$A^+ = A \setminus \{0^A\}$.

- $V_0^A = \{\emptyset\}$
- $V_{\alpha + 1}^A = \{f : \text{Fnc}(f) & \text{Dom}(f) \subseteq V_\alpha^A \& \text{Rng}(f) \subseteq A^+\}$ for any ordinal α
- $V^A_\lambda = \bigcup_{\alpha < \lambda} V_\alpha^A$ for limit ordinals λ

$V^A = \bigcup_{\alpha \in \text{Ord}} V^A_\alpha$

Define two binary functions from V^A into L, assigning to any $u, v \in V^A$ the values $\|u \in v\|$ and $\|u = v\|$

\[
\|u \in v\| = v(u) \text{ if } u \in \text{D}(v), \text{ otherwise } 0
\]

\[
\|u = v\| = 1 \text{ if } u = v, \text{ otherwise } 0
\]

By induction on the complexity of formulas, define for any $\varphi(x_1, \ldots, x_n)$ an n-ary function from $(V^A)^n$ into L, assigning to an n-tuple u_1, \ldots, u_n the value $\|\varphi(u_1, \ldots, u_n)\|$.
An A-valued universe

Work in classical ZFC. Assume A is a complete (MV-)algebra.

Define V^A by ordinal induction.

$A^+ = A \setminus \{0^A\}$.

- $V_0^A = \{\emptyset\}$
- $V_{\alpha+1}^A = \{f : \text{Fnc}(f) \& \text{Dom}(f) \subseteq V^A_{\alpha} \& \text{Rng}(f) \subseteq A^+\}$ for any ordinal α
- $V^A_\lambda = \bigcup_{\alpha<\lambda} V^A_{\alpha}$ for limit ordinals λ

$V^A = \bigcup_{\alpha \in \text{Ord}} V^A_{\alpha}$

Define two binary functions from V^A into L, assigning to any $u, v \in V^A$ the values $\|u \in v\|$ and $\|u = v\|$.

- $\|u \in v\| = v(u)$ if $u \in D(v)$, otherwise 0
- $\|u = v\| = 1$ if $u = v$, otherwise 0

By induction on the complexity of formulas, define for any $\varphi(x_1, \ldots, x_n)$ an n-ary function from $(V^A)^n$ into L, assigning to an n-tuple u_1, \ldots, u_n the value $\|\varphi(u_1, \ldots, u_n)\|$.
An A-valued universe

Work in classical ZFC.
Assume A is a complete (MV-)algebra.

Define V^A by ordinal induction.

$$A^+ = A \setminus \{0^A\}.$$

- $V^A_0 = \{\emptyset\}$
- $V^A_{\alpha+1} = \{f : \text{Fnc}(f) \& \text{Dom}(f) \subseteq V^A_\alpha \& \text{Rng}(f) \subseteq A^+\}$ for any ordinal α
- $V^A_\lambda = \bigcup_{\alpha < \lambda} V^A_\alpha$ for limit ordinals λ

$$V^A = \bigcup_{\alpha \in \text{Ord}} V^A_\alpha$$

Define two binary functions from V^A into L, assigning to any $u, v \in V^A$ the values $\|u \in v\|$ and $\|u = v\|$.

$$\|u \in v\| = v(u) \text{ if } u \in D(v), \text{ otherwise } 0$$

$$\|u = v\| = 1 \text{ if } u = v, \text{ otherwise } 0$$

By induction on the complexity of formulas, define for any $\varphi(x_1, \ldots, x_n)$ an n-ary function from $(V^A)^n$ into L, assigning to an n-tuple u_1, \ldots, u_n the value $\|\varphi(u_1, \ldots, u_n)\|$.
An \mathbf{A}-valued universe

Work in classical ZFC.
Assume \mathbf{A} is a complete (MV-)algebra.

Define $V^\mathbf{A}$ by ordinal induction.

$A^+ = A \setminus \{0^\mathbf{A}\}$.

- $V_0^\mathbf{A} = \{\emptyset\}$
- $V_{\alpha+1}^\mathbf{A} = \{f : \text{Fnc}(f) \& \text{Dom}(f) \subseteq V_x^\mathbf{A} \& \text{Rng}(f) \subseteq A^+\}$ for any ordinal α
- $V_\lambda^\mathbf{A} = \bigcup_{\alpha < \lambda} V_\alpha^\mathbf{A}$ for limit ordinals λ

$V^\mathbf{A} = \bigcup_{\alpha \in \text{Ord}} V_\alpha^\mathbf{A}$

Define two binary functions from $V^\mathbf{A}$ into L, assigning to any $u, v \in V^\mathbf{A}$ the values $\|u \in v\|$ and $\|u = v\|$.

\[
\|u \in v\| = v(u) \text{ if } u \in D(v), \text{ otherwise } 0
\]
\[
\|u = v\| = 1 \text{ if } u = v, \text{ otherwise } 0
\]

By induction on the complexity of formulas, define for any $\varphi(x_1, \ldots, x_n)$ an n-ary function from $(V^\mathbf{A})^n$ into L, assigning to an n-tuple u_1, \ldots, u_n the value $\|\varphi(u_1, \ldots, u_n)\|$.
Theorem

Let φ be a closed formula provable in FST. Then φ is valid in V^A, i.e., ZF proves $\|\varphi\| = 1$.

We have obtained an interpretation of FST in ZFC. FST is distinct from ZFC unless A is a Boolean algebra.
Theorem

Let φ be a closed formula provable in FST. Then φ is valid in V^A, i.e., ZF proves $\|\varphi\| = 1$.

We have obtained an interpretation of FST in ZFC. *FST is distinct from ZFC* unless A is a Boolean algebra.
An Inner Model of ZF in FST

Definition

(i) In a theory \(T \), we say that a formula \(\varphi(x_1, \ldots, x_n) \) in the language of \(T \) is crisp iff \(T \vdash \forall x_1, \ldots, x_n \varphi(x_1, \ldots, x_n) \).

(ii) In a (set) theory with language containing \(\in \) we define \(\text{Crisp}(x) \equiv \forall u \varphi(u \in x) \).

(Hereditarily crisp transitive set)

\[
HCT(x) \equiv \text{Crisp}(x) \& \forall u \in x(\text{Crisp}(u) \& u \subseteq x)
\]

(Hereditarily crisp set)

\[
H(x) \equiv \text{Crisp}(x) \& \exists x' \in HCT(x \subseteq x')
\]

Lemma

The class \(H \) is both crisp and transitive in FST:

- \(FST \vdash \forall x(x \in H \lor \neg(x \in H)) \)
- \(FST \vdash \forall x, y(y \in x \& x \in H \rightarrow y \in H) \)
An Inner Model of ZF in FST

Definition

(i) In a theory \(T \), we say that a formula \(\varphi(x_1, \ldots, x_n) \) in the language of \(T \) is crisp iff \(T \vdash \forall x_1, \ldots, x_n \varphi(x_1, \ldots, x_n) \).

(ii) In a (set) theory with language containing \(\in \) we define \(\text{Crisp}(x) \equiv \forall u \varphi(u \in x) \).

(Hereditarily crisp transitive set)

\[HCT(x) \equiv \text{Crisp}(x) \land \forall u \in x (\text{Crisp}(u) \land u \subseteq x) \]

(Hereditarily crisp set)

\[H(x) \equiv \text{Crisp}(x) \land \exists x' \in HCT(x \subseteq x') \]

Lemma

The class \(H \) is both crisp and transitive in FST:

- \(FST \vdash \forall x (x \in H \lor \neg (x \in H)) \)
- \(FST \vdash \forall x, y (y \in x \land x \in H \rightarrow y \in H) \)
An Inner Model of ZF in FST

Definition

(i) In a theory T, we say that a formula $\varphi(x_1, \ldots, x_n)$ in the language of T is crisp iff $T \vdash \forall x_1, \ldots, x_n \models \varphi(x_1, \ldots, x_n)$.

(ii) In a (set) theory with language containing \in we define $\text{Crisp}(x) \equiv \forall u \models (u \in x)$.

Lemma

The class H is both crisp and transitive in FST:

- $FST \vdash \forall x(x \in H \lor \neg(x \in H))$
- $FST \vdash \forall x, y(y \in x \land x \in H \rightarrow y \in H)$
An Inner Model of ZF in FST

For \(\varphi \) a formula in the language of ZF, define \(\varphi^H \) inductively:

- \(\varphi^H = \varphi \) for \(\varphi \) atomic;
- \(\varphi^H = \varphi \) for \(\varphi = 0 \);
- \(\varphi^H = \psi^H \& \chi^H \) for \(\varphi = \psi \& \chi \);
- \(\varphi^H = \psi^H \rightarrow \chi^H \) for \(\varphi = \psi \rightarrow \chi \);
- \(\varphi^H = (\forall x \in H)\psi^H \) for \(\varphi = (\forall x)\psi \).

Theorem

Let \(\varphi \) be a theorem of ZF. Then FST \(\vdash \varphi^H \).

So \(H \) is an inner model of ZF in FST and ZF is consistent relative to FST.

Moreover, the interpretation is faithful: if FST \(\vdash \varphi^H \), then ZF \(\vdash \varphi^H \), but then ZF \(\vdash \varphi \).
For \(\varphi \) a formula in the language of ZF, define \(\varphi^H \) inductively:

\[
\begin{align*}
\varphi^H &= \varphi \text{ for } \varphi \text{ atomic;} \\
\varphi^H &= \varphi \text{ for } \varphi = 0; \\
\varphi^H &= \psi^H \& \chi^H \text{ for } \varphi = \psi \& \chi; \\
\varphi^H &= \psi^H \rightarrow \chi^H \text{ for } \varphi = \psi \rightarrow \chi; \\
\varphi^H &= (\forall x \in H)\psi^H \text{ for } \varphi = (\forall x)\psi.
\end{align*}
\]

Theorem

Let \(\varphi \) be a theorem of ZF. Then FST \(\vdash \varphi^H \).

So \(H \) is an inner model of ZF in FST and ZF is consistent relative to FST.

Moreover, the interpretation is faithful: if FST \(\vdash \varphi^H \), then ZF \(\vdash \varphi^H \), but then ZF \(\vdash \varphi \).
For \(\varphi \) a formula in the language of ZF, define \(\varphi^H \) inductively:
\[
\begin{align*}
\varphi^H &= \varphi \text{ for } \varphi \text{ atomic; } \\
\varphi^H &= \varphi \text{ for } \varphi = 0; \\
\varphi^H &= \psi^H \& \chi^H \text{ for } \varphi = \psi \& \chi; \\
\varphi^H &= \psi^H \rightarrow \chi^H \text{ for } \varphi = \psi \rightarrow \chi; \\
\varphi^H &= (\forall x \in H)\psi^H \text{ for } \varphi = (\forall x)\psi.
\end{align*}
\]

Theorem

Let \(\varphi \) be a theorem of ZF. Then FST \(\vdash \varphi^H \).

So \(H \) is an inner model of ZF in FST and **ZF is consistent relative to FST**.

Moreover, the interpretation is faithful: if FST \(\vdash \varphi^H \), then ZF \(\vdash \varphi^H \), but then ZF \(\vdash \varphi \).*
For φ a formula in the language of ZF, define φ^H inductively:

- $\varphi^H = \varphi$ for φ atomic;
- $\varphi^H = \varphi$ for $\varphi = 0$;
- $\varphi^H = \psi^H \& \chi^H$ for $\varphi = \psi \& \chi$;
- $\varphi^H = \psi^H \to \chi^H$ for $\varphi = \psi \to \chi$;
- $\varphi^H = (\forall x \in H)\psi^H$ for $\varphi = (\forall x)\psi$.

Theorem

Let φ be a theorem of ZF. Then FST $\vdash \varphi^H$.

So H is an inner model of ZF in FST and ZF is consistent relative to FST.

Moreover, the interpretation is faithful: if FST $\vdash \varphi^H$, then ZF $\vdash \varphi^H$, but then ZF $\vdash \varphi$.
Ordinals and rank in FST

Let \(\text{Ord}_0(x) \) define ordinal numbers in classical ZFC.

The inner model \(H \) provides a suitable notion of ordinal numbers in FST: if \(x \in H \), then

- \(\text{Ord}_0(x) \equiv \text{Ord}_0^H(x) \),
- \(\text{Ord}_0(x) \) is crisp.

Define ordinal numbers in FST:

\[
\text{Ord}(x) \equiv x \in H \& \text{Ord}_0(x)
\]

Define:

\[
\begin{align*}
V_0 &= \emptyset \\
V_{\alpha+1} &= WP(V_{\alpha}) \text{ for } \alpha \in \text{Ord} \\
V_\alpha &= \bigcup_{\beta \in \alpha} V_\beta \text{ for a limit } \alpha \in \text{Ord} \\
V &= \bigcup_{\alpha \in \text{Ord}} V_\alpha
\end{align*}
\]

Then \(\forall x \exists \alpha(x \in V_\alpha) \).
Ordinals and rank in FST

Let $\text{Ord}_0(x)$ define ordinal numbers in classical ZFC.

The inner model H provides a suitable notion of ordinal numbers in FST:

if $x \in H$, then

- $\text{Ord}_0(x) \equiv \text{Ord}^H_0(x)$,
- $\text{Ord}_0(x)$ is crisp.

Define ordinal numbers in FST:

$$\text{Ord}(x) \equiv x \in H \& \text{Ord}_0(x)$$

Define:

$$V_0 = \emptyset$$

$$V_{\alpha+1} = \text{WP}(V_\alpha) \text{ for } \alpha \in \text{Ord}$$

$$V_\alpha = \bigcup_{\beta \in \alpha} V_\beta \text{ for a limit } \alpha \in \text{Ord}$$

$$V = \bigcup_{\alpha \in \text{Ord}} V_\alpha$$

Then $\forall x \exists \alpha(x \in V_\alpha)$.
Let $\text{Ord}_0(x)$ define ordinal numbers in classical ZFC.

The inner model H provides a suitable notion of ordinal numbers in FST: if $x \in H$, then

- $\text{Ord}_0(x) \equiv \text{Ord}_0^H(x)$,
- $\text{Ord}_0(x)$ is crisp.

Define ordinal numbers in FST:

$$\text{Ord}(x) \equiv x \in H \& \text{Ord}_0(x)$$

Define:

$$V_0 = \emptyset$$

$$V_{\alpha+1} = \text{WP}(V_\alpha) \text{ for } \alpha \in \text{Ord}$$

$$V_\alpha = \bigcup \{V_\beta \text{ for a limit } \alpha \in \text{Ord} \}$$

Then $\forall x \exists \alpha (x \in V_\alpha)$.

Zuzana Haniková | Models of set theory in Łukasiewicz logic
Extensions and further work

- Work with an arbitrary MV-algebra (Chang’s algebra). Can one get “nearly classical”?

 Lemma. Let A be an algebra, and let M be a model over A. Let \sim be a congruence on A. Then M is a model over A/\sim.

- Work without Δ.

- A completeness theorem?
Extensions and further work

- Work with an arbitrary MV-algebra (Chang’s algebra). Can one get “nearly classical”?

 Lemma. Let \(A \) be an algebra, and let \(M \) be a model over \(A \). Let \(\sim \) be a congruence on \(A \). Then \(M \) is a model over \(A/\sim \).

- Work without \(\Delta \).

- A completeness theorem?
Extensions and further work

- Work with an arbitrary MV-algebra (Chang’s algebra). Can one get “nearly classical”?

 Lemma. Let A be an algebra, and let M be a model over A. Let \sim be a congruence on A. Then M is a model over A/\sim.

- Work without Δ.

- A completeness theorem?
Extensions and further work

- Work with an arbitrary MV-algebra (Chang’s algebra). Can one get “nearly classical”?

Lemma. Let A be an algebra, and let M be a model over A. Let \sim be a congruence on A. Then M is a model over A/\sim.

- Work without Δ.

- A completeness theorem?
Extensions and further work

- Work with an arbitrary MV-algebra (Chang’s algebra). Can one get “nearly classical”?

 Lemma. Let A be an algebra, and let M be a model over A. Let \sim be a congruence on A. Then M is a model over A/\sim.

- Work without Δ.

- A completeness theorem?

