A Gentle Introduction to Mathematical Fuzzy Logic 2. Basic properties of Łukasiewicz and Gödel–Dummett logic

Petr Cintula¹ and Carles Noguera²

¹Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic

²Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic

www.cs.cas.cz/cintula/MFL

Syntax

We consider primitive connectives $\mathcal{L} = \{ \rightarrow, \land, \lor, \overline{0} \}$ and defined connectives \neg , $\overline{1}$, and \leftrightarrow :

$$\neg \varphi = \varphi \to \overline{0} \qquad \quad \overline{1} = \neg \overline{0} \qquad \quad \varphi \leftrightarrow \psi = (\varphi \to \psi) \land (\psi \to \varphi)$$

Formulas are built from a fixed countable set of atoms using the connectives.

Let us by $Fm_{\mathcal{L}}$ denote the set of all formulas.

A Hilbert-style proof system

Axioms:

$$\begin{array}{lll} (\mathrm{Tr}) & (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi)) & \text{transitivity} \\ (\mathrm{We}) & \varphi \rightarrow (\psi \rightarrow \varphi) & \text{weakening} \\ (\mathrm{Ex}) & (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow (\psi \rightarrow (\varphi \rightarrow \chi)) & \text{exchange} \\ (\wedge a) & \varphi \wedge \psi \rightarrow \varphi \\ (\wedge b) & \varphi \wedge \psi \rightarrow \psi \\ (\wedge c) & (\chi \rightarrow \varphi) \rightarrow ((\chi \rightarrow \psi) \rightarrow (\chi \rightarrow \varphi \wedge \psi)) \\ (\vee a) & \varphi \rightarrow \varphi \lor \psi \\ (\vee b) & \psi \rightarrow \varphi \lor \psi \\ (\vee c) & (\varphi \rightarrow \chi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \lor \psi \rightarrow \chi)) \\ (\mathrm{Prl}) & (\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi) & \text{prelinearity} \\ (\mathrm{EFQ}) & \overline{0} \rightarrow \varphi & Ex \ falso \ quad contraction \\ (\mathrm{Con}) & (\varphi \rightarrow (\varphi \rightarrow \psi)) \rightarrow (\varphi \rightarrow \psi) & \text{contraction} \end{array}$$

Inference rule: from φ and $\varphi \rightarrow \psi$ infer ψ

prelinearity Ex falso quodlibet contraction modus ponens

The relation of provability

Proof: a proof of a formula φ from a set of formulas (theory) Γ is a finite sequence of formulas $\langle \psi_1, \ldots, \psi_n \rangle$ such that:

•
$$\psi_n = \varphi$$

 for every *i* ≤ *n*, either ψ_i ∈ Γ, or ψ_i is an instance of an axiom, or there are *j*, *k* < *i* such that ψ_k = ψ_j → ψ_i.

We write $\Gamma \vdash_{\mathbf{G}} \varphi$ if there is a proof of φ from Γ .

A formula φ is a theorem of Gödel–Dummett logic if $\vdash_{G} \varphi$.

Proposition 2.1

The provability relation of Gödel–Dummett logic is finitary: if $\Gamma \vdash_{G} \varphi$, then there is a finite $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \vdash_{G} \varphi$.

Algebraic semantics

A Gödel algebra (or just G-algebra) is a structure $B = \langle B, \wedge^B, \vee^B, \overline{0}^B, \overline{1}^B \rangle \text{ such that:}$ (1) $\langle B, \wedge^B, \vee^B, \overline{0}^B, \overline{1}^B \rangle$ is a bounded lattice (2) $z \leq x \rightarrow^B y \text{ iff } x \wedge^B z \leq y$ (residuation)

(3) $(x \to {}^{B} y) \lor {}^{B} (y \to {}^{B} x) = \overline{1}^{B}$ (prelinearity)

where $x \leq^{B} y$ is defined as $x \wedge^{B} y = x$ or (equivalently) as $x \rightarrow^{B} y = \overline{1}^{B}$.

A G-algebra **B** is linearly ordered (or G-chain) if \leq^{B} is a total order.

By \mathbb{G} (or \mathbb{G}_{lin} resp.) we denote the class of all G-algebras (G-chains resp.)

Standard semantics

Consider algebra $[0,1]_G = \langle [0,1], \wedge^{[0,1]_G}, \vee^{[0,1]_G}, \rightarrow^{[0,1]_G}, 0,1 \rangle$, where:

$$a \wedge^{[0,1]_{\mathrm{G}}} b = \min\{a,b\}$$

$$a \vee^{[0,1]_{\mathrm{G}}} b = \max\{a,b\}$$

$$a \rightarrow^{[0,1]_{G}} b = \begin{cases} 1 & \text{if } a \leq b, \\ b & \text{otherwise.} \end{cases}$$

Exercise 1

(a) Prove that $[0,1]_G$ is the unique G-chain with the lattice reduct $\langle [0,1], \min, \max, 0,1 \rangle$.

Petr Cintula and Carles Noguera (CAS)

Semantical consequence

Definition 2.2

A *B*-evaluation is a mapping e from $Fm_{\mathcal{L}}$ to B such that:

•
$$e(\overline{0}) = \overline{0}^{B}$$

• $e(\varphi \land \psi) = e(\varphi) \land^{B} e(\psi)$
• $e(\varphi \lor \psi) = e(\varphi) \lor^{B} e(\psi)$
• $e(\varphi \rightarrow \psi) = e(\varphi) \rightarrow^{B} e(\psi)$

Definition 2.3

A formula φ is a logical consequence of a set of formulas Γ w.r.t. a class \mathbb{K} of G-algebras, $\Gamma \models_{\mathbb{K}} \varphi$, if for every $B \in \mathbb{K}$ and every *B*-evaluation *e*:

if
$$e(\gamma) = \overline{1}$$
 for every $\gamma \in \Gamma$, then $e(\varphi) = \overline{1}$.

Completeness theorem

Theorem 2.4

The following are equivalent for every set of formulas $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$:

Exercise 1

(a) Prove the implications from top to bottom.

Some theorems and derivations in G

Proposition 2.5

$$\begin{array}{ll} (T1) & \vdash_{G} \varphi \rightarrow \varphi \\ (T2) & \vdash_{G} \varphi \rightarrow (\psi \rightarrow \varphi \land \psi) \\ (D1) & \overline{1} \leftrightarrow \varphi \vdash_{G} \varphi \text{ and } \varphi \vdash_{G} \overline{1} \leftrightarrow \varphi \\ (D2) & \varphi \rightarrow \psi \vdash_{G} \varphi \land \psi \leftrightarrow \varphi \text{ and } \varphi \land \psi \leftrightarrow \varphi \vdash_{G} \varphi \rightarrow \psi \\ (D3) & \varphi \rightarrow (\psi \rightarrow \chi) \vdash_{G} \varphi \land \psi \rightarrow \chi \text{ and } \varphi \land \psi \rightarrow \chi \vdash_{G} \varphi \rightarrow (\psi \rightarrow \chi) \end{array}$$

Proposition 2.6

$$\begin{split} \vdash_{\mathbf{G}} \varphi \wedge \psi \leftrightarrow \psi \wedge \varphi \\ \vdash_{\mathbf{G}} \varphi \wedge (\psi \wedge \chi) \leftrightarrow (\varphi \wedge \psi) \wedge \chi \\ \vdash_{\mathbf{G}} \varphi \wedge (\varphi \vee \psi) \leftrightarrow \varphi \\ \vdash_{\mathbf{G}} \overline{1} \wedge \varphi \leftrightarrow \varphi \\ \vdash_{\mathbf{G}} (\varphi \rightarrow \psi) \vee (\psi \rightarrow \varphi) \leftrightarrow \overline{1} \end{split}$$

$$\begin{split} \vdash_{\mathbf{G}} \varphi \lor \psi \leftrightarrow \psi \lor \varphi \\ \vdash_{\mathbf{G}} \varphi \lor (\psi \lor \chi) \leftrightarrow (\varphi \lor \psi) \lor \chi \\ \vdash_{\mathbf{G}} \varphi \lor (\varphi \land \psi) \leftrightarrow \varphi \\ \vdash_{\mathbf{G}} \overline{\mathbf{0}} \lor \varphi \leftrightarrow \varphi \end{split}$$

The rule of substitution

Proposition 2.7

$$\begin{array}{ll} \varphi \leftrightarrow \psi \vdash_{\mathbf{G}} (\varphi \wedge \chi) \leftrightarrow (\psi \wedge \chi) & \varphi \leftrightarrow \psi \vdash_{\mathbf{G}} (\varphi \vee \chi) \leftrightarrow (\psi \vee \chi) \\ \varphi \leftrightarrow \psi \vdash_{\mathbf{G}} (\chi \wedge \varphi) \leftrightarrow (\chi \wedge \psi) & \varphi \leftrightarrow \psi \vdash_{\mathbf{G}} (\chi \vee \varphi) \leftrightarrow (\chi \vee \psi) \\ \varphi \leftrightarrow \psi \vdash_{\mathbf{G}} (\varphi \rightarrow \chi) \leftrightarrow (\psi \rightarrow \chi) & \varphi \leftrightarrow \psi \vdash_{\mathbf{G}} (\chi \rightarrow \varphi) \leftrightarrow (\chi \rightarrow \psi) \end{array}$$

 $\vdash_{\mathbf{G}} \varphi \leftrightarrow \varphi \qquad \varphi \leftrightarrow \psi \vdash_{\mathbf{G}} \psi \leftrightarrow \varphi \qquad \varphi \leftrightarrow \psi, \psi \leftrightarrow \chi \vdash_{\mathbf{G}} \varphi \leftrightarrow \chi$

Corollary 2.8

 $\varphi \leftrightarrow \psi \vdash_{G} \chi \leftrightarrow \chi',$ where χ' results from χ by replacing its subformula φ by ψ .

Exercise 2

(a) Prove this corollary and the two previous propositions.

Lindenbaum–Tarski algebra

Definition 2.9

Let Γ be a theory. We define

 $[\varphi]_{\Gamma} = \{\psi \mid \Gamma \vdash_{\mathbf{G}} \varphi \leftrightarrow \psi\} \qquad L_{\Gamma} = \{[\varphi]_{\Gamma} \mid \varphi \in Fm_{\mathcal{L}}\}\$

The Lindenbaum–Tarski algebra of a theory Γ (Lind_{Γ}) as an algebra with the domain L_{Γ} and operations:

$$\begin{split} \overline{\mathbf{0}}^{\mathbf{Lind}_{\Gamma}} &= \ [\overline{\mathbf{0}}]_{\Gamma} \\ \overline{\mathbf{1}}^{\mathbf{Lind}_{\Gamma}} &= \ [\overline{\mathbf{1}}]_{\Gamma} \\ [\varphi]_{\Gamma} \rightarrow^{\mathbf{Lind}_{\Gamma}} [\psi]_{\Gamma} &= \ [\varphi \rightarrow \psi]_{\Gamma} \\ [\varphi]_{\Gamma} \wedge^{\mathbf{Lind}_{\Gamma}} [\psi]_{\Gamma} &= \ [\varphi \wedge \psi]_{\Gamma} \\ [\varphi]_{\Gamma} \vee^{\mathbf{Lind}_{\Gamma}} [\psi]_{\Gamma} &= \ [\varphi \vee \psi]_{\Gamma} \end{split}$$

Lindenbaum–Tarski algebra: basic properties

Proposition 2.10

$$[\varphi]_{\Gamma} = [\psi]_{\Gamma} \text{ iff } \Gamma \vdash_{\mathbf{G}} \varphi \leftrightarrow \psi$$

$$2 \ [\varphi]_{\Gamma} \leq^{\operatorname{Lind}_{\Gamma}} [\psi]_{\Gamma} \text{ iff } \Gamma \vdash_{\mathbf{G}} \varphi \to \psi$$

$$\mathbf{\mathfrak{J}}^{\mathbf{Lind}_{\Gamma}} = [\varphi]_{\Gamma} \text{ iff } \Gamma \vdash_{\mathbf{G}} \varphi$$

- \bigcirc Lind_{Γ} is a G-algebra
- **5** Lind_{Γ} is a G-chain iff $\Gamma \vdash_{G} \varphi \rightarrow \psi$ or $\Gamma \vdash_{G} \psi \rightarrow \varphi$ for each φ, ψ

Proof.

1. Left-to-right is the just definition and 'reflexivity' of \leftrightarrow . Conversely, we use 'transitivity' and 'symmetry' of \leftrightarrow . 2. $[\varphi]_{\Gamma} \leq^{\text{Lind}_{\Gamma}} [\psi]_{\Gamma} \text{ iff } [\varphi]_{\Gamma} \wedge^{\text{Lind}_{\Gamma}} [\psi]_{\Gamma} = [\varphi]_{\Gamma} \text{ iff } [\varphi \wedge \psi]_{\Gamma} = [\varphi]_{\Gamma} \text{ iff (by 1.)}$ $\Gamma \vdash_{G} \varphi \wedge \psi \leftrightarrow \varphi \text{ iff (by (D2))} \Gamma \vdash_{G} \varphi \rightarrow \psi.$ 3. $\overline{1}^{\text{Lind}_{\Gamma}} = [\varphi]_{\Gamma} \text{ iff (by 1.)} \Gamma \vdash_{G} \overline{1} \leftrightarrow \varphi \text{ iff (by (D1))} \Gamma \vdash_{G} \varphi.$ 5. Trivial after we prove 4.

Lindenbaum–Tarski algebra: basic properties

Proposition 2.10

$$\ \, [\varphi]_{\Gamma} = [\psi]_{\Gamma} \text{ iff } \Gamma \vdash_{\mathbf{G}} \varphi \leftrightarrow \psi$$

$$2 [\varphi]_{\Gamma} \leq^{\operatorname{Lind}_{\Gamma}} [\psi]_{\Gamma} \text{ iff } \Gamma \vdash_{\mathbf{G}} \varphi \to \psi$$

$$\mathbf{\mathfrak{J}}^{\mathbf{Lind}_{\Gamma}} = [\varphi]_{\Gamma} \text{ iff } \Gamma \vdash_{\mathbf{G}} \varphi$$

- \bigcirc Lind_{Γ} is a G-algebra
- **5** Lind_{Γ} is a G-chain iff $\Gamma \vdash_{G} \varphi \rightarrow \psi$ or $\Gamma \vdash_{G} \psi \rightarrow \varphi$ for each φ, ψ

Proof.

4. First we note that the definition of ${\bf Lind}_{\Gamma}$ is sound due to 1. and Proposition 2.7.

The lattice identities hold due to 1. and Proposition 2.6, prelinearity due to 3. and axiom $(\mbox{Prl}).$

Finally, the residuation: $[\varphi]_{\Gamma} \leq^{\text{Lind}_{\Gamma}} [\psi]_{\Gamma} \rightarrow^{\text{Lind}_{\Gamma}} [\chi]_{\Gamma} = [\psi \rightarrow \chi]_{\Gamma}$ iff $\Gamma \vdash_{G} \varphi \rightarrow (\psi \rightarrow \chi)$ iff (by (D3)) $\Gamma \vdash_{G} \varphi \wedge \psi \rightarrow \chi$ iff $[\varphi]_{\Gamma} \wedge^{\text{Lind}_{\Gamma}} [\psi]_{\Gamma} \leq^{\text{Lind}_{\Gamma}} [\chi]_{\Gamma}.$

General/linear/standard completeness theorem

Theorem 2.4

The following are equivalent for every set of formulas $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$:

- $\bigcirc \Gamma \vdash_{\mathbf{G}} \varphi$
- $\bigcirc \Gamma \models_{\mathbb{G}} \varphi$
- $\ \, \mathbf{O} \ \, \Gamma \models_{\mathbb{G}_{\mathrm{lin}}} \varphi$
- $\ \, \bullet \ \, \Gamma \models_{[0,1]_G} \varphi$

Proof.

2. implies **1.**: contrapositively, assume that $\Gamma \not\vdash_G \varphi$.

We know that ${f Lind}_\Gamma\in{\mathbb G}$ and the function e defined as $e(\psi)=[\psi]_\Gamma$

• is a $Lind_{\Gamma}$ -evaluation and

•
$$e(\psi) = \overline{1}^{\operatorname{Lind}_{\Gamma}}$$
 iff $\Gamma \vdash_{\operatorname{G}} \psi$.

Thus clearly $e(\chi) = \overline{1}^{\operatorname{Lind}_{\Gamma}}$ for each $\chi \in \Gamma$ and $e(\varphi) \neq \overline{1}^{\operatorname{Lind}_{\Gamma}}$.

Deduction Theorem

Theorem 2.11 (Deduction theorem)

For every set of formulas $\Gamma \cup \{\varphi, \psi\}$,

 $\Gamma, \varphi \vdash_{\mathbf{G}} \psi \text{ iff } \Gamma \vdash_{\mathbf{G}} \varphi \to \psi$

Proof.

⇐: follows from *modus ponens*

⇒: let $\alpha_1, \ldots, \alpha_n = \psi$ be the proof of ψ in Γ, φ . We show by induction that $\Gamma \vdash_G \varphi \rightarrow \alpha_i$ for each $i \leq n$.

If $\alpha_i = \varphi$ we use (T1); if α_i is an axiom or $\alpha_i \in \Gamma$ then $\Gamma \vdash_G \alpha_i$ and so we can use axiom (We) and MP.

Deduction Theorem

Theorem 2.11 (Deduction theorem)

For every set of formulas $\Gamma \cup \{\varphi, \psi\}$,

 $\Gamma, \varphi \vdash_{\mathbf{G}} \psi \text{ iff } \Gamma \vdash_{\mathbf{G}} \varphi \to \psi$

Proof.

⇐: follows from modus ponens

⇒: let $\alpha_1, \ldots, \alpha_n = \psi$ be the proof of ψ in Γ, φ . We show by induction that $\Gamma \vdash_G \varphi \rightarrow \alpha_i$ for each $i \leq n$.

Otherwise there has to be k, j < i such that $\alpha_k = \alpha_j \rightarrow \alpha_i$.

Induction assumption gives: $\Gamma \vdash_{G} \varphi \rightarrow \alpha_{j}$ and $\Gamma \vdash \varphi \rightarrow (\alpha_{j} \rightarrow \alpha_{i})$.

Using $\Gamma \vdash \varphi \rightarrow (\alpha_j \rightarrow \alpha_i)$, (Ex), and MP we get $\Gamma \vdash \alpha_j \rightarrow (\varphi \rightarrow \alpha_i)$, using this, $\Gamma \vdash_G \varphi \rightarrow \alpha_j$, (Tr), and MP twice we get $\Gamma \vdash \varphi \rightarrow (\varphi \rightarrow \alpha_i)$. Finally we use (Con) and MP.

Semilinearity Property

Lemma 2.12 (Semilinearity Property)

If $\Gamma, \varphi \to \psi \vdash_G \chi$ and $\Gamma, \psi \to \varphi \vdash_G \chi$, then $\Gamma \vdash_G \chi$.

Proof.

By the deduction theorem: $\Gamma \vdash_{G} (\varphi \rightarrow \psi) \rightarrow \chi$ and $\Gamma \vdash_{G} (\psi \rightarrow \varphi) \rightarrow \chi$. Thus by (\lor c) we get $\Gamma \vdash_{G} (\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi) \rightarrow \chi$. Axiom (Prl) completes the proof.

Linear Extension Property

Definition 2.13

A theory Γ is linear if $\Gamma \vdash_{G} \varphi \rightarrow \psi$ or $\Gamma \vdash_{G} \psi \rightarrow \varphi$ for each φ, ψ .

Lemma 2.14 (Linear Extension Property)

If $\Gamma \nvDash_G \varphi$, then there is a linear theory $\Gamma' \supseteq \Gamma$ such that $\Gamma' \nvDash_G \varphi$.

Proof.

Enumerate all pairs of formulas: $\langle \varphi_0, \psi_0 \rangle, \langle \psi_1, \varphi_1 \rangle, \ldots$ Construct theories $\Gamma_0, \Gamma_1, \ldots$ such that $\Gamma_0 = \Gamma$; $\Gamma_i \subseteq \Gamma_{i+1}$, and $\Gamma_i \nvDash_G \varphi$:

• *if*
$$\Gamma_i, \varphi_i \to \psi_i \nvDash_G \varphi$$
, *then* $\Gamma_{i+1} = \Gamma_i \cup \{\varphi_i \to \psi_i\}$

• if $\Gamma_i, \varphi_i \to \psi_i \vdash_G \varphi$, then $\Gamma_{i+1} = \Gamma_i \cup \{\psi_i \to \varphi_i\}$

Clearly $\Gamma_{i+1} \nvDash_G \varphi$ (the 1st case is obvious; in the 2nd $\Gamma_{i+1} \vdash_G \varphi$ would entail $\Gamma_i \vdash_G \varphi$ by the *Semilinearity Property*, a contradiction with the IH. Define $\Gamma' = \bigcup \Gamma_i$. Clearly Γ' is linear, $\Gamma' \supseteq \Gamma$, and $\Gamma' \nvDash_G \varphi$.

Petr Cintula and Carles Noguera (CAS)

General/linear/standard completeness theorem

Theorem 2.4

The following are equivalent for every set of formulas $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$:

- $\bigcirc \Gamma \vdash_{\mathbf{G}} \varphi$
- $\ 2 \ \ \Gamma \models_{\mathbb{G}} \varphi$
- $\ \, \mathbf{O} \ \, \Gamma \models_{\mathbb{G}_{\mathrm{lin}}} \varphi$
- $\textcircled{0} \Gamma \models_{[0,1]_{\mathbf{G}}} \varphi$

Proof.

3. implies 1.: contrapositively, assume that $\Gamma \not\vdash_G \varphi$. Due to the Linear Extension Property there is a linear theory $\Gamma' \supseteq \Gamma$ such that $\Gamma' \not\vdash_G \varphi$.

We know that $\operatorname{Lind}_{\Gamma'} \in \mathbb{G}_{\operatorname{lin}}$ and the function e defined as $e(\psi) = [\psi]_{\Gamma'}$

• is a ${\bf Lind}_{\Gamma'}{\rm -evaluation}$ and

•
$$e(\psi) = \overline{1}^{\operatorname{Lind}_{\Gamma'}}$$
 iff $\Gamma' \vdash_{\operatorname{G}} \psi$

Thus $e(\chi) = \overline{1}^{\operatorname{Lind}_{\Gamma'}}$ for each $\chi \in \Gamma$ (as $\Gamma' \vdash_G \chi$) and $e(\varphi) \neq \overline{1}^{\operatorname{Lind}_{\Gamma'}}$.

The proof of the standard completeness theorem

We continue the previous proof: note that the algebra $\mathbf{Lind}_{\Gamma'}$ is countable.

There has to be (because every countable order can be monotonously embedded into a dense one) a mapping $f: L_{\Gamma'} \to [0, 1]$ such that $f(\overline{0}^{\text{Lind}_{\Gamma'}}) = 0, f(\overline{1}^{\text{Lind}_{\Gamma'}}) = 1$, and for each $a, b \in L_{T'}$ we have:

 $a \le b$ iff $f(a) \le f(b)$

We define a mapping $\bar{e} \colon Fm_{\mathcal{L}} \to [0,1]$ as

$$\bar{e}(\psi) = f(e(\psi))$$

and prove (by induction) that it is an $[0,1]_{G}$ -evaluation.

Then
$$\bar{e}(\psi) = 1$$
 iff $e(\psi) = \overline{1}^{\operatorname{Lind}_{\Gamma'}}$ and so $\bar{e}[\Gamma] \subseteq \{1\}$ and $\bar{e}(\varphi) \neq 1$.

Syntax

We consider primitive connectives $\mathcal{L} = \{\rightarrow, \land, \lor, \overline{0}\}$ and defined connectives \neg , $\overline{1}$, and \leftrightarrow :

$$\neg \varphi = \varphi \to \overline{0} \qquad \quad \overline{1} = \neg \overline{0} \qquad \quad \varphi \leftrightarrow \psi = (\varphi \to \psi) \land (\psi \to \varphi)$$

Formulas are built from a fixed countable set of atoms using the connectives.

Let us by $Fm_{\mathcal{L}}$ denote the set of all formulas.

We also use additional connectives \oplus and & defined as:

$$\varphi \oplus \psi = \neg \varphi \to \psi \qquad \varphi \And \psi = \neg (\varphi \to \neg \psi)$$

A Hilbert-style proof system

Axioms:

earity lso quodlibet perg axiom modus ponens

The relation of provability

Proof: a proof of a formula φ from a set of formulas (theory) Γ is a finite sequence of formulas $\langle \psi_1, \ldots, \psi_n \rangle$ such that:

•
$$\psi_n = \varphi$$

 for every *i* ≤ *n*, either ψ_i ∈ Γ, or ψ_i is an instance of an axiom, or there are *j*, *k* < *i* such that ψ_k = ψ_j → ψ_i.

We write $\Gamma \vdash_{\mathbb{L}} \varphi$ if there is a proof of φ from Γ .

A formula φ is a theorem of Łukasiewicz logic if $\vdash_{\mathbf{L}} \varphi$.

Proposition 2.15

The provability relation of Łukasiewicz logic is finitary: if $\Gamma \vdash_{\mathbb{L}} \varphi$, then there is a finite $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \vdash_{\mathbb{L}} \varphi$.

Algebraic semantics

An MV-*algebra* is a structure $B = \langle B, \oplus, \neg, \overline{0} \rangle$ such that:

- (1) $\langle B, \oplus, \overline{0} \rangle$ is a commutative monoid,
- $(2) \quad \neg \neg x = x,$
- $(3) \quad x \oplus \neg \overline{0} = \neg \overline{0},$
- (4) $\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x.$

In each MV-algebra we define additional operations:

$$\begin{array}{lll} x \rightarrow y & \text{is} & \neg x \oplus y & \text{implication} \\ x \& y & \text{is} & \neg (\neg x \oplus \neg y) & \text{strong conjunction} \\ x \lor y & \text{is} & \neg (\neg x \oplus y) \oplus y & \text{max-disjunction} \\ x \land y & \text{is} & \neg (\neg x \lor \neg y) & \text{min-conjunction} \\ \overline{1} & \text{is} & \neg \overline{0} & \text{top} \end{array}$$

Exercise 3

Prove that $\langle B, \wedge, \vee, \overline{0}, \overline{1} \rangle$ is a bounded lattice.

Petr Cintula and Carles Noguera (CAS)

Algebraic semantics cont. and standard semantics

We say that an MV-algebra B is linearly ordered (or MV-chain) if its lattice reduct is.

By \mathbb{MV} (or \mathbb{MV}_{lin} resp.) we denote the class of all MV-algebras (MV-chains resp.)

Take the algebra $[0,1]_{\rm L}=\langle [0,1],\oplus,\neg,0\rangle$, with operations defined as:

$$\neg a = 1 - a \qquad a \oplus b = \min\{1, a + b\}.$$

Proposition 2.16

 $[0,1]_{L}$ is the unique (up to isomorphism) MV-chain with the lattice reduct $\langle [0,1], \min, \max, 0, 1 \rangle$.

Exercise 1

(b) Check that $[0,1]_{\rm L}$ is an MV-chain and find another MV-chain isomorphic to $[0,1]_{\rm L}$ with the same lattice reduct.

Semantical consequence

Definition 2.17

A *B*-evaluation is a mapping e from $Fm_{\mathcal{L}}$ to B such that:

•
$$e(\overline{0}) = \overline{0}^{B}$$

• $e(\varphi \to \psi) = e(\varphi) \to^{B} e(\psi) = \neg^{B} e(\varphi) \oplus^{B} e(\psi)$
• $e(\varphi \land \psi) = e(\varphi) \land^{B} e(\psi) = \cdots$
• $e(\varphi \lor \psi) = e(\varphi) \lor^{B} e(\psi) = \cdots$

Definition 2.18

A formula φ is a logical consequence of a set of formulas Γ w.r.t. a class \mathbb{K} of MV-algebras, $\Gamma \models_{\mathbb{K}} \varphi$, if for every $B \in \mathbb{K}$ and every *B*-evaluation *e*:

if
$$e(\gamma) = \overline{1}$$
 for every $\gamma \in \Gamma$, then $e(\varphi) = \overline{1}$.

General/linear/standard completeness theorem

Theorem 2.19

The following are equivalent for every set of formulas $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$:

- $\bigcirc \Gamma \models_{\mathbb{MV}} \varphi$

If Γ is finite we can add:

Exercise 1

(b) Prove the implications from top to bottom.

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

www.cs.cas.cz/cintula/MFL 27/100

Some theorems and derivations

Proposition 2.20

$$\begin{array}{ll} (T1) & \vdash_{\mathrm{L}} \varphi \to \varphi \\ (T2) & \vdash_{\mathrm{L}} \varphi \to (\psi \to \varphi \land \psi) \\ (T3) & \vdash_{\mathrm{L}} \varphi \lor \chi \to ((\varphi \to \psi) \lor \chi \to \psi \lor \chi) \\ (T4) & \vdash_{\mathrm{L}} \varphi \lor \varphi \to \varphi \\ (T5) & \vdash_{\mathrm{L}} \varphi \lor \psi \to \psi \lor \varphi \\ (D1) & \overline{1} \leftrightarrow \varphi \vdash_{\mathrm{L}} \varphi \text{ and } \varphi \vdash_{\mathrm{L}} \overline{1} \leftrightarrow \varphi \\ (D2) & \varphi \to \psi \vdash_{\mathrm{L}} \varphi \land \psi \leftrightarrow \varphi \text{ and } \varphi \land \psi \leftrightarrow \varphi \vdash_{\mathrm{L}} \varphi \to \psi \\ (D3') & \varphi \to (\psi \to \chi) \vdash_{\mathrm{G}} \varphi \And \psi \to \chi \text{ and } \varphi \And \psi \to \chi \vdash_{\mathrm{G}} \varphi \to (\psi \to \chi) \end{array}$$

Proposition 2.21

$$\begin{split} \vdash_{\mathbf{L}} \varphi \oplus \psi \leftrightarrow \psi \oplus \varphi & \vdash_{\mathbf{L}} \neg \neg \varphi \leftrightarrow \varphi \\ \vdash_{\mathbf{L}} \varphi \oplus (\psi \oplus \chi) \leftrightarrow (\varphi \oplus \psi) \oplus \chi & \vdash_{\mathbf{L}} \varphi \oplus \neg \overline{\mathbf{0}} \leftrightarrow \neg \overline{\mathbf{0}} \\ \vdash_{\mathbf{L}} \overline{\mathbf{0}} \oplus \varphi \leftrightarrow \varphi & \vdash_{\mathbf{L}} \neg (\neg \varphi \oplus \psi) \oplus \psi \leftrightarrow \neg (\neg \psi \oplus \varphi) \oplus \varphi \end{split}$$

The rule of substitution

Proposition 2.22

$$\begin{array}{ll} \varphi \leftrightarrow \psi \vdash_{\mathbf{L}} (\varphi \wedge \chi) \leftrightarrow (\psi \wedge \chi) & \varphi \leftrightarrow \psi \vdash_{\mathbf{L}} (\varphi \vee \chi) \leftrightarrow (\psi \vee \chi) \\ \varphi \leftrightarrow \psi \vdash_{\mathbf{L}} (\chi \wedge \varphi) \leftrightarrow (\chi \wedge \psi) & \varphi \leftrightarrow \psi \vdash_{\mathbf{L}} (\chi \vee \varphi) \leftrightarrow (\chi \vee \psi) \\ \varphi \leftrightarrow \psi \vdash_{\mathbf{L}} (\varphi \rightarrow \chi) \leftrightarrow (\psi \rightarrow \chi) & \varphi \leftrightarrow \psi \vdash_{\mathbf{L}} (\chi \rightarrow \varphi) \leftrightarrow (\chi \rightarrow \psi) \end{array}$$

 $\vdash_{\mathbf{L}} \varphi \leftrightarrow \varphi \qquad \varphi \leftrightarrow \psi \vdash_{\mathbf{L}} \psi \leftrightarrow \varphi \qquad \varphi \leftrightarrow \psi, \psi \leftrightarrow \chi \vdash_{\mathbf{L}} \varphi \leftrightarrow \chi$

Corollary 2.23

 $\varphi \leftrightarrow \psi \vdash_{\mathrm{L}} \chi \leftrightarrow \chi'$, where χ' results from χ by replacing its subformula φ by ψ .

Exercise 2

(b) Prove this corollary and the two previous propositions.

Lindenbaum–Tarski algebra

Definition 2.24

Let Γ be a theory. We define

 $[\varphi]_{\Gamma} = \{\psi \mid \Gamma \vdash_{\mathcal{L}} \varphi \leftrightarrow \psi\} \qquad L_{\Gamma} = \{[\varphi]_{\Gamma} \mid \varphi \in Fm_{\mathcal{L}}\}\$

The Lindenbaum–Tarski algebra of a theory Γ (Lind_{Γ}) as an algebra with the domain L_{Γ} and operations:

$$\begin{split} \overline{\mathbf{0}}^{\mathbf{Lind}_{\Gamma}} &= \ [\overline{\mathbf{0}}]_{\Gamma} \\ \neg^{\mathbf{Lind}_{\Gamma}}[\varphi]_{\Gamma} &= \ [\neg\varphi]_{\Gamma} \\ [\varphi]_{\Gamma} \oplus^{\mathbf{Lind}_{\Gamma}} \ [\psi]_{\Gamma} &= \ [\varphi \oplus \psi]_{\Gamma} \end{split}$$

Lindenbaum–Tarski algebra: basic properties

Proposition 2.25

$$\ \, [\varphi]_{\Gamma} = [\psi]_{\Gamma} \text{ iff } \Gamma \vdash_{\mathbb{L}} \varphi \leftrightarrow \psi$$

$$2 \ [\varphi]_{\Gamma} \leq^{\mathbf{Lind}_{\Gamma}} [\psi]_{\Gamma} \text{ iff } \Gamma \vdash_{\mathbb{L}} \varphi \to \psi$$

$$\mathbf{\mathfrak{3}} \ \overline{\mathbf{1}}^{\mathbf{Lind}_{\Gamma}} = [\varphi]_{\Gamma} \ \textit{iff} \ \Gamma \vdash_{\mathrm{L}} \varphi$$

- \bigcirc Lind_{Γ} is an MV-algebra
- **6** Lind_{Γ} is an MV-chain iff $\Gamma \vdash_{\mathbb{L}} \varphi \rightarrow \psi$ or $\Gamma \vdash_{\mathbb{L}} \psi \rightarrow \varphi$ for each φ, ψ

Proof.

1. Left-to-right is the just definition and 'reflexivity' of \leftrightarrow . Conversely, we use 'transitivity' and 'symmetry' of \leftrightarrow . 2. $[\varphi]_{\Gamma} \leq^{\text{Lind}_{\Gamma}} [\psi]_{\Gamma} \text{ iff } [\varphi]_{\Gamma} \wedge^{\text{Lind}_{\Gamma}} [\psi]_{\Gamma} = [\varphi]_{\Gamma} \text{ iff } [\varphi \wedge \psi]_{\Gamma} = [\varphi]_{\Gamma} \text{ iff (by 1.)}$ $\Gamma \vdash_{L} \varphi \wedge \psi \leftrightarrow \varphi \text{ iff (by (D2))} \Gamma \vdash_{L} \varphi \rightarrow \psi.$ 3. $\overline{1}^{\text{Lind}_{\Gamma}} = [\varphi]_{\Gamma} \text{ iff (by 2.)} \Gamma \vdash_{L} \overline{1} \rightarrow \varphi \text{ iff (by (D1))} \Gamma \vdash_{L} \varphi.$ 5. Trivial after we prove 4.

Lindenbaum–Tarski algebra: basic properties

Proposition 2.25

$$\ \, [\varphi]_{\Gamma} = [\psi]_{\Gamma} \text{ iff } \Gamma \vdash_{\mathbb{L}} \varphi \leftrightarrow \psi$$

$$2 \ [\varphi]_{\Gamma} \leq^{\mathbf{Lind}_{\Gamma}} [\psi]_{\Gamma} \text{ iff } \Gamma \vdash_{\mathbb{L}} \varphi \to \psi$$

$$\mathbf{\mathfrak{3}} \ \overline{\mathbf{1}}^{\mathbf{Lind}_{\Gamma}} = [\varphi]_{\Gamma} \ \textit{iff} \ \Gamma \vdash_{\mathrm{L}} \varphi$$

- **3** Lind_{Γ} is an MV-algebra
- **6** Lind_{Γ} is an MV-chain iff $\Gamma \vdash_{\mathbb{L}} \varphi \rightarrow \psi$ or $\Gamma \vdash_{\mathbb{L}} \psi \rightarrow \varphi$ for each φ, ψ

Proof.

4. First we note that the definition of ${\bf Lind}_{\Gamma}$ is sound due to 1. and Proposition 2.7.

The identities defining MV-algebras hold due to 1. and Proposition 2.21.

Łukasiewicz logic vs. Gödel-Dummett

Some things are the same, not only (T1), (T2), (D1), and (D2), but also:

$$\begin{array}{ll} \varphi \wedge \psi \to \chi \vdash_{\mathcal{L}} \varphi \to (\psi \to \chi) & \varphi \wedge \psi \to \chi \vdash_{\mathcal{G}} \varphi \to (\psi \to \chi) \\ \vdash_{\mathcal{L}} \varphi \to \neg \neg \varphi & \vdash_{\mathcal{G}} \varphi \to \neg \neg \varphi \\ \vdash_{\mathcal{L}} (\varphi \to \psi) \to (\neg \psi \to \neg \varphi) & \vdash_{\mathcal{G}} (\varphi \to \psi) \to (\neg \psi \to \neg \varphi) \end{array}$$

Some are different:

$$\begin{array}{ll} \varphi \to (\psi \to \chi) \nvDash_{\mathbf{L}} \varphi \wedge \psi \to \chi & \varphi \to (\psi \to \chi) \vdash_{\mathbf{G}} \varphi \wedge \psi \to \chi \\ \vdash_{\mathbf{L}} \neg \neg \varphi \to \varphi & & \nvDash_{\mathbf{G}} \neg \neg \varphi \to \varphi \\ \vdash_{\mathbf{L}} (\neg \psi \to \neg \varphi) \to (\varphi \to \psi) & & \nvDash_{\mathbf{G}} (\neg \psi \to \neg \varphi) \to (\varphi \to \psi) \end{array}$$

Contrast this with known derivation (D3'):

 $\varphi \to (\psi \to \chi) \vdash_{\mathrm{L}} \varphi \And \psi \to \chi \qquad \varphi \And \psi \to \chi \vdash_{\mathrm{L}} \varphi \to (\psi \to \chi)$

Petr Cintula and Carles Noguera (CAS)

Failure of the Deduction Theorem

Assume that we would have that for every set of formulas $\Gamma \cup \{\varphi, \psi\}$,

$$\Gamma, \varphi \vdash_{\mathbf{L}} \psi \text{ iff } \Gamma \vdash_{\mathbf{L}} \varphi \to \psi$$

Clearly (MP twice): $\varphi, \varphi \to (\varphi \to \psi) \vdash_{\mathrm{L}} \psi$.

Thus by the deduction theorem we would get

$$\vdash_{\mathrm{L}} (\varphi \to (\varphi \to \psi)) \to (\varphi \to \psi).$$

This is the axiom of contraction known to fail in Łukasiewicz logic

A possible solution

We can prove that:

 $\vdash_{\mathbf{L}} \varphi \,\&\, \psi \leftrightarrow \psi \,\&\, \varphi \qquad \vdash_{\mathbf{L}} \varphi \,\&\, \overline{\mathbf{1}} \leftrightarrow \varphi \qquad \vdash_{\mathbf{L}} (\varphi \,\&\, \psi) \,\&\, \chi \leftrightarrow \psi \,\&\, (\varphi \,\&\, \chi)$

Thus it makes sense to define $\varphi^0 = \overline{1}$ and $\varphi^{n+1} = \varphi^n \& \varphi$

Exercise 4

Let χ be a &-conjunction of *n* formulas φ with arbitrary bracketing. Prove that $\vdash_{\mathbf{L}} \chi \leftrightarrow \varphi^n$. Furthermore prove that $\varphi \vdash_{\mathbf{L}} \varphi^n$.

Local Deduction Theorem

Theorem 2.26 (Local deduction theorem)

For every set of formulas $\Gamma \cup \{\varphi, \psi\}$,

 $\Gamma, \varphi \vdash_{\mathbf{L}} \psi$ iff there is *n* such that $\Gamma \vdash_{\mathbf{L}} \varphi^n \to \psi$

Proof.

⇐: follows from *modus ponens* and the previous exercise *⇒*: let $\alpha_1, ..., \alpha_n = \psi$ be the proof of ψ in Γ, φ . We show by induction that for each *i* ≤ *n* there is n_i such that $\Gamma \vdash_L \varphi^{n_i} \to \alpha_i$ If $\alpha_i = \varphi$ we set $n_i = 1$ and use (T1); if α_i is an axiom or $\alpha_i \in \Gamma$, then

 $\Gamma \vdash_{\mathbf{L}} \alpha_i$ and so we can set $n_i = 1$ and use (11), if α_i is an axiom of $\alpha_i \in \mathbf{1}$, if $\Gamma \vdash_{\mathbf{L}} \alpha_i$ and so we can set $n_i = 1$ and use axiom (We) and MP.
Local Deduction Theorem

Theorem 2.26 (Local deduction theorem)

For every set of formulas $\Gamma \cup \{\varphi, \psi\}$,

 $\Gamma, \varphi \vdash_{\mathbb{L}} \psi$ iff there is *n* such that $\Gamma \vdash_{\mathbb{L}} \varphi^n \to \psi$

Proof.

⇐: follows from*modus ponens*and the previous exercise $⇒: let <math>\alpha_1, \ldots, \alpha_n = \psi$ be the proof of ψ in Γ, φ . We show by induction that for each $i \le n$ there is n_i such that $\Gamma \vdash_L \varphi^{n_i} \to \alpha_i$ Otherwise there has to be k, j < i such that $\alpha_k = \alpha_j \to \alpha_i$. Induction assumption gives: $\Gamma \vdash_L \varphi^{n_j} \to \alpha_j$ and $\Gamma \vdash \varphi^{n_k} \to (\alpha_j \to \alpha_i)$. Using $\Gamma \vdash \varphi^{n_k} \to (\alpha_j \to \alpha_i)$, (Ex), and MP we get $\Gamma \vdash \alpha_j \to (\varphi^{n_k} \to \alpha_i)$, using this, $\Gamma \vdash_L \varphi^{n_j} \to \alpha_j$, (Tr), and MP we get $\Gamma \vdash \varphi^{n_j} \to (\varphi^{n_k} \to \alpha_i)$. Finally we use (D3') and the previous exercise to get $\Gamma \vdash \varphi^{n_j+n_k} \to \alpha_i$.

Proof by Cases Property

Theorem 2.27 (Proof by Cases Property)

If $\Gamma, \varphi \vdash_{\mathbb{L}} \chi$ and $\Gamma, \psi \vdash_{\mathbb{L}} \chi$, then $\Gamma, \varphi \lor \psi \vdash_{\mathbb{L}} \chi$.

Proof.

Claim If $\Gamma \vdash_{\mathbf{E}} \varphi$, then $\Gamma \lor \chi \vdash_{\mathbf{E}} \delta \lor \chi$ for each formula χ and each δ appearing in the proof of φ from Γ .

Proof of the claim: trivial for $\delta \in \Gamma$ or δ an axiom; if we used MP, then by IH there has to be η st.

 $\Gamma \lor \chi \vdash_{\mathrm{L}} \eta \lor \chi \qquad \Gamma \lor \chi \vdash_{\mathrm{L}} (\eta \to \delta) \lor \chi$ thus (T3) completes the proof.

Now using the claim: $\Gamma \lor \psi, \varphi \lor \psi \vdash_{\mathbf{L}} \chi \lor \psi$ and $\Gamma \lor \chi, \psi \lor \chi \vdash_{\mathbf{L}} \chi \lor \chi$. Using (\lor a), (T4), and (T5) we get $\Gamma, \varphi \lor \psi \vdash_{\mathbf{L}} \psi \lor \chi$ and $\Gamma, \psi \lor \chi \vdash_{\mathbf{L}} \chi$ and the rest is trivial.

Semilinearity Property

Lemma 2.28 (Semilinearity Property)

If $\Gamma, \varphi \to \psi \vdash_{\mathbb{L}} \chi$ and $\Gamma, \psi \to \varphi \vdash_{\mathbb{L}} \chi$, then $\Gamma \vdash_{\mathbb{L}} \chi$.

Proof.

By the Proof by Cases Property and axiom (Prl).

Linear Extensions Property

Definition 2.29

A theory Γ is linear if $\Gamma \vdash_{\mathbf{L}} \varphi \rightarrow \psi$ or $\Gamma \vdash_{\mathbf{L}} \psi \rightarrow \varphi$ for each φ, ψ .

Lemma 2.30 (Linear Extension Property)

If $\Gamma \nvdash_{L} \varphi$, then there is a linear theory $\Gamma' \supseteq \Gamma$ such that $\Gamma' \nvdash_{L} \varphi$.

Proof.

The same as in the case of Gödel–Dummett logic.

Linear Extensions Property

Definition 2.29

A theory Γ is linear if $\Gamma \vdash_{\mathrm{L}} \varphi \rightarrow \psi$ or $\Gamma \vdash_{\mathrm{L}} \psi \rightarrow \varphi$ for each φ, ψ .

Lemma 2.30 (Linear Extension Property)

If $\Gamma \nvdash_{\mathrm{L}} \varphi$, then there is a linear theory $\Gamma' \supseteq \Gamma$ such that $\Gamma' \nvdash_{\mathrm{L}} \varphi$.

Proof.

Enumerate all pairs of formulas: $\langle \varphi_0, \psi_0 \rangle, \langle \psi_1, \varphi_1 \rangle, \ldots$ Construct theories $\Gamma_0, \Gamma_1, \ldots$ such that $\Gamma_0 = \Gamma$; $\Gamma_i \subseteq \Gamma_{i+1}$, and $\Gamma_i \nvDash_L \varphi$:

• if
$$\Gamma_i, \varphi_i \to \psi_i \nvDash_{\mathcal{L}} \varphi$$
, then $\Gamma_{i+1} = \Gamma_i \cup \{\varphi_i \to \psi_i\}$

• *if* $\Gamma_i, \varphi_i \to \psi_i \vdash_{\mathcal{L}} \varphi$, *then* $\Gamma_{i+1} = \Gamma_i \cup \{\psi_i \to \varphi_i\}$

Clearly $\Gamma_{i+1} \nvDash_{\mathrm{L}} \varphi$ (the 1st case is obvious; in the 2nd $\Gamma_{i+1} \vdash_{\mathrm{L}} \varphi$ would entail $\Gamma_i \vdash_{\mathrm{L}} \varphi$ by the Semilinearity Property, a contradiction with the IH. Define $\Gamma' = \bigcup \Gamma_i$. Clearly Γ' is linear, $\Gamma' \supseteq \Gamma$, and $\Gamma' \nvDash_{\mathrm{L}} \varphi$.

General/linear/standard completeness theorem

Theorem 2.19

The following are equivalent for every set of formulas $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$:

 $\ \ \, \bullet \ \ \, \Gamma \models_{[0,1]_{F_{\bullet}}} \varphi$

The proof of the equivalence of the first three claims is the same as in the case of Gödel–Dummett logic.

We give a proof of 4. implies 1. but first ...

MV-algebras and LOAGs

A lattice ordered Abelian group (*LOAG* for short) is a structure $(G, +, 0, -, \leq)$ such that (G, +, 0, -) is an Abelian group and:

(i)
$$\langle G, \leq \rangle$$
 is a lattice,
(ii) if $x \leq y$, then $x + z \leq y + z$ for all $z \in G$.

strong unit *u* is an element such that

 $(\forall x \in G)(\exists n \in N)(x \le nu)$

For LOAG $G = \langle G, +, 0, -, \leq \rangle$ and strong unit u we define algebra $\Gamma(G, u) = \langle [0, u], \oplus, \neg, \overline{0} \rangle$, where $x \oplus y = \min\{u, x + y\}, \neg x = u - x, \overline{0} = 0$.

We denote by *R* the additive LOAG of reals.

Proposition 2.31

 $\Gamma(G, u)$ is an MV-algebra and for each u > 0, $\Gamma(\mathbf{R}, u)$ is isomorphic to the standard MV-algebra $[0, 1]_{L}$.

А

The proof of the standard completeness theorem

If $\Gamma \nvDash_{\mathbb{L}} \varphi$ we know that there is a countable MV-chain *B* s.t. $\Gamma \nvDash_{B} \varphi$. Let x_1, \ldots, x_n be variables occurring in $\Gamma \cup \{\varphi\}$. Then:

$$\not\models_{\boldsymbol{B}} (\forall x_1, \dots, x_n) \bigwedge_{\psi \in \Gamma} (\psi \approx \overline{1}) \Rightarrow (\varphi \approx \overline{1})$$

Let us define an algebra $\pmb{B}' = \langle Z \times \pmb{B}, +, -, 0 \rangle$ as:

$$\langle i, x \rangle + \langle j, y \rangle = \begin{cases} \langle i+j, x \oplus y \rangle & \text{if } x \& y = 0 \\ \langle i+j+1, x \& y \rangle & \text{otherwise} \end{cases}$$

$$-\langle i,x \rangle = \langle -i-1, \neg x \rangle$$
 and $0 = \langle 0, \overline{0} \rangle$

Proposition 2.32

$$B'$$
 is a LOAG and $B = \Gamma(B', \langle 1, \overline{0} \rangle).$

The proof of the standard completeness theorem

Let us fix an extra variable *u*, we define a translation of MV-terms into LOAG-terms:

$$x' = x$$
 $\overline{0}' = 0$ $(\neg t)' = u - t'$ $(t_1 \oplus t_2)' = (t'_1 + t'_2) \wedge u.$

Recall that we have:

$$\not\models_{\boldsymbol{B}} (\forall x_1,\ldots,x_n) \bigwedge_{\psi \in \Gamma} (\psi \approx \overline{1}) \Rightarrow (\varphi \approx \overline{1}),$$

Thus also:

$$\not\models_{B'} (\forall u)(\forall x_1,\ldots,x_n)[(0 < u) \land \bigwedge_{i \le n} (x_i \le u) \land (0 \le x_i) \land \bigwedge_{\psi \in \Gamma} (\psi' \approx u) \Rightarrow (\varphi' \approx u)]$$

The proof of the standard completeness theorem

Gurevich–Kokorin theorem: each \forall_1 -sentence of LOAGs is true in additive LOAG of reals iff it is true in all linearly ordered LOAGs. Thus

$$\not\models_{\mathbf{R}} (\forall u)(\forall x_1,\ldots,x_n)[(0 < u) \land \bigwedge_{i \le n} (x_i \le u) \land (0 \le x_i) \land \bigwedge_{\psi \in \Gamma} (\psi' \approx u) \Rightarrow (\varphi' \approx u)]$$

And so

$$\not\models_{\mathbf{\Gamma}(\mathbf{R},u)} (\forall x_1,\ldots,x_n) \bigwedge_{\psi \in \Gamma} (\psi \approx \overline{1}) \Rightarrow (\varphi \approx \overline{1})$$

And so

$$\not\models_{[0,1]_{\mathrm{L}}} (\forall x_1,\ldots,x_n) \bigwedge_{\psi \in \Gamma} (\psi \approx \overline{1}) \Rightarrow (\varphi \approx \overline{1})$$

i.e., $\Gamma \not\models_{[0,1]_{\mathbb{L}}} \varphi$

Failure of standard completeness for infinite theories

Non-theorem

For every set of formulas $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$ we have:

 $\Gamma \vdash_{\mathbb{L}} \varphi$ if, and only if, $\Gamma \models_{[0,1]_{\mathbb{L}}} \varphi$.

• Consider the theory $\Gamma = \{(p \oplus . \stackrel{n}{.} \oplus p) \to q \mid n \ge 1\} \cup \{\neg p \to q\}.$

• Note that for any $[0,1]_{L}$ -evaluation e such that $e[\Gamma] = \{1\}$ we have e(q) = 1 and so $\Gamma \models_{[0,1]_{L}} q$.

- Thus by our *Non-theorem* $\Gamma \vdash_{L} q$ and, since proofs are finite, there must be a finite $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \vdash_{L} q$.
- Thus, $\Gamma_0 \models_{[0,1]_L} q$.
- Let *n* be the maximal *n* such that $(p \oplus .^n . \oplus p) \rightarrow q \in \Gamma_0$.
- The $[0, 1]_{L}$ -evaluation $e(p) = \frac{1}{n+1}$ and $e(q) = \frac{n}{n+1}$ yields a contradiction.

The classical case

Theorem 2.33 (Functional completeness)

Every Boolean function (i.e. any function $f: \{0,1\}^n \rightarrow \{0,1\}$ for some $n \ge 1$) is representable by some formula of classical logic.

The fuzzy case

Let L be either L of G.

Definition 2.34

A function $f: [0,1]^n \to [0,1]$ is *represented* by a formula $\varphi(v_1, \ldots, v_n)$ in L if $e(\varphi) = f(e(v_1), e(v_2), \ldots, e(v_n))$ for each $[0,1]_L$ -evaluation e.

Definition 2.35

The *functional representation* of L is the set \mathcal{F}_L of all functions from any power of [0, 1] into [0, 1] that are represented in L by some formula.

Relation with Lindenbaum–Tarski algebra

Let us fix L = L. Let f_i be functions of n_i variables, $i \in \{1, 2\}$. We say that $f_1 = f_2$ iff $f_1(x_1, x_2, ..., x_{n_1}) = f_2(x_1, x_2, ..., x_{n_2})$ for every $x_j \in [0, 1]$. Let us for each $f \in \mathcal{F}_L$ define a class

$$[f] = \{g \in \mathcal{F}_{\mathrm{L}} \mid f = g\} \qquad F = \{[f] \mid f \in \mathcal{F}_{\mathrm{L}}\}$$

We define an MV-algebra F with domain F and operations:

$$\overline{0}^F = [0] \quad \neg^F[f] = [1 - f]_T \quad [f] \oplus^F [g] = [\min\{1, f + g\}]$$

Theorem 2.36

The algebras F and $Lind_{\emptyset}$ are isomorphic.

In the case of G, the definitions and the result are analogous.

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

A proof

Let the atoms be enumerated as v_1, v_2, \ldots Any formula with variables with maximal index *n* is viewed as formula in variables v_1, \ldots, v_n . We define the homomorphism:

 $g \colon L_{\emptyset} \to F$ as $g([\varphi]) = [f_{\varphi}]$ where f_{φ} is the function represented by φ .

Then:

- the definition is sound and g is one-one: [φ] = [ψ] iff ⊢_L φ ↔ ψ iff (due to the standard completeness theorem) e(φ) = e(ψ) for each [0, 1]_L-evaluation e iff [f_φ] = [f_ψ].
- *g* is a homomorphism: $g([\varphi] \oplus [\psi]) = g([\varphi \oplus \psi]) = [f_{\varphi \oplus \psi}] = [f_{\varphi} \oplus f_{\psi}] = [f_{\varphi}] \oplus [f_{\psi}].$
- g is onto (obvious).

How do the functions from \mathcal{F}_{L} look like?

Observations

- they are all continuous
- they are piece-wise linear
- all pieces have integer coefficients
- if $x_1, \ldots, x_n \in \{0, 1\}^n$, then $f(x_1, \ldots, x_n) \in \{0, 1\}$
- if $x_1, ..., x_n \in ([0, 1] \cap \mathbf{Q})^n$, then $f(x_1, ..., x_n) \in [0, 1] \cap \mathbf{Q}$

Definition 2.37

A McNaughton function $f: [0,1]^n \rightarrow [0,1]$ is a continuous piece-wise linear function, where each of the pieces has integer coefficients.

Theorem 2.38 (McNaughton theorem)

 $\mathcal{F}_{\rm L}$ is the set of all McNaughton functions.

A lemma

Lemma 2.39

Let $f : [0,1]^n \to R$ be an integer linear polynomial, i.e. of the form

$$f(x_1,\ldots,x_n) = \sum_{i=1}^n a_i x_i + b$$
 for some $a_1,\ldots,a_n, b \in \mathsf{Z}$

Then there is a formula φ_f representing the function $f^{\#} = \max\{0, \min\{1, f\}\}.$

Proof.

By induction on $m = \sum_{i=1}^{n} |a_i|$. If m = 0 then $f^{\#}$ is either constantly 0 or 1, then we can take as φ either the term $\overline{0}$ or $\overline{1}$, respectively. Assume now m > 0 and let a_j be such that $|a_j| = \max_{i=1}^{n} |a_i|$. WLOG we can assume $a_j > 0$: indeed otherwise we consider f' = 1 - f, here $a_j > 0$ and so we have φ_{1-f} . Note that clearly $\varphi_f = \neg \varphi_{1-f}$

A lemma: continuation of the proof

Let us consider the function $g = f - x_j$: by IH we have formulas φ_g and φ_{g+1} . If we show that

$$(g + x_j)^{\#} = (g^{\#} \oplus x_j) \& (g + 1)^{\#}$$
(1)

the proof is done as:

$$\varphi_f = \varphi_{g+x_j} = (\varphi_g \oplus x_j) \& \varphi_{g+1}.$$

So we need to prove (2.1). Let *L* and *R* be its left/right side :

• if
$$|g(\vec{x})| > 1$$
 then $L = R = 1$ or $L = R = 0$

• $0 \le g(\vec{x}) \le 1$ then $L = \min\{1, g(\vec{x}) + x_j\}, g(\vec{x}) = g^{\#}(\vec{x})$ and $(g+1)^{\#}(\vec{x}) = 1$. Hence $R = g(\vec{x}) \oplus x_j = \min\{1, g(\vec{x}) + x_j\} = L$.

•
$$-1 \le g(\vec{x}) \le 0$$
 then $L = \max\{0, g(\vec{x}) + x_j\}, g^{\#}(\vec{x}) = 0$ and $(g+1)^{\#}(\vec{x}) = g(\vec{x}) + 1$. Hence $g^{\#}(\vec{x}) \oplus x_j = x_j$ and so $R = \max\{0, x_j + g(\vec{x}) + 1 - 1\} = \max\{0, x_j + g(\vec{x})\} = L$.

The proof for one variable functions

Definition 2.40

Let $a, b \in [0, 1] \cap Q$. Then any McNaughton function f such that f(x) = 1 iff $x \in [a, b]$ is called *pseudo characteristic function* of interval [a, b].

Exercise 5

Prove that each interval has a pseudo characteristic function and find a formula representing it. Hint: use Lemma 2.39.

Lemma 2.41

Let $a, b \in [0, 1] \cap \mathbb{Q}$. Then for each $\epsilon > 0$ there is a pseudo characteristic function of the interval [a, b], s.t. f(x) = 0 for $x \in [0, a - \epsilon] \cup [b + \epsilon, 1]$.

Proof.

If *f* is a pseudo char. function of some interval, so is f^n for each *n*.

The proof for one variable functions

Let *p* be a McNaughton function of one variable given by *n* integer linear polynomials p_1, \ldots, p_n . For each $i \in \{1, 2, \ldots n\}$ let $P_i = [a_i, b_i]$ be the interval in which *p* uses p_i . Note that:

•
$$[0,1] = \bigcup_i P_i$$

- $a_i, b_i \in [0, 1] \cap \mathsf{Q}$
- there is a pseudo characteristic function f_i of $[a_i, b_i]$ such that $p(x) \ge (f_i \& p_i^{\#})(x)$ for each $x \notin P_i$.

Then

$$p(x) = \bigvee_{i} (f_i \& p_i^{\#})(x)$$
 and thus $\varphi_p = \bigvee_{i} \varphi_{f_i} \& \varphi_{p_i}$.

The classical case, FMP and decidability

CL is complete with respect to a finite algebra, 2.

Definition 2.42

A logic has the finite model property (FMP) if it is complete with respect to a set of finite algebras.

From the FMP, we obtain decidability:

- Thanks to our finite notion of proof, the set of theorems is recursively enumerable.
- Thanks to FMP, the set of non-theorems is also recursively enumerable (we can check validity in bigger and bigger finite algebras until we find a countermodel).
- Therefore, theoremhood is a decidable problem.
- Note: provability from finitely-many premises is also decidable (using deduction theorem).

Finite chains

Lemma 2.43

Let **B** be a subalgebra of an MV- or G-algebra A. Then $\models_A \subseteq \models_B$.

Exercise 6

- (a) Prove that each *n*-valued G-chain is isomorphic to the subalgebra G_n of $[0, 1]_G$ with the domain $\{\frac{i}{n-1} \mid i \leq n-1\}$.
- (b) Prove that each *n*-valued MV-chain is isomorphic to the subalgebra *L_n* of [0, 1]_L with the domain {*i*/*n*-1</sub> | *i* ≤ *n* − 1}.

Lemma 2.44

$$\models_{G_m} \subseteq \models_{G_n} \quad iff \quad n \le m.$$
$$\models_{\underline{L}_m} \subseteq \models_{\underline{L}_n} \quad iff \quad n-1 \text{ divides } m-1.$$

Let us denote by $\mathbb{L}_{\mathrm{fin}}$ the class of finite L-chains.

The case of Gödel–Dummett logic

Theorem 2.45

Let φ be a formula with n-2 variables. Then: $\vdash_{G} \varphi$ iff $\models_{G_n} \varphi$.

Proof.

Contrapositively: assume that $\not\vdash_G \varphi$ and let *e* be a $[0,1]_G$ -evaluation such that $e(\varphi) \neq 1$. Let $X = \{0,1\} \cup \{e(v_i) \mid 1 \le i \le n-2\}$ and note that it is a subuniverse of $[0,1]_G$, thus *e* can be seen as an *X*-evaluation and so $\not\models_X \varphi$. The previous exercise and lemma complete the proof.

Theorem 2.46

For every finite set of formulas $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$. The following are equivalent:

 $\bigcirc \Gamma \vdash_{\mathbf{G}} \varphi$

$$\ \, \square \models_{[0,1]_G} \varphi$$

 $\ \, {\bf 3} \ \, \Gamma \models_{\mathbb{G}_{\mathrm{fin}}} \varphi$

The case of Łukasiewicz logic

Theorem 2.47

For every finite set of formulas $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$, TFAE:

Proof: we show it for one variable v.

Let us define the set *E* of $[0, 1]_{L}$ -evaluations such that $e[\Gamma] \subseteq \{1\}$. Note that *E* can be seen as a union of real intervals. Assume that there is $e \in E$ such that $e(\varphi) \neq 1$. If we show that there is an evaluation $f \in E$, such that $f(v) = \frac{p}{n-1}$ and $f(\varphi) \neq 1$ we are done as *f* can be seen as L_n -evaluation.

- Either e lies on the border of some interval, then f = e OR
- there has to be a neighborhood $X \subseteq E$ such that $f(\varphi) \neq \overline{1}$ for each
 - $f \in X$, then there has to be such f.

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

The classical case

- $\varphi \in SAT(CL)$ if there is a 2-evaluation e such that $e(\varphi) = 1$.
- $\varphi \in \text{TAUT}(\text{CL})$ if for each 2-evaluation e holds $e(\varphi) = 1$.

Recall:

 $\begin{array}{ll} \varphi \in \mathrm{TAUT}(\mathrm{CL}) & \mathrm{iff} & \neg \varphi \not\in \mathrm{SAT}(\mathrm{CL}) \\ \varphi \in \mathrm{SAT}(\mathrm{CL}) & \mathrm{iff} & \neg \varphi \not\in \mathrm{TAUT}(\mathrm{CL}). \end{array}$

Both problems, SAT(CL) and TAUT(CL), are decidable.

But how difficult are their computations?

 $f, g: \mathbb{N} \to \mathbb{N}$. $f \in O(g)$ iff there are $c, n_0 \in \mathbb{N}$ such that for each $n \ge n_0$ we have $f(n) \le c g(n)$.

- **TIME**(*f*): the class of problems *P* such that there is a deterministic Turing machine *M* that accepts *P* and operates in time *O*(*f*).
- **NTIME**(*f*): analogous class for nondeterministic Turing machines.
- **SPACE**(*f*): the class of problems *P* such that there is a deterministic Turing machine *M* that accepts *P* and operates in space *O*(*f*).
- **NSPACE**(*f*): the analogous class for nondeterministic Turing machines.

$$\mathbf{P} = \bigcup_{k \in \mathbf{N}} \mathbf{TIME}(n^k)$$
$$\mathbf{NP} = \bigcup_{k \in \mathbf{N}} \mathbf{NTIME}(n^k)$$
$$\mathbf{PSPACE} = \bigcup_{k \in \mathbf{N}} \mathbf{SPACE}(n^k)$$

If C is a complexity class, we denote $\mathbf{coC} = \{P \mid \overline{P} \in \mathbf{C}\}$, the class of complements of problems in C.

- Each deterministic complexity class C is closed under complementation: if P ∈ C, then also P ∈ C.
- Is NP closed under complementation?
- $\mathbf{P} \subseteq \mathbf{NP}, \mathbf{P} \subseteq \mathbf{coNP}, \mathbf{NP} \subseteq \mathbf{PSPACE}.$
- Are the inclusions $P \subseteq NP \subseteq PSPACE$ proper?
- Each of the classes P, NP, coNP, and PSPACE is closed under finite unions and intersections.

A problem *P* is said to be C-hard iff any decision problem P' in C is reducible to *P*.

A problem *P* is C-complete iff *P* is C-hard and $P \in C$.

The classical case

- SAT(CL) ∈ NP: guess an evaluation and check whether it satisfies the formula (a polynomial matter).
- TAUT(CL) \in coNP: $\varphi \in$ TAUT(CL) iff $\neg \varphi \notin$ SAT(CL).
- Cook Theorem: Let $SAT^{CNF}(CL)$ be the SAT problem for formulas in conjunctive normal form. Then: $SAT^{CNF}(CL)$ is **NP**-complete.
- SAT^{CNF}(CL) is a fragment of SAT(CL), therefore SAT(CL) is NP-complete and TAUT(CL) is coNP-complete.

The fuzzy case: basic definitions

Let L be either Łukasiewicz logic Ł or Gödel logic G. We define:

- $\varphi \in SAT(L)$ if there is an evaluation *e* such that $e(\varphi) = 1$.
- $\varphi \in SAT_{pos}(L)$ if there is an evaluation e such that $e(\varphi) > 0$.
- $\varphi \in \text{TAUT}(L)$ if for each evaluation e holds $e(\varphi) = 1$.
- $\varphi \in \text{TAUT}_{\text{pos}}(L)$ if for each evaluation e holds $e(\varphi) > 0$.

Note that $\varphi \lor \neg \varphi \in TAUT_{pos}(L)$ but $\varphi \lor \neg \varphi \notin TAUT(L)$

Note that $\varphi \land \neg \varphi \in SAT_{pos}(E)$ but $\varphi \land \neg \varphi \notin SAT(E)$

The fuzzy case: basic reductions

Lemma 2.48Let L be either Łukasiewicz logic L or Gödel logic G. Then $\varphi \in TAUT_{pos}(L)$ iff $\neg \varphi \notin SAT(L)$ $\varphi \in SAT_{pos}(L)$ iff $\neg \varphi \notin TAUT(L).$

_emma 2.49		
$\varphi \in \mathrm{SAT}(\mathbbm{k})$	iff	$\neg \varphi \not\in \mathrm{TAUT}_{\mathrm{pos}}(\mathbbm{k})$
$\varphi \in TAUT(\mathbb{E})$	iff	$\neg \varphi \notin SAT_{pos}(E).$

Exercise 7

Prove the above two lemmata, show that the last equivalence fails for G and the one but last holds there. (Hint: for the last part use properties of these sets proved in the next few slides).

The case of Łukasiewicz logic

Theorem 2.50

The sets SAT(Ł) and SAT_{pos}(Ł) are **NP**-complete. Therefore the sets TAUT(Ł) and TAUT_{pos}(Ł) are coNP-complete.

We prove it in a series of lemmata. First we show that $\mbox{SAT}(\mbox{$L$})$ is $\mbox{$NP$-hard$:}$

Lemma 2.51

Let φ be a formula with variables $p_1, \ldots p_n$.

$$\varphi \in \text{SAT}(\text{CL})$$
 IFF $\varphi \land \bigwedge_{i=1}^{n} (p_i \lor \neg p_i) \in \text{SAT}(\text{L}).$

$SAT_{pos}(E)$ is NP-hard

Lemma 2.52

Let φ be a formula with variables $p_1, \ldots p_n$ built using: \land, \lor, \neg .

$$\varphi \in \text{SAT}(\text{CL})$$
 IFF $\varphi^2 \wedge \bigwedge_{i=1}^n (p_i \vee \neg p_i)^2 \in \text{SAT}_{\text{pos}}(\mathbb{E}).$

Proof.

Let *e* positively satisfy the right-hand formula. Then $e((p_i \vee \neg p_i)^2) > 0$ ergo $e(p_i) \neq 0.5$. We define the evaluation

$$e'(p_i) = egin{cases} 1 & ext{if } e(p_i) > 0.5 \ 0 & ext{if } e(p_i) < 0.5 \end{cases}$$

Clearly this can be extended to φ . And, since $e(\varphi^2) > 0$, we have $e(\varphi) > 0.5$ and so $e'(\varphi) = 1$.

SAT(k) and $\text{SAT}_{\text{pos}}(\texttt{k})$ are in NP

Lemma 2.53

$$\begin{split} e(\varphi \rightarrow \psi) \geq r \quad \textit{IFF} \quad \exists i, j \in [0, 1] \quad \begin{array}{c} e(\varphi) & \leq & i \\ e(\psi) & \geq & j \\ r+i-j & \leq & 1 \\ \\ e(\varphi) & \leq & i \\ e(\psi) & \leq & j \\ \psi' = r \quad \text{IFF} \quad \exists i, j \in [0, 1], y \in \{0, 1\} \quad \begin{array}{c} e(\varphi) & \geq & i \\ e(\psi) & \leq & j \\ y-r & \leq & 0 \\ y+i & \leq & 1 \\ y-j & \leq & 0 \\ y+r+i-j & \geq & 1 \\ \end{array} \end{split}$$

Using this lemma we can reduce the question of (positive) satisfiability to the question of Mixed Integer Programming (MIP) which is known to be in **NP**:

For SAT(Ł) start with $e(\varphi) \ge 1$ for SAT_{pos}(Ł) start with $\frac{e(\varphi) \ge i_0}{i_0 > 0}$

The case of Gödel–Dummett logic

Lemma 2.54 The mapping $f: [0,1] \rightarrow \{0,1\}$ defined as f(0) = 0 and f(x) = 1 if $x \neq 0$ is a homomorphism from $[0,1]_G$ to 2.

Corollary 2.55

 $SAT_{pos}(G) \subseteq SAT(CL) \qquad TAUT(CL) \subseteq TAUT_{pos}(G).$

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

www.cs.cas.cz/cintula/MFL 72/100
The case of Gödel–Dummett logic

Corollary 2.56

$$\begin{array}{lll} \varphi \in \mathrm{SAT}_{\mathrm{pos}}(\mathrm{G}) & \textit{iff} \quad \varphi \in \mathrm{SAT}(\mathrm{G}) & \textit{iff} \quad \varphi \in \mathrm{SAT}(\mathrm{CL}) \\ \varphi \in \mathrm{TAUT}_{\mathrm{pos}}(\mathrm{G}) & \textit{iff} \quad \neg \neg \varphi \in \mathrm{TAUT}(\mathrm{G}) & \textit{iff} \quad \varphi \in \mathrm{TAUT}(\mathrm{CL}) \end{array}$$

Proof.

Just observe that:

$$SAT(G) \subseteq SAT_{pos}(G) \subseteq SAT(CL) \subseteq SAT(G).$$

And that

$$\varphi \in \text{TAUT}_{\text{pos}}(G) \Rightarrow \neg \varphi \notin \text{SAT}(G) \Rightarrow \neg \varphi \notin \text{SAT}_{\text{pos}}(G)$$
$$\Rightarrow \neg \neg \varphi \in \text{TAUT}(G) \Rightarrow \varphi \in \text{TAUT}(\text{CL}) \Rightarrow \varphi \in \text{TAUT}_{\text{pos}}(G).$$

Petr Cintula and Carles Noguera (CAS)

The case of Gödel–Dummett logic

Corollary 2.56

 $\begin{array}{lll} \varphi \in \mathrm{SAT}_{\mathrm{pos}}(\mathrm{G}) & \textit{iff} \quad \varphi \in \mathrm{SAT}(\mathrm{G}) & \textit{iff} \quad \varphi \in \mathrm{SAT}(\mathrm{CL}) \\ \varphi \in \mathrm{TAUT}_{\mathrm{pos}}(\mathrm{G}) & \textit{iff} \quad \neg \neg \varphi \in \mathrm{TAUT}(\mathrm{G}) & \textit{iff} \quad \varphi \in \mathrm{TAUT}(\mathrm{CL}) \end{array}$

Theorem 2.57

The sets SAT(G) and $SAT_{pos}(G)$ are **NP**-complete and the sets TAUT(G) and $TAUT_{pos}(G)$ are **coNP**-complete.

Proof.

The only non clear case is TAUT(G): it is coNP-hard due to the last reduction of the previous corollary. We present a non-deterministic polynomial 'algorithm' (sound due to Theorem 2.58) for $Fm_{\mathcal{L}} \setminus TAUT(G)$: Step 1: guess a G_n -evaluation e (assuming that φ has n-2 variables) Step 2: compute the value of $e(\varphi)$ (clearly in polynomial time) Output: if $e(\varphi) \neq 1$ output $\varphi \notin TAUT(G)$.

Equational consequence

An equation in the language \mathcal{L} is a formal expression of the form $\varphi \approx \psi$, where $\varphi, \psi \in Fm_{\mathcal{L}}$.

We say that an equation $\varphi \approx \psi$ is a consequence of a set of equations Π w.r.t. a class \mathbb{K} of \mathcal{L} -algebras if for each $A \in \mathbb{K}$ and each A-evaluation e we have $e(\varphi) = e(\psi)$ whenever $e(\alpha) = e(\beta)$ for each $\alpha \approx \beta \in \Pi$; we denote it by $\Pi \models_{\mathbb{K}} \varphi \approx \psi$.

A quasiequation in the language \mathcal{L} is a formal expression of the form $(\bigwedge_{i=1}^{n} \varphi_i \approx \psi_i) \Rightarrow \varphi \approx \psi$, where $\varphi_1, \ldots, \varphi_n, \varphi, \psi_1, \ldots, \psi_n, \psi \in Fm_{\mathcal{L}}$.

Varieties and quasivarieties

Type of class	Presented by	Closed under
variety	equations	H, S, and P
quasivariety	quasiequations	I, S, P, and $P_{\rm U}$
т	icomorphic imogo	
1	isomorphic image	95
Н	homomorphic images	
S	subalgebras	
Р	direct products	
\mathbf{P}_{U}	ultraproducts	
V	generated variety	
Q	generated quasivariety	

Algebraization of Łukasiewicz logic

• For every $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$, $\Gamma \vdash_{L} \varphi \text{ iff } \{\psi \approx \overline{1} \mid \psi \in \Gamma\} \models_{\mathbb{MV}} \varphi \approx \overline{1}$ • For every set of equations $\Pi \cup \{\varphi \approx \psi\}$, $\Pi \models_{\mathbb{MV}} \varphi \approx \psi \text{ iff } \{\alpha \leftrightarrow \beta \mid \alpha \approx \beta \in \Pi\} \vdash_{L} \varphi \leftrightarrow \psi$ • For every $\varphi \in Fm_{\mathcal{L}}$, $\varphi \vdash_{L} \varphi \leftrightarrow \overline{1} \text{ and } \varphi \leftrightarrow \overline{1} \vdash_{L} \varphi$ • For every $\varphi, \psi \in Fm_{\mathcal{L}}$, $\varphi \approx \psi \models_{\mathbb{MV}} \varphi \leftrightarrow \psi \approx \overline{1} \text{ and } \varphi \leftrightarrow \psi \approx \overline{1} \models_{\mathbb{MV}} \varphi \approx \psi$ Translations:

- $\tau: \varphi \mapsto \varphi \approx \overline{1}$
- $\bullet \ \rho: \alpha \approx \beta \mapsto \alpha \leftrightarrow \beta$

MV-algebras are the equivalent algebraic semantics of Ł.

\mathbb{MV} is a variety

 \mathbb{MV} is a variety of algebras, i.e. an equational class:

(1)
$$x \oplus (y \oplus z) \approx (x \oplus y) \oplus z$$
,

(2)
$$x \oplus y \approx y \oplus x$$
,

- (3) $x \oplus \overline{0} \approx x$,
- (4) $\neg \neg x \approx x$,
- (5) $x \oplus \neg \overline{0} \approx \neg \overline{0}$,
- (6) $\neg(\neg x \oplus y) \oplus y \approx \neg(\neg y \oplus x) \oplus x.$

Algebraization of Gödel–Dummett logic

• For every $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$, $\Gamma \vdash_{G} \varphi$ iff $\{\psi \approx \overline{1} \mid \psi \in \Gamma\} \models_{\mathbb{G}} \varphi \approx \overline{1}$ • For every set of equations $\Pi \cup \{\varphi \approx \psi\}$, $\Pi \models_{\mathbb{G}} \varphi \approx \psi$ iff $\{\alpha \leftrightarrow \beta \mid \alpha \approx \beta \in \Pi\} \vdash_{G} \varphi \leftrightarrow \psi$ • For every $\varphi \in Fm_{\mathcal{L}}$, $\varphi \vdash_{G} \varphi \leftrightarrow \overline{1}$ and $\varphi \leftrightarrow \overline{1} \vdash_{G} \varphi$ • For every $\varphi, \psi \in Fm_{\mathcal{L}}$, $\varphi \approx \psi \models_{\mathbb{G}} \varphi \leftrightarrow \psi \approx \overline{1}$ and $\varphi \leftrightarrow \psi \approx \overline{1} \models_{\mathbb{G}} \varphi \approx \psi$ Translations:

nanolationo.

• $\tau: \varphi \mapsto \varphi \approx \overline{1}$

 $\bullet \ \rho: \alpha \approx \beta \mapsto \alpha \leftrightarrow \beta$

G-algebras are the equivalent algebraic semantics of G.

\mathbb{G} is a variety

 \mathbb{G} is a variety of algebras, i.e. an equational class:

E1
$$x \to x \approx \overline{1}$$

E2 $\overline{1} \to x \approx x$
E3 $x \to (y \to z) \approx (x \to y) \to (x \to z)$
E4 $(x \to y) \to ((y \to x) \to y) \approx (y \to x) \to ((x \to y) \to x)$
E5 $x \to x \lor y \approx \overline{1}, \quad y \to x \lor y \approx \overline{1}$
E6 $(x \to y) \to ((y \to z) \to (x \lor y \to z)) \approx \overline{1}$
E7 $x \land y \to x \approx \overline{1}, \quad x \land y \to y \approx \overline{1}$
E8 $(x \to y) \to ((x \to z) \to (x \to y \land z)) \approx \overline{1}$
E9 $\overline{0} \to x \approx \overline{1}$
E10 $(x \to y) \lor (y \to x) \approx \overline{1}$

Algebraization of finitary extensions

Let L be \underline{k} or G.

- S = L + Ax + R (Ax is a set of axioms and R a set of finitary rules)
- $\mathbb{S} = \{ A \in \mathbb{L} \mid A \text{ satisfies } \tau(\varphi) \text{ for each } \varphi \in Ax \text{ and } \bigwedge_{i=1}^{n} \tau(\varphi_i) \Rightarrow \tau(\psi) \text{ for each } \langle \varphi_1, \dots, \varphi_n, \psi \rangle \in R \}.$
- We obtain the same relation between the logic and the algebraic semantics as before:

$$\begin{array}{l} \bullet \Gamma \vdash_{S} \varphi \text{ iff } \tau[\Gamma] \models_{\mathbb{S}} \tau(\varphi) \\ \bullet \Pi \models_{\mathbb{S}} \varphi \approx \psi \text{ iff } \rho[\Pi] \vdash_{S} \rho(\varphi \approx \psi) \\ \bullet \varphi \vdash_{S} \rho(\tau(\varphi)) \text{ and } \rho(\tau(\varphi)) \vdash_{S} \varphi \\ \bullet \varphi \approx \psi \models_{\mathbb{S}} \tau(\rho(\varphi \approx \psi)) \text{ and } \tau(\rho(\varphi \approx \psi)) \models_{\mathbb{S}} \varphi \approx \psi \\ \end{array}$$

$\ensuremath{\mathbb{S}}$ is the equivalent algebraic semantics of S.

Algebraization of finitary extensions

The translations τ and ρ between formulas and equations give bijective correspondences (dual lattice isomorphisms):

- between finitary extensions of L and quasivarieties of L-algebras
- 2 between axiomatic extensions of L and varieties of L-algebras.

Proof by Cases Property for extensions

Theorem 2.58 (Proof by Cases Property)

Assume that for each $\langle \varphi_1, \ldots, \varphi_n, \psi \rangle \in R$, $\varphi_1 \lor \chi, \ldots, \varphi_n \lor \chi \vdash_S \psi \lor \chi$. If $\Gamma, \varphi \vdash_S \chi$ and $\Gamma, \psi \vdash_S \chi$, then $\Gamma, \varphi \lor \psi \vdash_S \chi$.

Proof.

Claim If $\Gamma \vdash_{S} \varphi$, then $\Gamma \lor \chi \vdash_{S} \delta \lor \chi$ for each formula χ and each δ appearing in the proof of φ from Γ .

Proof of the claim: trivial for $\delta \in \Gamma$ or δ an axiom; if we used MP, then by IH there has to be η st.

 $\Gamma \lor \chi \vdash_{S} \eta \lor \chi$ $\Gamma \lor \chi \vdash_{S} (\eta \to \delta) \lor \chi$ thus (T7) completes the proof.

Now using the claim: $\Gamma \lor \psi, \varphi \lor \psi \vdash_{S} \chi \lor \psi$ and $\Gamma \lor \chi, \psi \lor \chi \vdash_{S} \chi \lor \chi$. Using (A6a), (T8), and (T9) we get $\Gamma, \varphi \lor \psi \vdash_{S} \psi \lor \chi$ and $\Gamma, \psi \lor \chi \vdash_{S} \chi$ and the rest is trivial.

Chain-completeness for extensions

Corollary 2.59

Assume that for each $\langle \varphi_1, \ldots, \varphi_n, \psi \rangle \in R$, $\varphi_1 \lor \chi, \ldots, \varphi_n \lor \chi \vdash_S \psi \lor \chi$ (this is the case, in particular, if S is an axiomatic extension). Then for every set of formulas $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}} \colon \Gamma \vdash_S \varphi$ iff $\Gamma \models_{\mathbb{S}_{\text{lin}}} \varphi$.

Exercise 8 Prove it.

The case of Gödel–Dummett logic

For each $n \ge 1$, recall the canonical *n*-valued G-chain: $G_n = \langle \{\frac{i}{n-1} \mid i \le n-1\}, \min, \max, \rightarrow, 0, 1 \rangle.$ $G_n = \mathbf{G} + \bigvee_{i=0}^{n-1} (p_i \to p_{i+1}).$

Theorem 2.60

- for each n ≥ 1, G_n-algebras are the subvariety of G-algebras satisfying Vⁿ⁻¹_{i=0} (p_i → p_{i+1}) ≈ 1 and it coincides with V(G_n).
- G is locally finite, i.e. each finite subset of a G-algebra generates a finite subalgebra.
- If *C* is an infinite G-chain, then $V(C) = \mathbb{G}$.
- the subvarieties of \mathbb{G} are exactly: $\mathbf{V}(\mathbf{G}_1) \subsetneq \mathbf{V}(\mathbf{G}_2) \subsetneq \mathbf{V}(\mathbf{G}_3) \subsetneq \ldots \subsetneq \mathbf{V}(\mathbf{G}_n) \subsetneq \mathbf{V}(\mathbf{G}_{n+1}) \subsetneq \ldots \mathbb{G}.$

Exercise 9

Prove it.

The case of Gödel–Dummett logic

Theorem 2.61

There are no other finitary extensions of G than $G_n s$ (i.e. \mathbb{G} has no proper subquasivarieties).

Lemma 2.62

Gödel–Dummett logic proves:

•
$$(\varphi \to (\psi \to \chi)) \leftrightarrow ((\varphi \to \psi) \to (\varphi \to \chi))$$

•
$$(\varphi \to (\psi \land \chi)) \leftrightarrow ((\varphi \to \psi) \land (\varphi \to \chi))$$

•
$$(\varphi \to (\psi \lor \chi)) \leftrightarrow ((\varphi \to \psi) \lor (\varphi \to \chi))$$

Define a substitution $\sigma_{\varphi}(p) = \varphi \rightarrow p$. Then if $\overline{0}$ does not occur in φ we have: $\vdash_{G} \sigma_{\varphi}(\psi) \leftrightarrow (\varphi \rightarrow \psi), \psi \vdash_{G} \sigma_{\varphi}(\psi)$, and $\vdash_{G} \sigma_{\varphi}(\varphi)$.

Deduction theorems

Lemma 2.63

Any finitary extension L of G enjoys the deduction theorem.

Proof.

Assume that $\varphi \vdash_{\mathbf{L}} \psi$. Let χ_f be the formula resulting from χ by replacing all occurrences of $\overline{0}$ by a fresh fixed variable f. Define a substitution $\sigma(q) = \overline{0}$ for q = f and q otherwise; observe $\sigma(\chi_f) = \chi$.

Claim:
$$\{f \to q \mid q \text{ in } \{\varphi, \psi\}\}, \varphi_f \vdash_{\mathbf{L}} \psi_f.$$

Thus $\sigma \sigma_{\varphi_f}[\{f \to q \mid q \text{ in } \{\varphi, \psi\}\} \cup \{\varphi_f\}] \vdash_L \sigma \sigma_{\varphi_f}(\psi_f)$. And so $\{(\varphi \to \overline{0}) \to (\varphi \to q) \mid q \text{ in } \{\varphi, \psi\}\}, \sigma \sigma_{\varphi_f}(\varphi) \vdash_L \sigma \sigma_{\varphi_f}(\psi)$. Since, clearly, $\vdash_L \sigma \sigma_{\varphi_f}(\chi_f) \leftrightarrow (\varphi \to \chi)$, we obtain $\vdash_L \varphi \to \psi$.

Exercise 10

Complete the proof (including the claim!).

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

Structural completeness

The proof of Theorem 2.88.

Obvious as the previous lemma allows us to replace any additional rule of L by an axiom.

Definition 2.64

A logic is structurally complete if each proper extension has some new theorems. A logic is hereditarily structurally complete if each of its extensions is structurally complete.

Corollary 2.65

G is hereditarily structurally complete.

Exercise 11

Ł is not structurally complete.

(hint: use the rule $\varphi \leftrightarrow \neg \varphi \vdash \overline{0}$)

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

Important MV-chains

Recall the functor Γ which turns each Lattice ordered Abelian group with strong unit into and MV-algebra

For each $n \ge 1$, recall the canonical *n*-valued MV-chain: $L_n = \langle \{\frac{i}{n-1} \mid i \le n-1\}, \oplus, \neg, 0 \rangle.$

• for each
$$u > 0$$
, $[0, 1]_{\mathbb{L}} \cong \Gamma(\mathbf{R}, u)$.

•
$$\boldsymbol{L}_n \cong \boldsymbol{\Gamma}(\boldsymbol{Q}_{n-1}, 1)$$

•
$$K_n = \Gamma(Q_{n-1} \otimes Z, \langle 1, 0 \rangle).$$

where on Q_{n-1} is the additive group of rationals whose denominator is n-1, and $Q_{n-1} \otimes Z$ is the lexicographic product (direct product with the lexicographic order).

Varieties of MV-algebras

Proposition 2.66

•
$$\mathbf{V}([0,1]_{\mathrm{L}}) = \mathbb{MV}$$

- If $I \subseteq \mathsf{N}$ is infinite, then $\mathbf{V}(\{\mathbf{L}_i \mid i \in I\}) = \mathbb{MV}$
- $\mathbf{V}(\mathbf{L}_i) \subseteq \mathbf{V}(\mathbf{L}_j)$ iff i 1 divides j 1.

Theorem 2.67 (Komori)

Let $\mathbb{K} \subseteq \mathbb{MV}$ be a variety. $\mathbb{K} \neq \mathbb{MV}$ iff there are two finite disjoint sets $I, J \subseteq \mathbb{N}$ such that:

$$\mathbb{K} = \mathbf{V}(\{\mathbf{L}_i \mid i \in I\} \cup \{\mathbf{K}_j \mid j \in J\}).$$

Varieties of MV-algebras

Definition 2.68

If $i \in \mathbb{N}$, $\delta(i) = \{n \in \mathbb{N} \mid n \text{ is a divisor of } i\}$. If $J \subseteq \mathbb{N}$ is finite and nonempty, $\Delta(i, J) = \delta(i) \setminus \bigcup_{j \in J} \delta(j)$.

Theorem 2.69 (Di Nola, Lettieri)

Let $I, J \subseteq \mathbb{N}$ be finite disjoint sets. Then the variety $\mathbb{V}(\{\mathbf{L}_i \mid i \in I\} \cup \{\mathbf{K}_j \mid j \in J\})$ has the following equational base:

$$Eq(1) \qquad ((n+1)x^{n})^{2} \approx 2x^{n+1} \quad \text{with } n = \max(I \cup J),$$

$$Eq(2) \qquad (px^{p-1})^{n+1} \approx (n+1)x^{p},$$

$$Eq(3) \qquad (n+1)x^{q} \approx (n+2)x^{q},$$

for every positive integer 1 such that <math>p is not a divisor of any $i \in I \cup J$ and for every $q \in \bigcup_{i \in I} \Delta(i, J)$.

Fuzzy logic for reasoning about probability

 $\textbf{Fuzziness} \neq \textbf{probability}$

Probability of $\varphi = \Box \varphi = \text{truth degree of } it is probable that \varphi$

Let us take:

- the classical logic CL in language $\rightarrow, \neg, \lor, \land, \overline{0}$
- Łukasiewicz logic Ł in language $\rightarrow_L, \neg_L, \oplus, \ominus$
- an extra symbol

We define three kinds of formulas of a two-level language over a fixed set of variables *Var*:

- non-modal: built from *Var* using \rightarrow , \neg , \lor , \land , $\overline{0}$
- atomic modal: of the form $\Box \varphi$, for each non-modal φ
- modal: built from atomic ones using $\rightarrow_L, \neg_L, \oplus, \ominus$

Probability Kripke frames and Kripke models

Definition 2.70

A *probability Kripke frame* is a system $\mathbf{F} = \langle W, \mu \rangle$ where

- W is a set (of possible worlds)
- μ is a finitely additive probability measure defined on

a sublattice of 2^W

Definition 2.71

A *Kripke model* **M** over a probability Kripke frame $\mathbf{F} = \langle W, \mu \rangle$ is a tuple $\mathbf{M} = \langle \mathbf{F}, (e_w)_{w \in W} \rangle$ where:

- e_w is a classical evaluation of non-modal formulas
- the domain of μ contains the set $\{w \mid e_w(\varphi) = 1\}$

for each non-modal formula φ

Truth definition

The truth values of modal formulas are defined uniformly:

$$\begin{aligned} ||\Box\varphi||_{\mathbf{M}} &= \mu(\{w \mid e_w(\varphi) = 1\}) \\ ||\neg_{\mathbf{L}}\Phi||_{\mathbf{M}} &= 1 - ||\Phi||_{\mathbf{M}} \\ ||\Phi \rightarrow_{\mathbf{L}}\Psi||_{\mathbf{M}} &= \min\{1, 1 - ||\Phi||_{\mathbf{M}} + ||\Psi||_{\mathbf{M}}\} \\ ||\Phi \oplus \Psi||_{\mathbf{M}} &= \min\{1, ||\Phi||_{\mathbf{M}} + ||\Psi||_{\mathbf{M}}\} \\ ||\Phi \ominus \Psi||_{\mathbf{M}} &= \max\{0, ||\Phi||_{\mathbf{M}} - ||\Psi||_{\mathbf{M}}\} \end{aligned}$$

Axiomatization

Definition 2.72

The logic FP of probability inside Łukasiewicz logic is given by the axiomatic system consisting of:

- the axioms and rules of CL for non-modal formulas,
- axioms and rules of Ł for modal formulas,
- modal axioms

$$\begin{array}{ll} (\mathsf{FP0}) & \neg_{\mathsf{L}} \Box(\overline{0}) \\ (\mathsf{FP1}) & \Box(\varphi \to \psi) \to_{\mathsf{L}} (\Box \varphi \to_{\mathsf{L}} \Box \psi) \\ (\mathsf{FP2}) & \gamma_{\mathsf{L}} \Box(\varphi) \to_{\mathsf{L}} \Box(\neg \varphi) \\ (\mathsf{FP3}) & \Box(\varphi \lor \psi) \to_{\mathsf{L}} (\Box \psi \oplus (\Box \varphi \ominus \Box(\varphi \land \psi))) \end{array}$$

a unary modal rule:

$$\varphi \vdash \Box \varphi$$

The notion of provability \vdash_{FP} (from both modal and non-modal premises) is defined as usual.

Completeness theorem

Theorem 2.73 (Hájek)

Let $\Gamma \cup \{\Psi\}$ be a set of modal formulas. TFAE:

- $\Gamma \vdash_{\mathsf{FP}} \Psi$
- $||\Psi||_{\mathbf{M}} = 1$ for each Kripke model \mathbf{M} where $||\Phi||_{\mathbf{M}} = 1$

for each $\Phi \in \Gamma$.

Variations

- changing the measure of uncertainty (necessity, possibility, belief functions)
- changing the upper logic: replacing Łukasiewicz logic by any other fuzzy logic
- changing the lower logic: e.g. replacing CL by Łukasiewicz logic to speak about probability of vague events
 Ex: Messi will score soon in the second half of the match
- adding more modalities
- any combination of the above four options

We can build also a general theory for these two-layer modal logics