A Gentle Introduction to Mathematical Fuzzy Logic

2. Basic properties of Łukasiewicz and Gödel-Dummett logic

Petr Cintula ${ }^{1}$ and Carles Noguera ${ }^{2}$
${ }^{1}$ Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
${ }^{2}$ Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic
www.cs.cas.cz/cintula/MFL

Syntax

We consider primitive connectives $\mathcal{L}=\{\rightarrow, \wedge, \vee, \overline{0}\}$ and defined connectives $\neg, \overline{1}$, and \leftrightarrow :

$$
\neg \varphi=\varphi \rightarrow \overline{0} \quad \overline{1}=\neg \overline{0} \quad \varphi \leftrightarrow \psi=(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)
$$

Formulas are built from a fixed countable set of atoms using the connectives.

Let us by $F m_{\mathcal{L}}$ denote the set of all formulas.

A Hilbert-style proof system

Axioms:
(Tr) $\quad(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))$
(We) $\quad \varphi \rightarrow(\psi \rightarrow \varphi)$
(Ex) $\quad(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))$
(^a) $\quad \varphi \wedge \psi \rightarrow \varphi$
$(\wedge \mathrm{b}) \quad \varphi \wedge \psi \rightarrow \psi$
$(\wedge$ c) $\quad(\chi \rightarrow \varphi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\chi \rightarrow \varphi \wedge \psi))$
(va) $\quad \varphi \rightarrow \varphi \vee \psi$
(Vb) $\quad \psi \rightarrow \varphi \vee \psi$
($\vee \mathrm{c}) \quad(\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \vee \psi \rightarrow \chi))$
(Prl) $\quad(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$
$\begin{array}{ll}\text { (EFQ) } & \overline{0} \rightarrow \varphi \\ \text { (Con) } & (\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi)\end{array}$
Inference rule: from φ and $\varphi \rightarrow \psi$ infer ψ
transitivity weakening exchange
prelinearity
Ex falso quodlibet contraction
modus ponens

The relation of provability

Proof: a proof of a formula φ from a set of formulas (theory) Γ is a finite sequence of formulas $\left\langle\psi_{1}, \ldots, \psi_{n}\right\rangle$ such that:

- $\psi_{n}=\varphi$
- for every $i \leq n$, either $\psi_{i} \in \Gamma$, or ψ_{i} is an instance of an axiom, or there are $j, k<i$ such that $\psi_{k}=\psi_{j} \rightarrow \psi_{i}$.

We write $\Gamma \vdash_{\mathrm{G}} \varphi$ if there is a proof of φ from Γ.
A formula φ is a theorem of Gödel-Dummett logic if $\vdash_{\mathrm{G}} \varphi$.

Proposition 2.1

The provability relation of Gödel-Dummett logic is finitary: if $\Gamma \vdash_{\mathrm{G}} \varphi$, then there is a finite $\Gamma_{0} \subseteq \Gamma$ such that $\Gamma_{0} \vdash_{\mathrm{G}} \varphi$.

Algebraic semantics

A Gödel algebra (or just G-algebra) is a structure

$$
\boldsymbol{B}=\left\langle\boldsymbol{B}, \wedge^{\boldsymbol{B}}, \vee^{\boldsymbol{B}}, \rightarrow^{\boldsymbol{B}}, \overline{0}^{\boldsymbol{B}}, \overline{1}^{\boldsymbol{B}}\right\rangle \text { such that: }
$$

(1) $\left\langle\boldsymbol{B}, \wedge^{\boldsymbol{B}}, \vee^{\boldsymbol{B}}, \overline{0}^{\boldsymbol{B}}, \overline{1}^{\boldsymbol{B}}\right\rangle$ is a bounded lattice
(2) $z \leq x \rightarrow^{\boldsymbol{B}} y$ iff $x \wedge^{\boldsymbol{B}} z \leq y$
(3) $\left(x \rightarrow{ }^{\boldsymbol{B}} y\right) \vee^{\boldsymbol{B}}\left(y \rightarrow^{\boldsymbol{B}} x\right)=\overline{1}^{\boldsymbol{B}}$
(residuation)
(prelinearity)
where $x \leq^{\boldsymbol{B}} y$ is defined as $x \wedge^{\boldsymbol{B}} y=x$ or (equivalently) as $x \rightarrow^{\boldsymbol{B}} y=\overline{1}^{\boldsymbol{B}}$.

A G-algebra \boldsymbol{B} is linearly ordered (or G-chain) if $\leq^{\boldsymbol{B}}$ is a total order.
By \mathbb{G} (or $\mathbb{G}_{\text {lin }}$ resp.) we denote the class of all G-algebras (G-chains resp.)

Standard semantics

Consider algebra $[0,1]_{\mathrm{G}}=\left\langle[0,1], \wedge^{[0,1]_{\mathrm{G}}}, \vee^{[0,1]_{\mathrm{G}}}, \rightarrow^{[0,1]_{\mathrm{G}}}, 0,1\right\rangle$, where:

$$
\begin{gathered}
a \wedge^{[0,1]_{\mathrm{G}}} b=\min \{a, b\} \\
a \vee^{[0,1]_{\mathrm{G}}} b=\max \{a, b\} \\
a \rightarrow^{[0,1]_{\mathrm{G}}} b= \begin{cases}1 & \text { if } a \leq b \\
b & \text { otherwise }\end{cases}
\end{gathered}
$$

Exercise 1
(a) Prove that $[0,1]_{\mathrm{G}}$ is the unique G -chain with the lattice reduct $\langle[0,1], \min , \max , 0,1\rangle$.

Semantical consequence

Definition 2.2

A \boldsymbol{B}-evaluation is a mapping e from $F m_{\mathcal{L}}$ to B such that:

- $e(\overline{0})=\overline{0}^{\boldsymbol{B}}$
- $e(\varphi \wedge \psi)=e(\varphi) \wedge^{\boldsymbol{B}} e(\psi)$
- $e(\varphi \vee \psi)=e(\varphi) \vee^{\boldsymbol{B}} e(\psi)$
- $e(\varphi \rightarrow \psi)=e(\varphi) \rightarrow^{\boldsymbol{B}} e(\psi)$

Definition 2.3

A formula φ is a logical consequence of a set of formulas Γ w.r.t. a class \mathbb{K} of G-algebras, $\Gamma \models_{\mathbb{K}} \varphi$, if for every $\boldsymbol{B} \in \mathbb{K}$ and every \boldsymbol{B}-evaluation e :

$$
\text { if } e(\gamma)=\overline{1} \text { for every } \gamma \in \Gamma \text {, then } e(\varphi)=\overline{1}
$$

Completeness theorem

Theorem 2.4
The following are equivalent for every set of formulas $\Gamma \cup\{\varphi\} \subseteq F m_{\mathcal{L}}$:
(1) $\Gamma \vdash_{\mathrm{G}} \varphi$
(2) $\Gamma \models_{\mathbb{G}} \varphi$
(3) $\Gamma \models_{\mathbb{G}_{\text {lin }} \varphi}$
(c) $\Gamma \models_{[0,1]_{\mathrm{G}}} \varphi$

Exercise 1

(a) Prove the implications from top to bottom.

Some theorems and derivations in G

Proposition 2.5

(T1) $\vdash_{\mathrm{G}} \varphi \rightarrow \varphi$
(T2) $\vdash_{\mathrm{G}} \varphi \rightarrow(\psi \rightarrow \varphi \wedge \psi)$
(D1) $\overline{1} \leftrightarrow \varphi \vdash_{\mathrm{G}} \varphi$ and $\varphi \vdash_{\mathrm{G}} \overline{1} \leftrightarrow \varphi$
(D2) $\varphi \rightarrow \psi \vdash_{\mathrm{G}} \varphi \wedge \psi \leftrightarrow \varphi$ and $\varphi \wedge \psi \leftrightarrow \varphi \vdash_{\mathrm{G}} \varphi \rightarrow \psi$
(D3) $\varphi \rightarrow(\psi \rightarrow \chi) \vdash_{\mathrm{G}} \varphi \wedge \psi \rightarrow \chi$ and $\varphi \wedge \psi \rightarrow \chi \vdash_{\mathrm{G}} \varphi \rightarrow(\psi \rightarrow \chi)$

Proposition 2.6

$$
\begin{array}{ll}
\vdash_{\mathrm{G}} \varphi \wedge \psi \leftrightarrow \psi \wedge \varphi & \vdash_{\mathrm{G}} \varphi \vee \psi \leftrightarrow \psi \vee \varphi \\
\vdash_{\mathrm{G}} \varphi \wedge(\psi \wedge \chi) \leftrightarrow(\varphi \wedge \psi) \wedge \chi & \vdash_{\mathrm{G}} \varphi \vee(\psi \vee \chi) \leftrightarrow(\varphi \vee \psi) \vee \chi \\
\vdash_{\mathrm{G}} \varphi \wedge(\varphi \vee \psi) \leftrightarrow \varphi & \vdash_{\mathrm{G}} \varphi \vee(\varphi \wedge \psi) \leftrightarrow \varphi \\
\vdash_{\mathrm{G}} \overline{1} \wedge \varphi \leftrightarrow \varphi & \vdash_{\mathrm{G}} \overline{0} \vee \varphi \leftrightarrow \varphi \\
\vdash_{\mathrm{G}}(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi) \leftrightarrow \overline{1} &
\end{array}
$$

The rule of substitution

Proposition 2.7

$$
\begin{array}{ll}
\varphi \leftrightarrow \psi \vdash_{\mathrm{G}}(\varphi \wedge \chi) \leftrightarrow(\psi \wedge \chi) & \varphi \leftrightarrow \psi \vdash_{\mathrm{G}}(\varphi \vee \chi) \leftrightarrow(\psi \vee \chi) \\
\varphi \leftrightarrow \psi \vdash_{\mathrm{G}}(\chi \wedge \varphi) \leftrightarrow(\chi \wedge \psi) & \varphi \leftrightarrow \psi \vdash_{\mathrm{G}}(\chi \vee \varphi) \leftrightarrow(\chi \vee \psi) \\
\varphi \leftrightarrow \psi \vdash_{\mathrm{G}}(\varphi \rightarrow \chi) \leftrightarrow(\psi \rightarrow \chi) & \varphi \leftrightarrow \psi \vdash_{\mathrm{G}}(\chi \rightarrow \varphi) \leftrightarrow(\chi \rightarrow \psi)
\end{array}
$$

$$
\vdash_{\mathrm{G}} \varphi \leftrightarrow \varphi \quad \varphi \leftrightarrow \psi \vdash_{\mathrm{G}} \psi \leftrightarrow \varphi \quad \varphi \leftrightarrow \psi, \psi \leftrightarrow \chi \vdash_{\mathrm{G}} \varphi \leftrightarrow \chi
$$

Corollary 2.8
$\varphi \leftrightarrow \psi \vdash_{\mathrm{G}} \chi \leftrightarrow \chi^{\prime}, \quad$ where χ^{\prime} results from χ by replacing its subformula φ by ψ.

Exercise 2

(a) Prove this corollary and the two previous propositions.

Lindenbaum-Tarski algebra

Definition 2.9

Let Γ be a theory. We define

$$
[\varphi]_{\Gamma}=\left\{\psi \mid \Gamma \vdash_{\mathrm{G}} \varphi \leftrightarrow \psi\right\} \quad L_{\Gamma}=\left\{[\varphi]_{\Gamma} \mid \varphi \in F m_{\mathcal{L}}\right\}
$$

The Lindenbaum-Tarski algebra of a theory $\Gamma\left(\operatorname{Lind}_{\Gamma}\right)$ as an algebra with the domain L_{Γ} and operations:

$$
\begin{aligned}
\overline{0}^{\operatorname{Lind}_{\Gamma}} & =[\overline{0}]_{\Gamma} \\
\overline{1}^{\operatorname{Lind}_{\Gamma}} & =[\overline{1}]_{\Gamma} \\
{[\varphi]_{\Gamma} \rightarrow^{\operatorname{Lind}_{\Gamma}}[\psi]_{\Gamma} } & =[\varphi \rightarrow \psi]_{\Gamma} \\
{[\varphi]_{\Gamma} \wedge^{\operatorname{Lind}_{\Gamma}}[\psi]_{\Gamma} } & =[\varphi \wedge \psi]_{\Gamma} \\
{[\varphi]_{\Gamma} \vee^{\operatorname{Lind}_{\Gamma}}[\psi]_{\Gamma} } & =[\varphi \vee \psi]_{\Gamma}
\end{aligned}
$$

Lindenbaum-Tarski algebra: basic properties

Proposition 2.10

(1) $[\varphi]_{\Gamma}=[\psi]_{\Gamma}$ iff $\Gamma \vdash_{G} \varphi \leftrightarrow \psi$
(2) $[\varphi]_{\Gamma} \leq \operatorname{Lind}_{\Gamma}[\psi]_{\Gamma}$ iff $\Gamma \vdash_{\mathrm{G}} \varphi \rightarrow \psi$
(3) $1^{\text {Lind }_{\Gamma}}=[\varphi]_{\Gamma}$ iff $\Gamma \vdash_{G} \varphi$
(9) Lind ${ }_{\Gamma}$ is a G-algebra
(6) $\operatorname{Lind}_{\Gamma}$ is a G -chain iff $\Gamma \vdash_{\mathrm{G}} \varphi \rightarrow \psi$ or $\Gamma \vdash_{\mathrm{G}} \psi \rightarrow \varphi$ for each φ, ψ

Proof.

1. Left-to-right is the just definition and 'reflexivity' of \leftrightarrow. Conversely, we use 'transitivity' and 'symmetry' of \leftrightarrow.
2. $[\varphi]_{\Gamma} \leq \operatorname{Lind}_{\Gamma}[\psi]_{\Gamma}$ iff $[\varphi]_{\Gamma} \wedge^{\operatorname{Lind}_{\Gamma}}[\psi]_{\Gamma}=[\varphi]_{\Gamma}$ iff $[\varphi \wedge \psi]_{\Gamma}=[\varphi]_{\Gamma}$ iff (by 1.)

$$
\Gamma \vdash_{\mathrm{G}} \varphi \wedge \psi \leftrightarrow \varphi \text { iff (by (D2)) } \Gamma \vdash_{\mathrm{G}} \varphi \rightarrow \psi .
$$

3. $\overline{1}^{\mathrm{Lind}_{\Gamma}}=[\varphi]_{\Gamma}$ iff (by 1.) $\Gamma \vdash_{\mathrm{G}} \overline{\mathrm{I}} \leftrightarrow \varphi$ iff (by (D1)) $\Gamma \vdash_{\mathrm{G}} \varphi$.
4. Trivial after we prove 4.

Lindenbaum-Tarski algebra: basic properties

Proposition 2.10

(1) $[\varphi]_{\Gamma}=[\psi]_{\Gamma}$ iff $\Gamma \vdash_{G} \varphi \leftrightarrow \psi$
(2) $[\varphi]_{\Gamma} \leq^{\text {Lind }_{\Gamma}}[\psi]_{\Gamma}$ iff $\Gamma \vdash_{\mathrm{G}} \varphi \rightarrow \psi$
(3) $1^{\text {Lind }_{\Gamma}}=[\varphi]_{\Gamma}$ iff $\Gamma \vdash_{G} \varphi$
(9) $\operatorname{Lind}_{\Gamma}$ is a G-algebra
(6) $\operatorname{Lind}_{\Gamma}$ is a G -chain iff $\Gamma \vdash_{\mathrm{G}} \varphi \rightarrow \psi$ or $\Gamma \vdash_{\mathrm{G}} \psi \rightarrow \varphi$ for each φ, ψ

Proof.

4. First we note that the definition of $\operatorname{Lind}_{\Gamma}$ is sound due to 1 . and Proposition 2.7.
The lattice identities hold due to 1 . and Proposition 2.6, prelinearity due to 3 . and axiom (Prl).
Finally, the residuation: $[\varphi]_{\Gamma} \leq^{\operatorname{Lind}_{\Gamma}}[\psi]_{\Gamma} \rightarrow \operatorname{Lind}_{\Gamma}[\chi]_{\Gamma}=[\psi \rightarrow \chi]_{\Gamma}$ iff
$\Gamma \vdash_{\mathrm{G}} \varphi \rightarrow(\psi \rightarrow \chi)$ iff (by (D3)) $\Gamma \vdash_{\mathrm{G}} \varphi \wedge \psi \rightarrow \chi$ iff $[\varphi]_{\Gamma} \wedge^{\operatorname{Lind}_{\Gamma}}[\psi]_{\Gamma} \leq{ }^{\operatorname{Lind}_{\Gamma}}[\chi]_{\Gamma}$.

General/linear/standard completeness theorem

Theorem 2.4
The following are equivalent for every set of formulas $\Gamma \cup\{\varphi\} \subseteq F m_{\mathcal{L}}$:
(1) $\Gamma \vdash_{\mathrm{G}} \varphi$
(2) $\Gamma \models_{\mathbb{G}} \varphi$
(3) $\Gamma \models_{\mathbb{G}_{\text {lin }}} \varphi$
(9) $\Gamma \not \models_{[0,1]_{\mathrm{G}}} \varphi$

Proof.

2. implies 1.: contrapositively, assume that $\Gamma \Vdash_{\mathrm{G}} \varphi$.

We know that $\operatorname{Lind}_{\Gamma} \in \mathbb{G}$ and the function e defined as $e(\psi)=[\psi]_{\Gamma}$

- is a Lind ${ }_{\Gamma}$-evaluation and
- $e(\psi)=\overline{1}^{\boldsymbol{L i n d}_{\Gamma}}$ iff $\Gamma \vdash_{\mathrm{G}} \psi$.

Thus clearly $e(\chi)=\overline{1}^{\boldsymbol{L i n d}_{\Gamma}}$ for each $\chi \in \Gamma$ and $e(\varphi) \neq \overline{1}^{-\operatorname{Lind}_{\Gamma}}$.

Deduction Theorem

Theorem 2.11 (Deduction theorem)
For every set of formulas $\Gamma \cup\{\varphi, \psi\}$,

$$
\Gamma, \varphi \vdash_{\mathrm{G}} \psi \text { iff } \Gamma \vdash_{\mathrm{G}} \varphi \rightarrow \psi
$$

Proof.

\Leftarrow : follows from modus ponens
\Rightarrow : let $\alpha_{1}, \ldots, \alpha_{n}=\psi$ be the proof of ψ in Γ, φ. We show by induction that $\Gamma \vdash_{\mathrm{G}} \varphi \rightarrow \alpha_{i}$ for each $i \leq n$.
If $\alpha_{i}=\varphi$ we use (T1); if α_{i} is an axiom or $\alpha_{i} \in \Gamma$ then $\Gamma \vdash_{\mathrm{G}} \alpha_{i}$ and so we can use axiom (We) and MP.

Deduction Theorem

Theorem 2.11 (Deduction theorem)
For every set of formulas $\Gamma \cup\{\varphi, \psi\}$,

$$
\Gamma, \varphi \vdash_{\mathrm{G}} \psi \text { iff } \Gamma \vdash_{\mathrm{G}} \varphi \rightarrow \psi
$$

Proof.

\Leftarrow : follows from modus ponens
\Rightarrow : let $\alpha_{1}, \ldots, \alpha_{n}=\psi$ be the proof of ψ in Γ, φ. We show by induction that $\Gamma \vdash_{\mathrm{G}} \varphi \rightarrow \alpha_{i}$ for each $i \leq n$.
Otherwise there has to be $k, j<i$ such that $\alpha_{k}=\alpha_{j} \rightarrow \alpha_{i}$. Induction assumption gives: $\Gamma \vdash_{\mathrm{G}} \varphi \rightarrow \alpha_{j}$ and $\Gamma \vdash \varphi \rightarrow\left(\alpha_{j} \rightarrow \alpha_{i}\right)$. Using $\Gamma \vdash \varphi \rightarrow\left(\alpha_{j} \rightarrow \alpha_{i}\right)$, (Ex), and MP we get $\Gamma \vdash \alpha_{j} \rightarrow\left(\varphi \rightarrow \alpha_{i}\right)$, using this, $\Gamma \vdash_{\mathrm{G}} \varphi \rightarrow \alpha_{j}$, (Tr), and MP twice we get $\Gamma \vdash \varphi \rightarrow\left(\varphi \rightarrow \alpha_{i}\right)$. Finally we use (Con) and MP.

Semilinearity Property

Lemma 2.12 (Semilinearity Property)
 If $\Gamma, \varphi \rightarrow \psi \vdash_{\mathrm{G}} \chi$ and $\Gamma, \psi \rightarrow \varphi \vdash_{\mathrm{G}} \chi$, then $\Gamma \vdash_{\mathrm{G}} \chi$.

Proof.

By the deduction theorem: $\Gamma \vdash_{\mathrm{G}}(\varphi \rightarrow \psi) \rightarrow \chi$ and $\Gamma \vdash_{\mathrm{G}}(\psi \rightarrow \varphi) \rightarrow \chi$.
Thus by $(\vee \mathrm{c})$ we get $\Gamma \vdash_{\mathrm{G}}(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi) \rightarrow \chi$.
Axiom (Prl) completes the proof.

Linear Extension Property

Definition 2.13

A theory Γ is linear if $\Gamma \vdash_{\mathrm{G}} \varphi \rightarrow \psi$ or $\Gamma \vdash_{\mathrm{G}} \psi \rightarrow \varphi$ for each φ, ψ.

Lemma 2.14 (Linear Extension Property)
 If $\Gamma \nvdash_{\mathrm{G}} \varphi$, then there is a linear theory $\Gamma^{\prime} \supseteq \Gamma$ such that $\Gamma^{\prime} \nvdash G \varphi$.

Proof.

Enumerate all pairs of formulas: $\left\langle\varphi_{0}, \psi_{0}\right\rangle,\left\langle\psi_{1}, \varphi_{1}\right\rangle, \ldots$
Construct theories $\Gamma_{0}, \Gamma_{1}, \ldots$ such that $\Gamma_{0}=\Gamma ; \Gamma_{i} \subseteq \Gamma_{i+1}$, and $\Gamma_{i} \nvdash_{G} \varphi$:

- if $\Gamma_{i}, \varphi_{i} \rightarrow \psi_{i} \nvdash G \varphi$, then $\Gamma_{i+1}=\Gamma_{i} \cup\left\{\varphi_{i} \rightarrow \psi_{i}\right\}$
- if $\Gamma_{i}, \varphi_{i} \rightarrow \psi_{i} \vdash_{\mathrm{G}} \varphi$, then $\Gamma_{i+1}=\Gamma_{i} \cup\left\{\psi_{i} \rightarrow \varphi_{i}\right\}$

Clearly $\Gamma_{i+1} \nvdash \mathrm{G} \varphi$ (the 1st case is obvious; in the 2nd $\Gamma_{i+1} \vdash_{\mathrm{G}} \varphi$ would entail $\Gamma_{i} \vdash_{\mathrm{G}} \varphi$ by the Semilinearity Property, a contradiction with the IH. Define $\Gamma^{\prime}=\bigcup \Gamma_{i}$. Clearly Γ^{\prime} is linear, $\Gamma^{\prime} \supseteq \Gamma$, and $\Gamma^{\prime} \nvdash G \varphi$.

General/linear/standard completeness theorem

Theorem 2.4
The following are equivalent for every set of formulas $\Gamma \cup\{\varphi\} \subseteq F m_{\mathcal{L}}$:
(1) $\Gamma \vdash_{\mathrm{G}} \varphi$
(2) $\Gamma \models_{\mathbb{G}} \varphi$
(3) $\Gamma \models_{\mathbb{G}_{\text {lin }}} \varphi$
(9) $\Gamma \not \models_{[0,1]_{\mathrm{G}}} \varphi$

Proof.

3. implies 1.: contrapositively, assume that $\Gamma \not_{\mathrm{G}} \varphi$. Due to the Linear Extension Property there is a linear theory $\Gamma^{\prime} \supseteq \Gamma$ such that $\Gamma^{\prime} \vdash_{\mathrm{G}} \varphi$. We know that $\operatorname{Lind}_{\Gamma^{\prime}} \in \mathbb{G}_{\text {lin }}$ and the function e defined as $e(\psi)=[\psi]_{\Gamma^{\prime}}$

- is a Lind ${ }_{\Gamma^{\prime}}$-evaluation and
- $e(\psi)=\overline{1}^{\text {Lind }_{\Gamma^{\prime}}}$ iff $\Gamma^{\prime} \vdash_{\mathrm{G}} \psi$

Thus $e(\chi)=\overline{1}^{\operatorname{Lind}_{\Gamma^{\prime}}}$ for each $\chi \in \Gamma\left(\right.$ as $\left.\Gamma^{\prime} \vdash_{\mathrm{G}} \chi\right)$ and $e(\varphi) \neq \overline{1}^{\mathbf{L i n d}_{\Gamma^{\prime}}}$.

The proof of the standard completeness theorem

We continue the previous proof: note that the algebra $\mathbf{L i n d}_{\Gamma^{\prime}}$ is countable.

There has to be (because every countable order can be monotonously embedded into a dense one) a mapping $f: L_{\Gamma^{\prime}} \rightarrow[0,1]$ such that $f\left(0^{\operatorname{Lind}_{\Gamma^{\prime}}}\right)=0, f\left(\overline{1}^{\text {Lind }_{\Gamma^{\prime}}}\right)=1$, and for each $a, b \in L_{T^{\prime}}$ we have:

$$
a \leq b \quad \text { iff } \quad f(a) \leq f(b)
$$

We define a mapping $\bar{e}: F m_{\mathcal{L}} \rightarrow[0,1]$ as

$$
\bar{e}(\psi)=f(e(\psi))
$$

and prove (by induction) that it is an $[0,1]_{\mathrm{G}}$-evaluation.
Then $\bar{e}(\psi)=1$ iff $e(\psi)=\overline{1}^{\operatorname{Lind}_{\Gamma^{\prime}}}$ and so $\bar{e}[\Gamma] \subseteq\{1\}$ and $\bar{e}(\varphi) \neq 1$.

Syntax

We consider primitive connectives $\mathcal{L}=\{\rightarrow, \wedge, \vee, \overline{0}\}$ and defined connectives $\neg, \overline{1}$, and \leftrightarrow :

$$
\neg \varphi=\varphi \rightarrow \overline{0} \quad \overline{1}=\neg \overline{0} \quad \varphi \leftrightarrow \psi=(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)
$$

Formulas are built from a fixed countable set of atoms using the connectives.

Let us by $F m_{\mathcal{L}}$ denote the set of all formulas.
We also use additional connectives \oplus and \& defined as:

$$
\varphi \oplus \psi=\neg \varphi \rightarrow \psi \quad \varphi \& \psi=\neg(\varphi \rightarrow \neg \psi)
$$

A Hilbert-style proof system

Axioms:

(Tr)	$(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))$
(We)	$\varphi \rightarrow(\psi \rightarrow \varphi)$
(Ex)	$(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))$
(^a)	$\varphi \wedge \psi \rightarrow \varphi$
(^b)	$\varphi \wedge \psi \rightarrow \psi$
(^c)	$(\chi \rightarrow \varphi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\chi \rightarrow \varphi \wedge \psi))$
(Va)	$\varphi \rightarrow \varphi \vee \psi$
(Vb)	$\psi \rightarrow \varphi \vee \psi$
(Vc)	$(\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \vee \psi \rightarrow \chi))$
(Prl)	$(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$
(EFQ)	$0 \rightarrow \varphi$
(Waj)	$((\varphi \rightarrow \psi) \rightarrow \psi) \rightarrow((\psi \rightarrow \varphi) \rightarrow \varphi)$

Inference rule: from φ and $\varphi \rightarrow \psi$ infer ψ
transitivity weakening exchange
prelinearity
Ex falso quodlibet Wajsberg axiom modus ponens

The relation of provability

Proof: a proof of a formula φ from a set of formulas (theory) Γ is a finite sequence of formulas $\left\langle\psi_{1}, \ldots, \psi_{n}\right\rangle$ such that:

- $\psi_{n}=\varphi$
- for every $i \leq n$, either $\psi_{i} \in \Gamma$, or ψ_{i} is an instance of an axiom, or there are $j, k<i$ such that $\psi_{k}=\psi_{j} \rightarrow \psi_{i}$.

We write $\Gamma \vdash_{€} \varphi$ if there is a proof of φ from Γ.
A formula φ is a theorem of $Ł$ ukasiewicz logic if $\vdash_{€} \varphi$.

Proposition 2.15

 there is a finite $\Gamma_{0} \subseteq \Gamma$ such that $\Gamma_{0} \vdash_{\mathrm{E}} \varphi$.

Algebraic semantics

An MV-algebra is a structure $\boldsymbol{B}=\langle\boldsymbol{B}, \oplus, \neg, \overline{0}\rangle$ such that:
(1) $\langle B, \oplus, \overline{0}\rangle$ is a commutative monoid,
(2) $\neg \neg x=x$,
(3) $x \oplus \neg \overline{0}=\neg \overline{0}$,
(4) $\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$.

In each MV-algebra we define additional operations:

$$
\begin{array}{cll}
x \rightarrow y & \text { is } & \neg x \oplus y \\
\text { implication } \\
x \& y & \text { is } & \neg(\neg x \oplus \neg y) \\
x \vee y & \text { is } & \neg(\neg x \oplus y) \oplus y \\
\text { strong conjunction } \\
x \wedge y & \text { is } & \neg(\neg x \vee \neg y)
\end{array}
$$

Exercise 3

Prove that $\langle B, \wedge, \vee, \overline{0}, \overline{1}\rangle$ is a bounded lattice.

Algebraic semantics cont. and standard semantics

 We say that an MV-algebra \boldsymbol{B} is linearly ordered (or MV-chain) if its lattice reduct is.By $\mathbb{M V}$ (or $\mathbb{M} \mathbb{V}_{\text {lin }}$ resp.) we denote the class of all MV-algebras
(MV-chains resp.)
Take the algebra $[0,1]_{\mathrm{E}}=\langle[0,1], \oplus, \neg, 0\rangle$, with operations defined as:

$$
\neg a=1-a \quad a \oplus b=\min \{1, a+b\} .
$$

Proposition 2.16

$[0,1]_{\mathrm{E}}$ is the unique (up to isomorphism) MV-chain with the lattice reduct $\langle[0,1]$, min, max, 0,1\rangle.

Exercise 1

(b) Check that $[0,1]_{\mathrm{E}}$ is an MV-chain and find another MV-chain isomorphic to $[0,1]_{\mathrm{E}}$ with the same lattice reduct.

Semantical consequence

Definition 2.17

A \boldsymbol{B}-evaluation is a mapping e from $F m_{\mathcal{L}}$ to B such that:

- $e(\overline{0})=\overline{0}^{\boldsymbol{B}}$
- $e(\varphi \rightarrow \psi)=e(\varphi) \rightarrow^{\boldsymbol{B}} e(\psi)=\neg^{\boldsymbol{B}} e(\varphi) \oplus^{\boldsymbol{B}} e(\psi)$
- $e(\varphi \wedge \psi)=e(\varphi) \wedge^{\boldsymbol{B}} e(\psi)=\cdots$
- $e(\varphi \vee \psi)=e(\varphi) \vee^{\boldsymbol{B}} e(\psi)=\cdots$

Definition 2.18

A formula φ is a logical consequence of a set of formulas Γ w.r.t. a class \mathbb{K} of MV-algebras, $\Gamma \models_{\mathbb{K}} \varphi$, if for every $\boldsymbol{B} \in \mathbb{K}$ and every \boldsymbol{B}-evaluation e :

$$
\text { if } e(\gamma)=\overline{1} \text { for every } \gamma \in \Gamma \text {, then } e(\varphi)=\overline{1} .
$$

General/linear/standard completeness theorem

Theorem 2.19
The following are equivalent for every set of formulas $\Gamma \cup\{\varphi\} \subseteq F m_{\mathcal{L}}$:
(1) $\Gamma \vdash_{\mathrm{E}} \varphi$
(2) $\Gamma \models_{\operatorname{MV}} \varphi$
(3) $\Gamma \models_{M_{l i n}} \varphi$

If Γ is finite we can add:
(9) $\Gamma \models_{[0,1]_{\mathrm{I}}} \varphi$

Exercise 1

(b) Prove the implications from top to bottom.

Some theorems and derivations

Proposition 2.20

(T1) $\vdash_{\mathrm{E}} \varphi \rightarrow \varphi$
(T2) $\vdash_{\text {E }} \varphi \rightarrow(\psi \rightarrow \varphi \wedge \psi)$
(T3) $\vdash_{\text {E }} \varphi \vee \chi \rightarrow((\varphi \rightarrow \psi) \vee \chi \rightarrow \psi \vee \chi)$
(T4) $\vdash_{Ł} \varphi \vee \varphi \rightarrow \varphi$
(T5) $\vdash_{E} \varphi \vee \psi \rightarrow \psi \vee \varphi$
(D1) $\overline{1} \leftrightarrow \varphi \vdash_{E} \varphi$ and $\varphi \vdash_{\text {E }} \overline{1} \leftrightarrow \varphi$
(D2) $\varphi \rightarrow \psi \vdash_{\mathrm{E}} \varphi \wedge \psi \leftrightarrow \varphi$ and $\varphi \wedge \psi \leftrightarrow \varphi \vdash_{\mathrm{E}} \varphi \rightarrow \psi$
(D3') $\varphi \rightarrow(\psi \rightarrow \chi) \vdash_{\mathrm{G}} \varphi \& \psi \rightarrow \chi$ and $\varphi \& \psi \rightarrow \chi \vdash_{\mathrm{G}} \varphi \rightarrow(\psi \rightarrow \chi)$

Proposition 2.21

$\vdash_{\mathrm{E}} \varphi \oplus \psi \leftrightarrow \psi \oplus \varphi \quad \vdash_{\mathrm{E}} \neg \neg \varphi \leftrightarrow \varphi$
$\vdash_{\mathrm{E}} \underline{\varphi} \oplus(\psi \oplus \chi) \leftrightarrow(\varphi \oplus \psi) \oplus \chi \quad \vdash_{\mathrm{E}} \varphi \oplus \neg \overline{0} \leftrightarrow \neg \overline{0}$
$\vdash_{\mathrm{E}} \overline{0} \oplus \varphi \leftrightarrow \varphi \quad \vdash_{\mathrm{E}} \neg(\neg \varphi \oplus \psi) \oplus \psi \leftrightarrow \neg(\neg \psi \oplus \varphi) \oplus \varphi$

The rule of substitution

Proposition 2.22

$$
\begin{array}{lll}
\varphi \leftrightarrow \psi \vdash_{\mathrm{E}}(\varphi \wedge \chi) \leftrightarrow(\psi \wedge \chi) & \varphi \leftrightarrow \psi \vdash_{\mathrm{E}}(\varphi \vee \chi) \leftrightarrow(\psi \vee \chi) \\
\varphi \leftrightarrow \psi \vdash_{\mathrm{E}}(\chi \wedge \varphi) \leftrightarrow(\chi \wedge \psi) & \varphi \leftrightarrow \psi \vdash_{\mathrm{E}}(\chi \vee \varphi) \leftrightarrow(\chi \vee \psi) \\
\varphi \leftrightarrow \psi \vdash_{\mathrm{E}}(\varphi \rightarrow \chi) \leftrightarrow(\psi \rightarrow \chi) & \varphi \leftrightarrow \psi \vdash_{\mathrm{E}}(\chi \rightarrow \varphi) \leftrightarrow(\chi \rightarrow \psi) \\
& \vdash_{\mathrm{E}} \varphi \leftrightarrow \varphi & \varphi \leftrightarrow \psi \vdash_{\mathrm{E}} \psi \leftrightarrow \varphi
\end{array}
$$

Corollary 2.23
$\varphi \leftrightarrow \psi \vdash_{\mathrm{E}} \chi \leftrightarrow \chi^{\prime}, \quad$ where χ^{\prime} results from χ by replacing its subformula φ by ψ.

Exercise 2

(b) Prove this corollary and the two previous propositions.

Lindenbaum-Tarski algebra

Definition 2.24

Let Γ be a theory. We define

$$
[\varphi]_{\Gamma}=\left\{\psi \mid \Gamma \vdash_{€} \varphi \leftrightarrow \psi\right\} \quad L_{\Gamma}=\left\{[\varphi]_{\Gamma} \mid \varphi \in F m_{\mathcal{L}}\right\}
$$

The Lindenbaum-Tarski algebra of a theory $\Gamma\left(\operatorname{Lind}_{\Gamma}\right)$ as an algebra with the domain L_{Γ} and operations:

$$
\begin{aligned}
\overline{0}^{\mathbf{L i n d}_{\Gamma}} & =[\overline{0}]_{\Gamma} \\
\neg^{\mathbf{L i n d}_{\Gamma}}[\varphi]_{\Gamma} & =[\neg \varphi]_{\Gamma} \\
{[\varphi]_{\Gamma} \oplus^{\mathbf{L i n d}_{\Gamma}}[\psi]_{\Gamma} } & =[\varphi \oplus \psi]_{\Gamma}
\end{aligned}
$$

Lindenbaum-Tarski algebra: basic properties

Proposition 2.25

(1) $[\varphi]_{\Gamma}=[\psi]_{\Gamma}$ iff $\Gamma \vdash_{\text {Ł }} \varphi \leftrightarrow \psi$
(2) $[\varphi]_{\Gamma} \leq$ Lind $_{\Gamma}[\psi]_{\Gamma}$ iff $\Gamma \vdash_{Ł} \varphi \rightarrow \psi$
(3) $\overline{1}^{- \text {Lind }_{\Gamma}}=[\varphi]_{\Gamma}$ iff $\Gamma \vdash_{€} \varphi$
(4) $\mathbf{L i n d}_{\Gamma}$ is an MV-algebra
(5) Lind ${ }_{\Gamma}$ is an MV-chain iff $\Gamma \vdash_{\mathrm{E}} \varphi \rightarrow \psi$ or $\Gamma \vdash_{\mathrm{E}} \psi \rightarrow \varphi$ for each φ, ψ

Proof.

1. Left-to-right is the just definition and 'reflexivity' of \leftrightarrow. Conversely, we use 'transitivity' and 'symmetry' of \leftrightarrow.
2. $[\varphi]_{\Gamma} \leq \operatorname{Lind}_{\Gamma}[\psi]_{\Gamma}$ iff $[\varphi]_{\Gamma} \wedge^{\operatorname{Lind}_{\Gamma}}[\psi]_{\Gamma}=[\varphi]_{\Gamma}$ iff $[\varphi \wedge \psi]_{\Gamma}=[\varphi]_{\Gamma}$ iff (by 1.)

$$
\Gamma \vdash_{\mathrm{E}} \varphi \wedge \psi \leftrightarrow \varphi \text { iff (by (D2)) } \Gamma \vdash_{\mathrm{E}} \varphi \rightarrow \psi .
$$

3. $\overline{1}^{\text {Lind }_{\Gamma}}=[\varphi]_{\Gamma}$ iff (by 2.) $\Gamma \vdash_{€} \overline{1} \rightarrow \varphi$ iff (by (D1)) $\Gamma \vdash_{€} \varphi$.
4. Trivial after we prove 4.

Lindenbaum-Tarski algebra: basic properties

Proposition 2.25

(1) $[\varphi]_{\Gamma}=[\psi]_{\Gamma}$ iff $\Gamma \vdash_{\text {Ł }} \varphi \leftrightarrow \psi$
(2) $[\varphi]_{\Gamma} \leq$ Lind $_{\Gamma}[\psi]_{\Gamma}$ iff $\Gamma \vdash_{Ł} \varphi \rightarrow \psi$
(3) $\overline{1}^{\text {Lind }_{\Gamma}}=[\varphi]_{\Gamma}$ iff $\Gamma \vdash_{€} \varphi$
(4) $\mathbf{L i n d}_{\Gamma}$ is an MV-algebra
(5) Lind ${ }_{\Gamma}$ is an MV-chain iff $\Gamma \vdash_{\mathrm{E}} \varphi \rightarrow \psi$ or $\Gamma \vdash_{\mathrm{E}} \psi \rightarrow \varphi$ for each φ, ψ

Proof.

4. First we note that the definition of $\operatorname{Lind}_{\Gamma}$ is sound due to 1 . and Proposition 2.7.
The identities defining MV-algebras hold due to 1. and Proposition 2.21.

Łukasiewicz logic vs. Gödel-Dummett

Some things are the same, not only (T1), (T2), (D1), and (D2), but also:

$$
\begin{array}{ll}
\varphi \wedge \psi \rightarrow \chi \vdash_{\mathrm{E}} \varphi \rightarrow(\psi \rightarrow \chi) & \varphi \wedge \psi \rightarrow \chi \vdash_{\mathrm{G}} \varphi \rightarrow(\psi \rightarrow \chi) \\
\vdash_{\mathrm{E}} \varphi \rightarrow \neg \neg \varphi & \vdash_{\mathrm{G}} \varphi \rightarrow \neg \neg \varphi \\
\vdash_{\mathrm{E}}(\varphi \rightarrow \psi) \rightarrow(\neg \psi \rightarrow \neg \varphi) & \vdash_{\mathrm{G}}(\varphi \rightarrow \psi) \rightarrow(\neg \psi \rightarrow \neg \varphi)
\end{array}
$$

Some are different:

$$
\begin{array}{ll}
\varphi \rightarrow(\psi \rightarrow \chi) \vdash_{\mathrm{E}} \varphi \wedge \psi \rightarrow \chi & \varphi \rightarrow(\psi \rightarrow \chi) \vdash_{\mathrm{G}} \varphi \wedge \psi \rightarrow \chi \\
\vdash_{\mathrm{E}} \neg \neg \varphi \rightarrow \varphi & \vdash_{\mathrm{G}} \neg \neg \varphi \rightarrow \varphi \\
\vdash_{\mathrm{E}}(\neg \psi \rightarrow \neg \varphi) \rightarrow(\varphi \rightarrow \psi) & \vdash_{\mathrm{G}}(\neg \psi \rightarrow \neg \varphi) \rightarrow(\varphi \rightarrow \psi)
\end{array}
$$

Contrast this with known derivation (D^{\prime}):

$$
\varphi \rightarrow(\psi \rightarrow \chi) \vdash_{€} \varphi \& \psi \rightarrow \chi \quad \varphi \& \psi \rightarrow \chi \vdash_{€} \varphi \rightarrow(\psi \rightarrow \chi)
$$

Failure of the Deduction Theorem

Assume that we would have that for every set of formulas $\Gamma \cup\{\varphi, \psi\}$,

$$
\Gamma, \varphi \vdash_{\mathrm{E}} \psi \text { iff } \Gamma \vdash_{\mathrm{E}} \varphi \rightarrow \psi
$$

Clearly (MP twice): $\varphi, \varphi \rightarrow(\varphi \rightarrow \psi) \vdash_{€} \psi$.
Thus by the deduction theorem we would get

$$
\vdash_{€}(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi) .
$$

This is the axiom of contraction known to fail in Łukasiewicz logic

A possible solution

We can prove that:
$\vdash_{€} \varphi \& \psi \leftrightarrow \psi \& \varphi \quad \vdash_{€} \varphi \& \overline{1} \leftrightarrow \varphi \quad \vdash_{€}(\varphi \& \psi) \& \chi \leftrightarrow \psi \&(\varphi \& \chi)$

Thus it makes sense to define $\varphi^{0}=\overline{1}$ and $\varphi^{n+1}=\varphi^{n} \& \varphi$

Exercise 4

Let χ be a \&-conjunction of n formulas φ with arbitrary bracketing. Prove that $\vdash_{€} \chi \leftrightarrow \varphi^{n}$. Furthermore prove that $\varphi \vdash_{€} \varphi^{n}$.

Local Deduction Theorem

Theorem 2.26 (Local deduction theorem)
For every set of formulas $\Gamma \cup\{\varphi, \psi\}$,

$$
\Gamma, \varphi \vdash_{\mathrm{E}} \psi \text { iff there is } n \text { such that } \Gamma \vdash_{\mathrm{E}} \varphi^{n} \rightarrow \psi
$$

Proof.

\Leftarrow : follows from modus ponens and the previous exercise \Rightarrow : let $\alpha_{1}, \ldots, \alpha_{n}=\psi$ be the proof of ψ in Γ, φ. We show by induction that for each $i \leq n$ there is n_{i} such that $\Gamma \vdash_{\mathrm{E}} \varphi^{n_{i}} \rightarrow \alpha_{i}$ If $\alpha_{i}=\varphi$ we set $n_{i}=1$ and use (T1); if α_{i} is an axiom or $\alpha_{i} \in \Gamma$, then $\Gamma \vdash_{\mathrm{E}} \alpha_{i}$ and so we can set $n_{i}=1$ and use axiom (We) and MP.

Local Deduction Theorem

Theorem 2.26 (Local deduction theorem)
For every set of formulas $\Gamma \cup\{\varphi, \psi\}$,

$$
\Gamma, \varphi \vdash_{\mathrm{E}} \psi \text { iff there is } n \text { such that } \Gamma \vdash_{\mathrm{E}} \varphi^{n} \rightarrow \psi
$$

Proof.

\Leftarrow : follows from modus ponens and the previous exercise \Rightarrow : let $\alpha_{1}, \ldots, \alpha_{n}=\psi$ be the proof of ψ in Γ, φ. We show by induction that for each $i \leq n$ there is n_{i} such that $\Gamma \vdash_{\mathrm{E}} \varphi^{n_{i}} \rightarrow \alpha_{i}$
Otherwise there has to be $k, j<i$ such that $\alpha_{k}=\alpha_{j} \rightarrow \alpha_{i}$. Induction assumption gives: $\Gamma \vdash_{\mathrm{E}} \varphi^{n_{j}} \rightarrow \alpha_{j}$ and $\Gamma \vdash \varphi^{n_{k}} \rightarrow\left(\alpha_{j} \rightarrow \alpha_{i}\right)$. Using $\Gamma \vdash \varphi^{n_{k}} \rightarrow\left(\alpha_{j} \rightarrow \alpha_{i}\right)$, (Ex), and MP we get $\Gamma \vdash \alpha_{j} \rightarrow\left(\varphi^{n_{k}} \rightarrow \alpha_{i}\right)$, using this, $\Gamma \vdash_{\mathrm{E}} \varphi^{n_{j}} \rightarrow \alpha_{j}$, (Tr), and MP we get $\Gamma \vdash \varphi^{n_{j}} \rightarrow\left(\varphi^{n_{k}} \rightarrow \alpha_{i}\right)$. Finally we use (D^{\prime}) and the previous exercise to get $\Gamma \vdash \varphi^{n_{j}+n_{k}} \rightarrow \alpha_{i}$.

Proof by Cases Property

```
Theorem 2.27 (Proof by Cases Property)
If }\Gamma,\varphi\mp@subsup{\vdash}{\textrm{E}}{}\chi\mathrm{ and }\Gamma,\psi\mp@subsup{\vdash}{\textrm{E}}{}\chi\mathrm{ , then }\Gamma,\varphi\vee\psi\mp@subsup{\vdash}{\textrm{E}}{}\chi\mathrm{ .
```


Proof.

Claim If $\Gamma \vdash_{\mathrm{E}} \varphi$, then $\Gamma \vee \chi \vdash_{\mathrm{E}} \delta \vee \chi$ for each formula χ and each δ appearing in the proof of φ from Γ.

Proof of the claim: trivial for $\delta \in \Gamma$ or δ an axiom; if we used MP, then by IH there has to be η st.
$\Gamma \vee \chi \vdash_{\mathrm{E}} \eta \vee \chi \quad \Gamma \vee \chi \vdash_{\mathrm{E}}(\eta \rightarrow \delta) \vee \chi$ thus (T3) completes the proof.
Now using the claim: $\Gamma \vee \psi, \varphi \vee \psi \vdash_{\mathrm{E}} \chi \vee \psi$ and $\Gamma \vee \chi, \psi \vee \chi \vdash_{\mathrm{E}} \chi \vee \chi$. Using ($\vee \mathrm{a}$), (T4), and (T5) we get $\Gamma, \varphi \vee \psi \vdash_{€} \psi \vee \chi$ and $\Gamma, \psi \vee \chi \vdash_{\text {Ł }} \chi$ and the rest is trivial.

Semilinearity Property

Lemma 2.28 (Semilinearity Property)
If $\Gamma, \varphi \rightarrow \psi \vdash_{\mathrm{E}} \chi$ and $\Gamma, \psi \rightarrow \varphi \vdash_{\mathrm{E}} \chi$, then $\Gamma \vdash_{\mathrm{E}} \chi$.

Proof.

By the Proof by Cases Property and axiom (Prl).

Linear Extensions Property

```
Definition 2.29
A theory \(\Gamma\) is linear if \(\Gamma \vdash_{\mathrm{E}} \varphi \rightarrow \psi\) or \(\Gamma \vdash_{\mathrm{E}} \psi \rightarrow \varphi\) for each \(\varphi, \psi\).
```

Lemma 2.30 (Linear Extension Property)
If $\Gamma \nvdash_{\mathrm{E}} \varphi$, then there is a linear theory $\Gamma^{\prime} \supseteq \Gamma$ such that $\Gamma^{\prime} \nvdash_{\mathrm{E}} \varphi$.

Proof.

The same as in the case of Gödel-Dummett logic.

Linear Extensions Property

Definition 2.29

A theory Γ is linear if $\Gamma \vdash_{\mathrm{E}} \varphi \rightarrow \psi$ or $\Gamma \vdash_{\mathrm{E}} \psi \rightarrow \varphi$ for each φ, ψ.

Lemma 2.30 (Linear Extension Property)

 If $\Gamma \nvdash_{\mathrm{E}} \varphi$, then there is a linear theory $\Gamma^{\prime} \supseteq \Gamma$ such that $\Gamma^{\prime} \nvdash_{\mathrm{E}} \varphi$.
Proof.

Enumerate all pairs of formulas: $\left\langle\varphi_{0}, \psi_{0}\right\rangle,\left\langle\psi_{1}, \varphi_{1}\right\rangle, \ldots$
Construct theories $\Gamma_{0}, \Gamma_{1}, \ldots$ such that $\Gamma_{0}=\Gamma ; \Gamma_{i} \subseteq \Gamma_{i+1}$, and $\Gamma_{i} \nvdash_{£} \varphi$:

- if $\Gamma_{i}, \varphi_{i} \rightarrow \psi_{i} \vdash_{£} \varphi$, then $\Gamma_{i+1}=\Gamma_{i} \cup\left\{\varphi_{i} \rightarrow \psi_{i}\right\}$
- if $\Gamma_{i}, \varphi_{i} \rightarrow \psi_{i} \vdash_{\mathrm{E}} \varphi$, then $\Gamma_{i+1}=\Gamma_{i} \cup\left\{\psi_{i} \rightarrow \varphi_{i}\right\}$

Clearly $\Gamma_{i+1} \nvdash 匕 \varphi$ (the 1st case is obvious; in the 2 nd $\Gamma_{i+1} \vdash_{\mathrm{E}} \varphi$ would entail $\Gamma_{i} \vdash_{\mathrm{E}} \varphi$ by the Semilinearity Property, a contradiction with the IH. Define $\Gamma^{\prime}=\bigcup \Gamma_{i}$. Clearly Γ^{\prime} is linear, $\Gamma^{\prime} \supseteq \Gamma$, and $\Gamma^{\prime} \nvdash_{\mathrm{E}} \varphi$.

General/linear/standard completeness theorem

Theorem 2.19

The following are equivalent for every set of formulas $\Gamma \cup\{\varphi\} \subseteq F m_{\mathcal{L}}$:
(1) $\Gamma \vdash_{\mathrm{E}} \varphi$
(2) $\Gamma \models_{\text {Mv }} \varphi$
(3) $\Gamma \models_{M_{\text {lin }}} \varphi$

If Γ is finite we can add:
(9) $\Gamma \models_{[0,1]_{\text {E }}} \varphi$

The proof of the equivalence of the first three claims is the same as in the case of Gödel-Dummett logic.

We give a proof of 4 . implies 1 . but first ...

MV-algebras and LOAGs

A lattice ordered Abelian group (LOAG for short) is a structure $\langle G,+, 0,-, \leq\rangle$ such that $\langle G,+, 0,-\rangle$ is an Abelian group and:
(i) $\langle G, \leq\rangle$ is a lattice,
(ii) if $x \leq y$, then $x+z \leq y+z$ for all $z \in G$.
strong unit u is an element such that

$$
(\forall x \in G)(\exists n \in N)(x \leq n u)
$$

For LOAG $\boldsymbol{G}=\langle G,+, 0,-, \leq\rangle$ and strong unit u we define algebra $\boldsymbol{\Gamma}(\boldsymbol{G}, u)=\langle[0, u], \oplus, \neg, \overline{0}\rangle$, where $x \oplus y=\min \{u, x+y\}, \neg x=u-x, \overline{0}=0$.
We denote by \boldsymbol{R} the additive LOAG of reals.

Proposition 2.31

$\boldsymbol{\Gamma}(\boldsymbol{G}, u)$ is an MV-algebra and for each $u>0, \Gamma(\boldsymbol{R}, u)$ is isomorphic to the standard MV-algebra $[0,1]_{\mathrm{E}}$.

The proof of the standard completeness theorem

If $\Gamma \nVdash_{\mathrm{E}} \varphi$ we know that there is a countable MV-chain \boldsymbol{B} s.t. $\Gamma \not \neq \boldsymbol{B} \varphi$. Let x_{1}, \ldots, x_{n} be variables occurring in $\Gamma \cup\{\varphi\}$. Then:

$$
\not \forall_{\boldsymbol{B}}\left(\forall x_{1}, \ldots, x_{n}\right) \bigwedge_{\psi \in \Gamma}(\psi \approx \overline{1}) \Rightarrow(\varphi \approx \overline{1})
$$

Let us define an algebra $\boldsymbol{B}^{\prime}=\langle Z \times B,+,-, 0\rangle$ as:

$$
\begin{aligned}
\langle i, x\rangle+\langle j, y\rangle & = \begin{cases}\langle i+j, x \oplus y\rangle & \text { if } x \& y=0 \\
\langle i+j+1, x \& y\rangle & \text { otherwise }\end{cases} \\
-\langle i, x\rangle & =\langle-i-1, \neg x\rangle \text { and } 0=\langle 0, \overline{0}\rangle
\end{aligned}
$$

Proposition 2.32
\boldsymbol{B}^{\prime} is a $L O A G$ and $\boldsymbol{B}=\boldsymbol{\Gamma}\left(\boldsymbol{B}^{\prime},\langle 1, \overline{0}\rangle\right)$.

The proof of the standard completeness theorem

Let us fix an extra variable u, we define a translation of MV-terms into LOAG-terms:

$$
x^{\prime}=x \quad \overline{0}^{\prime}=0 \quad(\neg t)^{\prime}=u-t^{\prime} \quad\left(t_{1} \oplus t_{2}\right)^{\prime}=\left(t_{1}^{\prime}+t_{2}^{\prime}\right) \wedge u
$$

Recall that we have:

$$
\forall_{\boldsymbol{B}}\left(\forall x_{1}, \ldots, x_{n}\right) \bigwedge_{\psi \in \Gamma}(\psi \approx \overline{1}) \Rightarrow(\varphi \approx \overline{1})
$$

Thus also:

$$
\not \forall_{\boldsymbol{B}^{\prime}}(\forall u)\left(\forall x_{1}, \ldots, x_{n}\right)\left[(0<u) \wedge \bigwedge_{i \leq n}\left(x_{i} \leq u\right) \wedge\left(0 \leq x_{i}\right) \wedge \bigwedge_{\psi \in \Gamma}\left(\psi^{\prime} \approx u\right) \Rightarrow\left(\varphi^{\prime} \approx u\right)\right]
$$

The proof of the standard completeness theorem

Gurevich-Kokorin theorem: each \forall_{1}-sentence of LOAGs is true in additive LOAG of reals iff it is true in all linearly ordered LOAGs. Thus

$$
\not \vDash_{\boldsymbol{R}}(\forall u)\left(\forall x_{1}, \ldots, x_{n}\right)\left[(0<u) \wedge \bigwedge_{i \leq n}\left(x_{i} \leq u\right) \wedge\left(0 \leq x_{i}\right) \wedge \bigwedge_{\psi \in \Gamma}\left(\psi^{\prime} \approx u\right) \Rightarrow\left(\varphi^{\prime} \approx u\right)\right]
$$

And so

$$
\not \models_{\boldsymbol{\Gamma}(\boldsymbol{R}, u)}\left(\forall x_{1}, \ldots, x_{n}\right) \bigwedge_{\psi \in \Gamma}(\psi \approx \overline{1}) \Rightarrow(\varphi \approx \overline{1})
$$

And so

$$
\not \vDash_{[0,1]_{ \pm}}\left(\forall x_{1}, \ldots, x_{n}\right) \bigwedge_{\psi \in \Gamma}(\psi \approx \overline{1}) \Rightarrow(\varphi \approx \overline{1})
$$

i.e., $\Gamma \not{\neq[0,1]_{\mathrm{E}}} \varphi$

Failure of standard completeness for infinite theories

Non-theorem

For every set of formulas $\Gamma \cup\{\varphi\} \subseteq F m_{\mathcal{L}}$ we have:

$$
\Gamma \vdash_{\mathrm{E}} \varphi \text { if, and only if, } \Gamma \models_{[0,1]_{ \pm}} \varphi .
$$

- Consider the theory $\Gamma=\{(p \oplus \cdot \stackrel{n}{.} \oplus p) \rightarrow q \mid n \geq 1\} \cup\{\neg p \rightarrow q\}$.
- Note that for any $[0,1]_{\mathrm{E}}$-evaluation e such that $e[\Gamma]=\{1\}$ we have

$$
e(q)=1 \text { and so } \Gamma \models_{[0,1]_{ \pm}} q \text {. }
$$

- Thus by our Non-theorem $\Gamma \vdash_{€} q$ and, since proofs are finite, there must be a finite $\Gamma_{0} \subseteq \Gamma$ such that $\Gamma_{0} \vdash_{€} q$.
- Thus, $\Gamma_{0} \models_{[0,1]_{\mathrm{E}}} q$.
- Let n be the maximal n such that $(p \oplus . \stackrel{n}{\oplus} \oplus p) \rightarrow q \in \Gamma_{0}$.
- The $[0,1]_{£}$-evaluation $e(p)=\frac{1}{n+1}$ and $e(q)=\frac{n}{n+1}$ yields a contradiction.

The classical case

Theorem 2.33 (Functional completeness)

Every Boolean function (i.e. any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ for some $n \geq 1$) is representable by some formula of classical logic.

The fuzzy case

Let L be either Ł of G.
Definition 2.34
A function $f:[0,1]^{n} \rightarrow[0,1]$ is represented by a formula $\varphi\left(v_{1}, \ldots, v_{n}\right)$ in L if $e(\varphi)=f\left(e\left(v_{1}\right), e\left(v_{2}\right), \ldots, e\left(v_{n}\right)\right)$ for each $[0,1]_{\mathrm{L}}$-evaluation e.

Definition 2.35

The functional representation of L is the set \mathcal{F}_{L} of all functions from any power of $[0,1]$ into $[0,1]$ that are represented in L by some formula.

Relation with Lindenbaum-Tarski algebra

Let us fix $\mathrm{L}=\mathrm{E}$.
Let f_{i} be functions of n_{i} variables, $i \in\{1,2\}$. We say that $f_{1}=f_{2}$ iff $f_{1}\left(x_{1}, x_{2}, \ldots, x_{n_{1}}\right)=f_{2}\left(x_{1}, x_{2}, \ldots, x_{n_{2}}\right)$ for every $x_{j} \in[0,1]$. Let us for each $f \in \mathcal{F}_{\mathrm{E}}$ define a class

$$
[f]=\left\{g \in \mathcal{F}_{\mathrm{E}} \mid f=g\right\} \quad F=\left\{[f] \mid f \in \mathcal{F}_{\mathrm{E}}\right\}
$$

We define an MV-algebra \boldsymbol{F} with domain F and operations:

$$
\overline{0}^{\boldsymbol{F}}=[0] \quad \neg^{\boldsymbol{F}}[f]=[1-f]_{T} \quad[f] \oplus^{\boldsymbol{F}}[g]=[\min \{1, f+g\}]
$$

Theorem 2.36

The algebras \boldsymbol{F} and $\operatorname{Lind}_{\emptyset}$ are isomorphic.
In the case of G, the definitions and the result are analogous.

A proof

Let the atoms be enumerated as v_{1}, v_{2}, \ldots Any formula with variables with maximal index n is viewed as formula in variables v_{1}, \ldots, v_{n}. We define the homomorphism:
$g: L_{\emptyset} \rightarrow F$ as $g([\varphi])=\left[f_{\varphi}\right]$ where f_{φ} is the function represented by φ.

Then:

- the definition is sound and g is one-one: $[\varphi]=[\psi]$ iff $\vdash_{€} \varphi \leftrightarrow \psi$ iff (due to the standard completeness theorem) $e(\varphi)=e(\psi)$ for each $[0,1]_{\mathrm{E}}$-evaluation e iff $\left[f_{\varphi}\right]=\left[f_{\psi}\right]$.
- g is a homomorphism:

$$
g([\varphi] \oplus[\psi])=g([\varphi \oplus \psi])=\left[f_{\varphi \oplus \psi}\right]=\left[f_{\varphi} \oplus f_{\psi}\right]=\left[f_{\varphi}\right] \oplus\left[f_{\psi}\right]
$$

- g is onto (obvious).

How do the functions from $\mathcal{F}_{\text {モ }}$ look like?

Observations

- they are all continuous
- they are piece-wise linear
- all pieces have integer coefficients
- if $x_{1}, \ldots, x_{n} \in\{0,1\}^{n}$, then $f\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}$
- if $x_{1}, \ldots, x_{n} \in([0,1] \cap \mathrm{Q})^{n}$, then $f\left(x_{1}, \ldots, x_{n}\right) \in[0,1] \cap \mathrm{Q}$

Definition 2.37

A McNaughton function $f:[0,1]^{n} \rightarrow[0,1]$ is a continuous piece-wise linear function, where each of the pieces has integer coefficients.

Theorem 2.38 (McNaughton theorem)
$\mathcal{F}_{£}$ is the set of all McNaughton functions.

A lemma

Lemma 2.39

Let $f:[0,1]^{n} \rightarrow \mathrm{R}$ be an integer linear polynomial, i.e. of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{i} x_{i}+b \quad \text { for some } a_{1}, \ldots, a_{n}, b \in \mathbf{Z}
$$

Then there is a formula φ_{f} representing the function

$$
f^{\#}=\max \{0, \min \{1, f\}\}
$$

Proof.

By induction on $m=\sum_{i=1}^{n}\left|a_{i}\right|$. If $m=0$ then $f^{\#}$ is either constantly 0 or 1 , then we can take as φ either the term $\overline{0}$ or $\overline{1}$, respectively. Assume now $m>0$ and let a_{j} be such that $\left|a_{j}\right|=\max _{i=1}^{n}\left|a_{i}\right|$. WLOG we can assume $a_{j}>0$: indeed otherwise we consider $f^{\prime}=1-f$, here $a_{j}>0$ and so we have φ_{1-f}. Note that clearly $\varphi_{f}=\neg \varphi_{1-f} \ldots$

A lemma: continuation of the proof

Let us consider the function $g=f-x_{j}$: by IH we have formulas φ_{g} and φ_{g+1}. If we show that

$$
\begin{equation*}
\left(g+x_{j}\right)^{\#}=\left(g^{\#} \oplus x_{j}\right) \&(g+1)^{\#} \tag{1}
\end{equation*}
$$

the proof is done as:

$$
\varphi_{f}=\varphi_{g+x_{j}}=\left(\varphi_{g} \oplus x_{j}\right) \& \varphi_{g+1}
$$

So we need to prove (2.1). Let L and R be its left/right side :

- if $|g(\vec{x})|>1$ then $L=R=1$ or $L=R=0$
- $0 \leq g(\vec{x}) \leq 1$ then $L=\min \left\{1, g(\vec{x})+x_{j}\right\}, g(\vec{x})=g^{\#}(\vec{x})$ and $(g+1)^{\#}(\vec{x})=1$. Hence $R=g(\vec{x}) \oplus x_{j}=\min \left\{1, g(\vec{x})+x_{j}\right\}=L$.
- $-1 \leq g(\vec{x}) \leq 0$ then $L=\max \left\{0, g(\vec{x})+x_{j}\right\}, g^{\#}(\vec{x})=0$ and $(g+1)^{\#}(\vec{x})=g(\vec{x})+1$. Hence $g^{\#}(\vec{x}) \oplus x_{j}=x_{j}$ and so $R=\max \left\{0, x_{j}+g(\vec{x})+1-1\right\}=\max \left\{0, x_{j}+g(\vec{x})\right\}=L$.

The proof for one variable functions

Definition 2.40

Let $a, b \in[0,1] \cap$ Q. Then any McNaughton function f such that $f(x)=1$ iff $x \in[a, b]$ is called pseudo characteristic function of interval $[a, b]$.

Exercise 5

Prove that each interval has a pseudo characteristic function and find a formula representing it. Hint: use Lemma 2.39.

Lemma 2.41
Let $a, b \in[0,1] \cap \mathrm{Q}$. Then for each $\epsilon>0$ there is a pseudo characteristic function of the interval $[a, b]$, s.t. $f(x)=0$ for $x \in[0, a-\epsilon] \cup[b+\epsilon, 1]$.

Proof.

If f is a pseudo char. function of some interval, so is f^{n} for each n.

The proof for one variable functions

Let p be a McNaughton function of one variable given by n integer linear polynomials p_{1}, \ldots, p_{n}. For each $i \in\{1,2, \ldots n\}$ let $P_{i}=\left[a_{i}, b_{i}\right]$ be the interval in which p uses p_{i}. Note that:

- $[0,1]=\bigcup_{i} P_{i}$
- $a_{i}, b_{i} \in[0,1] \cap \mathrm{Q}$
- there is a pseudo characteristic function f_{i} of $\left[a_{i}, b_{i}\right]$ such that $p(x) \geq\left(f_{i} \& p_{i}^{\#}\right)(x)$ for each $x \notin P_{i}$.
Then

$$
p(x)=\bigvee_{i}\left(f_{i} \& p_{i}^{\#}\right)(x) \text { and thus } \varphi_{p}=\bigvee_{i} \varphi_{f_{i}} \& \varphi_{p_{i}} .
$$

The classical case, FMP and decidability

CL is complete with respect to a finite algebra, 2.

Definition 2.42

A logic has the finite model property (FMP) if it is complete with respect to a set of finite algebras.

From the FMP, we obtain decidability:

- Thanks to our finite notion of proof, the set of theorems is recursively enumerable.
- Thanks to FMP, the set of non-theorems is also recursively enumerable (we can check validity in bigger and bigger finite algebras until we find a countermodel).
- Therefore, theoremhood is a decidable problem.
- Note: provability from finitely-many premises is also decidable (using deduction theorem).

Finite chains

Lemma 2.43

Let \boldsymbol{B} be a subalgebra of an MV- or G-algebra \boldsymbol{A}. Then $\models_{\boldsymbol{A}} \subseteq \models_{\boldsymbol{B}}$.

Exercise 6

(a) Prove that each n-valued G-chain is isomorphic to the subalgebra \boldsymbol{G}_{n} of $[0,1]_{\mathrm{G}}$ with the domain $\left\{\left.\frac{i}{n-1} \right\rvert\, i \leq n-1\right\}$.
(b) Prove that each n-valued MV-chain is isomorphic to the subalgebra E_{n} of $[0,1]_{£}$ with the domain $\left\{\left.\frac{i}{n-1} \right\rvert\, i \leq n-1\right\}$.

Lemma 2.44

$$
\begin{array}{lll}
\models \boldsymbol{G}_{m} \subseteq \models_{\boldsymbol{G}}^{n} & \text { iff } & n \leq m . \\
\models_{\boldsymbol{E}_{m}} \subseteq \models_{\boldsymbol{E}_{n}} \quad \text { iff } & n-1 \text { divides } m-1 .
\end{array}
$$

Let us denote by $\mathbb{L}_{\text {fin }}$ the class of finite L-chains.

The case of Gödel-Dummett logic

Theorem 2.45
Let φ be a formula with $n-2$ variables. Then: $\vdash_{\mathrm{G}} \varphi$ iff $\models_{\boldsymbol{G}_{n}} \varphi$.

Proof.

Contrapositively: assume that $\Vdash_{\mathrm{G}} \varphi$ and let e be a $[0,1]_{\mathrm{G}}$-evaluation such that $e(\varphi) \neq 1$. Let $X=\{0,1\} \cup\left\{e\left(v_{i}\right) \mid 1 \leq i \leq n-2\right\}$ and note that it is a subuniverse of $[0,1]_{\mathrm{G}}$, thus e can be seen as an X-evaluation and so $\vDash_{X} \varphi$. The previous exercise and lemma complete the proof.

Theorem 2.46

For every finite set of formulas $\Gamma \cup\{\varphi\} \subseteq F m_{\mathcal{L}}$. The following are equivalent:
(1) $\Gamma \vdash_{\mathrm{G}} \varphi$
(2) $\Gamma \models_{[0,1]_{\mathrm{G}}} \varphi$
(3) $\Gamma \models_{\mathbb{G}_{\text {fin }}} \varphi$

The case of Łukasiewicz logic

Theorem 2.47
For every finite set of formulas $\Gamma \cup\{\varphi\} \subseteq F m_{\mathcal{L}}$, TFAE:
(1) $\Gamma \vdash_{\llcorner } \varphi$
(2) $\Gamma \models_{[0,1]_{\text {t }} \varphi} \varphi$
(3) $\Gamma \models_{M_{\text {fin }}} \varphi$

Proof: we show it for one variable v.

Let us define the set E of $[0,1]_{\mathrm{E}}$-evaluations such that $e[\Gamma] \subseteq\{1\}$. Note that E can be seen as a union of real intervals. Assume that there is $e \in E$ such that $e(\varphi) \neq 1$. If we show that there is an evaluation $f \in E$, such that $f(v)=\frac{p}{n-1}$ and $f(\varphi) \neq 1$ we are done as f can be seen as E_{n}-evaluation.

- Either e lies on the border of some interval, then $f=e$ OR
- there has to be a neighborhood $X \subseteq E$ such that $f(\varphi) \neq \overline{1}$ for each $f \in X$, then there has to be such f.

The classical case

- $\varphi \in \operatorname{SAT}(\mathrm{CL})$ if there is a 2-evaluation e such that $e(\varphi)=1$.
- $\varphi \in \operatorname{TAUT}(\mathrm{CL})$ if for each 2-evaluation e holds $e(\varphi)=1$.

Recall:

$$
\begin{array}{lll}
\varphi \in \operatorname{TAUT}(\mathrm{CL}) & \text { iff } & \neg \varphi \notin \operatorname{SAT}(\mathrm{CL}) \\
\varphi \in \operatorname{SAT}(\mathrm{CL}) & \text { iff } & \neg \varphi \notin \operatorname{TAUT}(\mathrm{CL}) .
\end{array}
$$

Both problems, SAT(CL) and TAUT(CL), are decidable.
But how difficult are their computations?

Complexity classes

$f, g: \mathrm{N} \rightarrow \mathrm{N} . f \in O(g)$ iff there are $c, n_{0} \in \mathrm{~N}$ such that for each $n \geq n_{0}$ we have $f(n) \leq c g(n)$.

- TIME (f) : the class of problems P such that there is a deterministic Turing machine M that accepts P and operates in time $O(f)$.
- NTIME (f) : analogous class for nondeterministic Turing machines.
- $\operatorname{SPACE}(f)$: the class of problems P such that there is a deterministic Turing machine M that accepts P and operates in space $O(f)$.
- NSPACE (f) : the analogous class for nondeterministic Turing machines.

Complexity classes

$$
\begin{aligned}
\mathbf{P} & =\bigcup_{k \in \mathrm{~N}} \operatorname{TIME}\left(n^{k}\right) \\
\mathbf{N P} & =\bigcup_{k \in \mathrm{~N}} \mathbf{N T I M E}\left(n^{k}\right) \\
\text { PSPACE } & =\bigcup_{k \in \mathrm{~N}} \operatorname{SPACE}\left(n^{k}\right)
\end{aligned}
$$

If \mathbf{C} is a complexity class, we denote $\mathbf{c o C}=\{P \mid \bar{P} \in \mathbf{C}\}$, the class of complements of problems in \mathbf{C}.

Complexity classes

- Each deterministic complexity class \mathbf{C} is closed under complementation: if $P \in \mathbf{C}$, then also $\bar{P} \in \mathbf{C}$.
- Is NP closed under complementation?
- $\mathbf{P} \subseteq \mathbf{N P}, \mathbf{P} \subseteq \mathbf{c o N P}, \mathbf{N P} \subseteq \mathbf{P S P A C E}$.
- Are the inclusions $\mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E}$ proper?
- Each of the classes $\mathbf{P}, \mathbf{N P}$, coNP, and PSPACE is closed under finite unions and intersections.

Complexity classes

A problem P is said to be \mathbf{C}-hard iff any decision problem P^{\prime} in \mathbf{C} is reducible to P.

A problem P is C-complete iff P is \mathbf{C}-hard and $P \in \mathbf{C}$.

The classical case

- $\operatorname{SAT}(\mathrm{CL}) \in$ NP: guess an evaluation and check whether it satisfies the formula (a polynomial matter).
- TAUT(CL) \in coNP: $\varphi \in \operatorname{TAUT}(\mathrm{CL})$ iff $\neg \varphi \notin \operatorname{SAT}(\mathrm{CL})$.
- Cook Theorem: Let $\operatorname{SAT}^{\mathrm{CNF}}(\mathrm{CL})$ be the SAT problem for formulas in conjunctive normal form. Then: $\mathrm{SAT}^{\mathrm{CNF}}(\mathrm{CL})$ is NP-complete.
- $\operatorname{SAT}^{\mathrm{CNF}}(\mathrm{CL})$ is a fragment of $\mathrm{SAT}(\mathrm{CL})$, therefore $\mathrm{SAT}(\mathrm{CL})$ is NP-complete and TAUT(CL) is coNP-complete.

The fuzzy case: basic definitions

Let L be either Łukasiewicz logic $Ł$ or Gödel logic G. We define:

- $\varphi \in \operatorname{SAT}(\mathrm{L})$ if there is an evaluation e such that $e(\varphi)=1$.
- $\varphi \in \operatorname{SAT}_{\mathrm{pos}}(\mathrm{L})$ if there is an evaluation e such that $e(\varphi)>0$.
- $\varphi \in \operatorname{TAUT}(\mathrm{L})$ if for each evaluation e holds $e(\varphi)=1$.
- $\varphi \in \operatorname{TAUT}_{\text {pos }}(\mathrm{L})$ if for each evaluation e holds $e(\varphi)>0$.

Note that $\varphi \vee \neg \varphi \in \operatorname{TAUT}_{\text {pos }}(\mathrm{L})$ but $\varphi \vee \neg \varphi \notin \operatorname{TAUT}(\mathrm{L})$
Note that $\varphi \wedge \neg \varphi \in \operatorname{SAT}_{\mathrm{pos}}(\mathrm{E})$ but $\varphi \wedge \neg \varphi \notin \operatorname{SAT}(\mathrm{E})$

The fuzzy case: basic reductions

Lemma 2.48

Let L be either Łukasiewicz logic Ł or Gödel logic G. Then

$\varphi \in \operatorname{TAUT}_{\mathrm{pos}}(\mathrm{L})$	iff	$\neg \varphi \notin \operatorname{SAT}(\mathrm{L})$
$\varphi \in \operatorname{SAT}_{\mathrm{pos}}(\mathrm{L})$	iff	$\neg \varphi \notin \operatorname{TAUT}(\mathrm{L})$.

Lemma 2.49

$$
\begin{array}{lll}
\varphi \in \operatorname{SAT}(\mathrm{E}) & \text { iff } & \neg \varphi \notin \operatorname{TAUT}_{\mathrm{pos}}(\mathrm{E}) \\
\varphi \in \operatorname{TAUT}(\mathrm{E}) & \text { iff } & \neg \varphi \notin \operatorname{SAT}_{\mathrm{pos}}(\mathrm{E}) .
\end{array}
$$

Exercise 7

Prove the above two lemmata, show that the last equivalence fails for G and the one but last holds there. (Hint: for the last part use properties of these sets proved in the next few slides).

The case of Łukasiewicz logic

Theorem 2.50

The sets $\operatorname{SAT}(\mathrm{E})$ and $\mathrm{SAT}_{\mathrm{pos}}(\mathrm{E})$ are $\mathbf{N P}$-complete. Therefore the sets TAUT (E) and $\mathrm{TAUT}_{\text {pos }}(\mathrm{E})$ are coNP-complete.

We prove it in a series of lemmata. First we show that $\operatorname{SAT}(\mathrm{E})$ is NP-hard:

Lemma 2.51
Let φ be a formula with variables $p_{1}, \ldots p_{n}$.

$$
\varphi \in \operatorname{SAT}(\mathrm{CL}) \quad \text { IFF } \quad \varphi \wedge \bigwedge_{i=1}^{n}\left(p_{i} \vee \neg p_{i}\right) \in \operatorname{SAT}(\mathrm{E}) .
$$

$\mathrm{SAT}_{\mathrm{pos}}(\mathrm{E})$ is NP-hard

Lemma 2.52
Let φ be a formula with variables $p_{1}, \ldots p_{n}$ built using: \wedge, \vee, \neg.

$$
\varphi \in \operatorname{SAT}(\mathrm{CL}) \quad \text { IFF } \quad \varphi^{2} \wedge \bigwedge_{i=1}^{n}\left(p_{i} \vee \neg p_{i}\right)^{2} \in \mathrm{SAT}_{\mathrm{pos}}(\mathrm{E}) .
$$

Proof.

Let e positively satisfy the right-hand formula. Then $e\left(\left(p_{i} \vee \neg p_{i}\right)^{2}\right)>0$ ergo $e\left(p_{i}\right) \neq 0.5$. We define the evaluation

$$
e^{\prime}\left(p_{i}\right)= \begin{cases}1 & \text { if } e\left(p_{i}\right)>0.5 \\ 0 & \text { if } e\left(p_{i}\right)<0.5\end{cases}
$$

Clearly this can be extended to φ. And, since $e\left(\varphi^{2}\right)>0$, we have $e(\varphi)>0.5$ and so $e^{\prime}(\varphi)=1$.

$\operatorname{SAT}(\mathrm{E})$ and $\mathrm{SAT}_{\mathrm{pos}}(\mathrm{E})$ are in NP

Lemma 2.53

$$
\begin{aligned}
& e(\varphi) \leq i \\
& e(\varphi \rightarrow \psi) \geq r \quad \text { IFF } \quad \exists i, j \in[0,1] \\
& e(\psi) \geq j \\
& r+i-j \leq 1 \\
& e(\varphi \rightarrow \psi) \leq r \quad \text { IFF } \quad \exists i, j \in[0,1], y \in\{0,1\} \\
& \begin{aligned}
e(\varphi) & \geq i \\
e(\psi) & \leq j \\
y-r & \leq 0 \\
y+i & \leq 1 \\
y-j & \leq 0 \\
y+r+i-j & \geq 1
\end{aligned}
\end{aligned}
$$

Using this lemma we can reduce the question of (positive) satisfiability to the question of Mixed Integer Programming (MIP) which is known to be in NP:
For $\operatorname{SAT}(\mathrm{E})$ start with $e(\varphi) \geq 1 \quad$ for $\operatorname{SAT}_{\text {pos }}(\mathrm{E})$ start with $\begin{aligned} e(\varphi) & \geq i_{0} \\ i_{0} & >0\end{aligned}$

The case of Gödel-Dummett logic

Lemma 2.54

The mapping $f:[0,1] \rightarrow\{0,1\}$ defined as $f(0)=0$ and $f(x)=1$ if $x \neq 0$ is a homomorphism from $[0,1]_{\mathrm{G}}$ to 2 .

Corollary 2.55

$$
\operatorname{SAT}_{\mathrm{pos}}(\mathrm{G}) \subseteq \mathrm{SAT}(\mathrm{CL}) \quad \mathrm{TAUT}(\mathrm{CL}) \subseteq \operatorname{TAUT}_{\mathrm{pos}}(\mathrm{G})
$$

The case of Gödel-Dummett logic

Corollary 2.56

$$
\begin{array}{llll}
\varphi \in \mathrm{SAT}_{\text {pos }}(\mathrm{G}) & \text { iff } & \varphi \in \operatorname{SAT}(\mathrm{G}) & \text { iff } \\
\varphi \in \operatorname{TAUT}_{\text {pos }}(\mathrm{G}) & \text { iff } & \neg \neg \varphi \in \operatorname{TAUT}(\mathrm{SL}) \\
\text { (G) } & \text { iff } & \varphi \in \operatorname{TAUT}(\mathrm{CL})
\end{array}
$$

Proof.

Just observe that:

$$
\operatorname{SAT}(\mathrm{G}) \subseteq \operatorname{SAT}_{\mathrm{pos}}(\mathrm{G}) \subseteq \operatorname{SAT}(\mathrm{CL}) \subseteq \operatorname{SAT}(\mathrm{G}) .
$$

And that

$$
\begin{aligned}
& \varphi \in \operatorname{TAUT}_{\mathrm{pos}}(\mathrm{G}) \Rightarrow \neg \varphi \notin \operatorname{SAT}(\mathrm{G}) \Rightarrow \neg \varphi \notin \operatorname{SAT}_{\mathrm{pos}}(\mathrm{G}) \\
\Rightarrow & \neg \neg \varphi \in \operatorname{TAUT}(\mathrm{G}) \Rightarrow \varphi \in \operatorname{TAUT}(\mathrm{CL}) \Rightarrow \varphi \in \operatorname{TAUT}_{\mathrm{pos}}(\mathrm{G}) .
\end{aligned}
$$

The case of Gödel-Dummett logic

Corollary 2.56

$$
\begin{array}{llll}
\varphi \in \operatorname{SAT}_{\text {pos }}(\mathrm{G}) & \text { iff } & \varphi \in \operatorname{SAT}(\mathrm{G}) & \text { iff } \\
\varphi \in \operatorname{TAUT}_{\text {pos }}(\mathrm{G}) & \text { iff } & \neg \neg \varphi \in \operatorname{SAT}(\mathrm{CL}) \\
\text { (G) } & \text { iff } & \varphi \in \operatorname{TAUT}(\mathrm{CL})
\end{array}
$$

Theorem 2.57

The sets $\mathrm{SAT}(\mathrm{G})$ and $\mathrm{SAT}_{\text {pos }}(\mathrm{G})$ are NP-complete and the sets TAUT(G) and TAUT $\mathrm{T}_{\text {pos }}(\mathrm{G})$ are coNP-complete.

Proof.

The only non clear case is TAUT(G): it is coNP-hard due to the last reduction of the previous corollary. We present a non-deterministic polynomial 'algorithm' (sound due to Theorem 2.58) for $\mathrm{Fm}_{\mathcal{L}} \backslash$ TAUT(G):
Step 1: guess a \boldsymbol{G}_{n}-evaluation e (assuming that φ has $n-2$ variables)
Step 2: compute the value of $e(\varphi)$ (clearly in polynomial time)
Output : if $e(\varphi) \neq 1$ output $\varphi \notin \operatorname{TAUT}(\mathrm{G})$.

Equational consequence

An equation in the language \mathcal{L} is a formal expression of the form $\varphi \approx \psi$, where $\varphi, \psi \in F m_{\mathcal{L}}$.

We say that an equation $\varphi \approx \psi$ is a consequence of a set of equations Π w.r.t. a class \mathbb{K} of \mathcal{L}-algebras if for each $\boldsymbol{A} \in \mathbb{K}$ and each \boldsymbol{A}-evaluation e we have $e(\varphi)=e(\psi)$ whenever $e(\alpha)=e(\beta)$ for each $\alpha \approx \beta \in \Pi$; we denote it by $\Pi \models_{\mathbb{K}} \varphi \approx \psi$.

A quasiequation in the language \mathcal{L} is a formal expression of the form $\left(\bigwedge_{i=1}^{n} \varphi_{i} \approx \psi_{i}\right) \Rightarrow \varphi \approx \psi$, where $\varphi_{1}, \ldots, \varphi_{n}, \varphi, \psi_{1}, \ldots, \psi_{n}, \psi \in F m_{\mathcal{L}}$.

Varieties and quasivarieties

Type of class	Presented by	Closed under
variety	equations	\mathbf{H}, \mathbf{S}, and \mathbf{P}
quasivariety	quasiequations	$\mathbf{I}, \mathbf{S}, \mathbf{P}$, and \mathbf{P}_{U}

I isomorphic images
H homomorphic images
S subalgebras
P direct products
\mathbf{P}_{U} ultraproducts
V generated variety
Q generated quasivariety

Algebraization of Łukasiewicz logic

(1) For every $\Gamma \cup\{\varphi\} \subseteq \boldsymbol{F} m_{\mathcal{L}}$,

$$
\Gamma \vdash_{€} \varphi \text { iff }\{\psi \approx \overline{1} \mid \psi \in \Gamma\} \models_{\mathbb{M V}} \varphi \approx \overline{1}
$$

(2) For every set of equations $\Pi \cup\{\varphi \approx \psi\}$,

$$
\Pi \models_{\mathbb{M V}} \varphi \approx \psi \text { iff }\{\alpha \leftrightarrow \beta \mid \alpha \approx \beta \in \Pi\} \vdash_{€} \varphi \leftrightarrow \psi
$$

(3) For every $\varphi \in \boldsymbol{F} m_{\mathcal{L}}$,

$$
\varphi \vdash_{€} \varphi \leftrightarrow \overline{1} \text { and } \varphi \leftrightarrow \overline{1} \vdash_{€} \varphi
$$

(4) For every $\varphi, \psi \in \boldsymbol{F} m_{\mathcal{L}}$,

$$
\varphi \approx \psi \models_{\mathbb{M V}} \varphi \leftrightarrow \psi \approx \overline{1} \text { and } \varphi \leftrightarrow \psi \approx \overline{1} \models_{\mathbb{M V}} \varphi \approx \psi
$$

Translations:

- $\tau: \varphi \mapsto \varphi \approx \overline{1}$
- $\rho: \alpha \approx \beta \mapsto \alpha \leftrightarrow \beta$

MV-algebras are the equivalent algebraic semantics of $£$.

$\mathbb{M V}$ is a variety

$\mathbb{M V}$ is a variety of algebras, i.e. an equational class:
(1) $x \oplus(y \oplus z) \approx(x \oplus y) \oplus z$,
(2) $x \oplus y \approx y \oplus x$,
(3) $x \oplus \overline{0} \approx x$,
(4) $\neg \neg x \approx x$,
(5) $x \oplus \neg \overline{0} \approx \neg \overline{0}$,
(6) $\neg(\neg x \oplus y) \oplus y \approx \neg(\neg y \oplus x) \oplus x$.

Algebraization of Gödel-Dummett logic

(1) For every $\Gamma \cup\{\varphi\} \subseteq \boldsymbol{F}_{\mathcal{L}}$,

$$
\Gamma \vdash_{\mathrm{G}} \varphi \text { iff }\{\psi \approx \overline{1} \mid \psi \in \Gamma\} \models_{\mathbb{G}} \varphi \approx \overline{1}
$$

(2) For every set of equations $\Pi \cup\{\varphi \approx \psi\}$,

$$
\Pi \models_{\mathbb{G}} \varphi \approx \psi \text { iff }\{\alpha \leftrightarrow \beta \mid \alpha \approx \beta \in \Pi\} \vdash_{\mathrm{G}} \varphi \leftrightarrow \psi
$$

(3) For every $\varphi \in \boldsymbol{F} m_{\mathcal{L}}$,

$$
\tilde{\varphi} \vdash_{\mathrm{G}} \varphi \leftrightarrow \overline{1} \text { and } \varphi \leftrightarrow \overline{1} \vdash_{\mathrm{G}} \varphi
$$

(4) For every $\varphi, \psi \in \boldsymbol{F} m_{\mathcal{L}}$,

$$
\varphi \approx \psi \models_{\mathbb{G}} \varphi \leftrightarrow \psi \approx \overline{1} \text { and } \varphi \leftrightarrow \psi \approx \overline{1} \models_{\mathbb{G}} \varphi \approx \psi
$$

Translations:

- $\tau: \varphi \mapsto \varphi \approx \overline{1}$
- $\rho: \alpha \approx \beta \mapsto \alpha \leftrightarrow \beta$

G-algebras are the equivalent algebraic semantics of G.

\mathbb{G} is a variety

\mathbb{G} is a variety of algebras, i.e. an equational class:

E1 $x \rightarrow x \approx \overline{1}$
$\mathrm{E} 2 \overline{1} \rightarrow x \approx x$
E3 $x \rightarrow(y \rightarrow z) \approx(x \rightarrow y) \rightarrow(x \rightarrow z)$
E4 $(x \rightarrow y) \rightarrow((y \rightarrow x) \rightarrow y) \approx(y \rightarrow x) \rightarrow((x \rightarrow y) \rightarrow x)$
E5 $x \rightarrow x \vee y \approx \overline{1}, \quad y \rightarrow x \vee y \approx \overline{1}$
E6 $(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \vee y \rightarrow z)) \approx \overline{1}$
E7 $x \wedge y \rightarrow x \approx \overline{1}, \quad x \wedge y \rightarrow y \approx \overline{1}$
E8 $(x \rightarrow y) \rightarrow((x \rightarrow z) \rightarrow(x \rightarrow y \wedge z)) \approx \overline{1}$
E9 $\overline{0} \rightarrow x \approx \overline{1}$
$\mathrm{E} 10(x \rightarrow y) \vee(y \rightarrow x) \approx \overline{1}$

Algebraization of finitary extensions

Let L be € or G .

- $\mathrm{S}=\mathrm{L}+A x+R$ ($A x$ is a set of axioms and R a set of finitary rules)
- $\mathbb{S}=\{\boldsymbol{A} \in \mathbb{L} \mid \boldsymbol{A}$ satisfies $\tau(\varphi)$ for each $\varphi \in A x$ and
$\bigwedge_{i=1}^{n} \tau\left(\varphi_{i}\right) \Rightarrow \tau(\psi)$ for each $\left.\left\langle\varphi_{1}, \ldots, \varphi_{n}, \psi\right\rangle \in R\right\}$.
- We obtain the same relation between the logic and the algebraic semantics as before:
(1) $\Gamma \vdash_{\mathrm{s}} \varphi$ iff $\tau[\Gamma] \models_{\mathbb{S}} \tau(\varphi)$
(2) $\Pi \models_{\mathbb{S}} \varphi \approx \psi$ iff $\rho[\Pi] \vdash_{\mathrm{s}} \rho(\varphi \approx \psi)$
(3) $\varphi \vdash_{\mathrm{S}} \rho(\tau(\varphi))$ and $\rho(\tau(\varphi)) \vdash_{\mathrm{S} \varphi} \varphi$
(4) $\varphi \approx \psi \models_{\mathbb{S}} \tau(\rho(\varphi \approx \psi))$ and $\tau(\rho(\varphi \approx \psi)) \models_{\mathbb{S}} \varphi \approx \psi$
\mathbb{S} is the equivalent algebraic semantics of S.

Algebraization of finitary extensions

The translations τ and ρ between formulas and equations give bijective correspondences (dual lattice isomorphisms):
(1) between finitary extensions of L and quasivarieties of L -algebras
(2) between axiomatic extensions of L and varieties of L -algebras.

Proof by Cases Property for extensions

Theorem 2.58 (Proof by Cases Property)

Assume that for each $\left\langle\varphi_{1}, \ldots, \varphi_{n}, \psi\right\rangle \in R, \varphi_{1} \vee \chi, \ldots \varphi_{n} \vee \chi \vdash_{\mathrm{S}} \psi \vee \chi$. If $\Gamma, \varphi \vdash_{\mathrm{s}} \chi$ and $\Gamma, \psi \vdash_{\mathrm{s}} \chi$, then $\Gamma, \varphi \vee \psi \vdash_{\mathrm{s}} \chi$.

Proof.

Claim If $\Gamma \vdash_{\mathrm{S}} \varphi$, then $\Gamma \vee \chi \vdash_{\mathrm{s}} \delta \vee \chi$ for each formula χ and each δ appearing in the proof of φ from Γ.

Proof of the claim: trivial for $\delta \in \Gamma$ or δ an axiom; if we used MP, then by IH there has to be η st.
$\Gamma \vee \chi \vdash_{\mathrm{s}} \eta \vee \chi \quad \Gamma \vee \chi \vdash_{\mathrm{s}}(\eta \rightarrow \delta) \vee \chi$ thus (T7) completes the proof.
Now using the claim: $\Gamma \vee \psi, \varphi \vee \psi \vdash_{\mathrm{s}} \chi \vee \psi$ and $\Gamma \vee \chi, \psi \vee \chi \vdash_{\mathrm{s}} \chi \vee \chi$. Using (A6a), (T8), and (T9) we get $\Gamma, \varphi \vee \psi \vdash_{\mathrm{S}} \psi \vee \chi$ and $\Gamma, \psi \vee \chi \vdash_{\mathrm{s}} \chi$ and the rest is trivial.

Chain-completeness for extensions

Corollary 2.59
 Assume that for each $\left\langle\varphi_{1}, \ldots, \varphi_{n}, \psi\right\rangle \in R, \varphi_{1} \vee \chi, \ldots \varphi_{n} \vee \chi \vdash_{\mathrm{s}} \psi \vee \chi$ (this is the case, in particular, if S is an axiomatic extension). Then for every set of formulas $\Gamma \cup\{\varphi\} \subseteq \boldsymbol{F m}_{\mathcal{L}}: \Gamma \vdash_{s} \varphi$ iff $\Gamma \models_{S_{\text {lin }}} \varphi$.

Exercise 8

Prove it.

The case of Gödel-Dummett logic

For each $n \geq 1$, recall the canonical n-valued G-chain:
$\boldsymbol{G}_{n}=\left\langle\left\{\left.\frac{i}{n-1} \right\rvert\, i \leq n-1\right\}, \min , \max , \rightarrow, 0,1\right\rangle$.
$\mathrm{G}_{n}=\mathrm{G}+\bigvee_{i=0}^{n-1}\left(p_{i} \rightarrow p_{i+1}\right)$.
Theorem 2.60

- for each $n \geq 1, \mathrm{G}_{n}$-algebras are the subvariety of G -algebras satisfying $\bigvee_{i=0}^{n-1}\left(p_{i} \rightarrow p_{i+1}\right) \approx \overline{1}$ and it coincides with $\mathbf{V}\left(\boldsymbol{G}_{n}\right)$.
- \mathbb{G} is locally finite, i.e. each finite subset of a G-algebra generates a finite subalgebra.
- If \boldsymbol{C} is an infinite G-chain, then $\mathbf{V}(\boldsymbol{C})=\mathbb{G}$.
- the subvarieties of \mathbb{G} are exactly:

$$
\mathbf{V}\left(\boldsymbol{G}_{1}\right) \subsetneq \mathbf{V}\left(\boldsymbol{G}_{2}\right) \subsetneq \mathbf{V}\left(\boldsymbol{G}_{3}\right) \subsetneq \ldots \subsetneq \mathbf{V}\left(\boldsymbol{G}_{n}\right) \subsetneq \mathbf{V}\left(\boldsymbol{G}_{n+1}\right) \subsetneq \ldots \mathbb{G} .
$$

Exercise 9

Prove it.

The case of Gödel-Dummett logic

Theorem 2.61

There are no other finitary extensions of G than $\mathrm{G}_{n} \mathrm{~s}$ (i.e. \mathbb{G} has no proper subquasivarieties).

Lemma 2.62

Gödel-Dummett logic proves:

- $(\varphi \rightarrow(\psi \rightarrow \chi)) \leftrightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi))$
- $(\varphi \rightarrow(\psi \wedge \chi)) \leftrightarrow((\varphi \rightarrow \psi) \wedge(\varphi \rightarrow \chi))$
- $(\varphi \rightarrow(\psi \vee \chi)) \leftrightarrow((\varphi \rightarrow \psi) \vee(\varphi \rightarrow \chi))$

Define a substitution $\sigma_{\varphi}(p)=\varphi \rightarrow p$. Then if $\overline{0}$ does not occur in φ we have: $\vdash_{\mathrm{G}} \sigma_{\varphi}(\psi) \leftrightarrow(\varphi \rightarrow \psi), \psi \vdash_{\mathrm{G}} \sigma_{\varphi}(\psi)$, and $\vdash_{\mathrm{G}} \sigma_{\varphi}(\varphi)$.

Deduction theorems

Lemma 2.63

Any finitary extension L of G enjoys the deduction theorem.

Proof.

Assume that $\varphi \vdash_{\mathrm{L}} \psi$. Let χ_{f} be the formula resulting from χ by replacing all occurrences of $\overline{0}$ by a fresh fixed variable f. Define a substitution $\sigma(q)=\overline{0}$ for $q=f$ and q otherwise; observe $\sigma\left(\chi_{f}\right)=\chi$.

Claim: $\{f \rightarrow q \mid q$ in $\{\varphi, \psi\}\}, \varphi_{f} \vdash_{\mathrm{L}} \psi_{f}$.
Thus $\sigma \sigma_{\varphi_{f}}\left[\{f \rightarrow q \mid q\right.$ in $\left.\{\varphi, \psi\}\} \cup\left\{\varphi_{f}\right\}\right] \vdash_{\mathrm{L}} \sigma \sigma_{\varphi_{f}}\left(\psi_{f}\right)$. And so $\{(\varphi \rightarrow \overline{0}) \rightarrow(\varphi \rightarrow q) \mid q$ in $\{\varphi, \psi\}\}, \sigma \sigma_{\varphi_{f}}(\varphi) \vdash_{\mathrm{L}} \sigma \sigma_{\varphi_{f}}(\psi)$. Since, clearly, $\vdash_{\mathrm{L}} \sigma \sigma_{\varphi_{f}}\left(\chi_{f}\right) \leftrightarrow(\varphi \rightarrow \chi)$, we obtain $\vdash_{\mathrm{L}} \varphi \rightarrow \psi$.

Exercise 10
 Complete the proof (including the claim!).

Structural completeness

The proof of Theorem 2.88.
Obvious as the previous lemma allows us to replace any additional rule of L by an axiom.

Definition 2.64

A logic is structurally complete if each proper extension has some new theorems. A logic is hereditarily structurally complete if each of its extensions is structurally complete.

Corollary 2.65

G is hereditarily structurally complete.

Exercise 11
E is not structurally complete.

Important MV-chains

Recall the functor $\boldsymbol{\Gamma}$ which turns each Lattice ordered Abelian group with strong unit into and MV-algebra

For each $n \geq 1$, recall the canonical n-valued MV-chain: $\boldsymbol{E}_{n}=\left\langle\left\{\left.\frac{i}{n-1} \right\rvert\, i \leq n-1\right\}, \oplus, \neg, 0\right\rangle$.

- for each $u>0,[0,1]_{£} \cong \boldsymbol{\Gamma}(\boldsymbol{R}, u)$.
- $\boldsymbol{E}_{n} \cong \boldsymbol{\Gamma}\left(\boldsymbol{Q}_{n-1}, 1\right)$
- $\boldsymbol{K}_{n}=\boldsymbol{\Gamma}\left(\boldsymbol{Q}_{n-1} \otimes \boldsymbol{Z},\langle 1,0\rangle\right)$.
where on \boldsymbol{Q}_{n-1} is the additive group of rationals whose denominator is $n-1$, and $\boldsymbol{Q}_{n-1} \otimes \boldsymbol{Z}$ is the lexicographic product (direct product with the lexicographic order).

Varieties of MV-algebras

Proposition 2.66

- $\mathbf{V}\left([0,1]_{\mathrm{E}}\right)=\mathbb{M} \mathbb{V}$
- If $I \subseteq \mathrm{~N}$ is infinite, then $\mathbf{V}\left(\left\{\boldsymbol{L}_{i} \mid i \in I\right\}\right)=\mathbb{M} \mathbb{V}$
- $\mathbf{V}\left(\boldsymbol{L}_{i}\right) \subseteq \mathbf{V}\left(\boldsymbol{L}_{j}\right)$ iff $i-1$ divides $j-1$.

Theorem 2.67 (Komori)
Let $\mathbb{K} \subseteq \mathbb{M} \mathbb{V}$ be a variety. $\mathbb{K} \neq \mathbb{M V}$ iff there are two finite disjoint sets $I, J \subseteq \mathrm{~N}$ such that:

$$
\mathbb{K}=\mathbf{V}\left(\left\{\boldsymbol{E}_{i} \mid i \in I\right\} \cup\left\{\boldsymbol{K}_{j} \mid j \in J\right\}\right)
$$

Varieties of MV-algebras

Definition 2.68

If $i \in \mathrm{~N}, \delta(i)=\{n \in \mathrm{~N} \mid n$ is a divisor of $i\}$. If $J \subseteq \mathrm{~N}$ is finite and nonempty, $\Delta(i, J)=\delta(i) \backslash \bigcup_{j \in J} \delta(j)$.

Theorem 2.69 (Di Nola, Lettieri)

Let $I, J \subseteq \mathrm{~N}$ be finite disjoint sets. Then the variety
$\mathbf{V}\left(\left\{\boldsymbol{E}_{i} \mid i \in I\right\} \cup\left\{\boldsymbol{K}_{j} \mid j \in J\right\}\right)$ has the following equational base:
$E q(1) \quad\left((n+1) x^{n}\right)^{2} \approx 2 x^{n+1} \quad$ with $n=\max (I \cup J)$,
$E q(2) \quad\left(p x^{p-1}\right)^{n+1} \approx(n+1) x^{p}$,
$E q(3) \quad(n+1) x^{q} \approx(n+2) x^{q}$,
for every positive integer $1<p<n$ such that p is not a divisor of any $i \in I \cup J$ and for every $q \in \bigcup_{i \in I} \Delta(i, J)$.

Fuzzy logic for reasoning about probability

Fuzziness \neq probability
Probability of $\varphi=\square \varphi=$ truth degree of it is probable that φ
Let us take:

- the classical logic CL in language $\rightarrow, \neg, \vee, \wedge, \overline{0}$
- Łukasiewicz logic $£$ in language $\left.\rightarrow_{\mathrm{E}},\right\urcorner_{\mathrm{E}}, \oplus, \ominus$
- an extra symbol \square

We define three kinds of formulas of a two-level language over a fixed set of variables Var:

- non-modal: built from Var using $\rightarrow, \neg, \vee, \wedge, \overline{0}$
- atomic modal: of the form $\square \varphi$, for each non-modal φ
- modal: built from atomic ones using $\left.\rightarrow_{モ},\right\urcorner_{Ł}, \oplus, \ominus$

Probability Kripke frames and Kripke models

Definition 2.70

A probability Kripke frame is a system $\mathbf{F}=\langle W, \mu\rangle$ where

- W is a set (of possible worlds)
- μ is a finitely additive probability measure defined on a sublattice of 2^{W}

Definition 2.71

A Kripke model \mathbf{M} over a probability Kripke frame $\mathbf{F}=\langle W, \mu\rangle$ is a tuple $\mathbf{M}=\left\langle\mathbf{F},\left(e_{w}\right)_{w \in W}\right\rangle$ where:

- e_{w} is a classical evaluation of non-modal formulas
- the domain of μ contains the set $\left\{w \mid e_{w}(\varphi)=1\right\}$
for each non-modal formula φ

Truth definition

The truth values of modal formulas are defined uniformly:

$$
\begin{aligned}
\|\square \varphi\|_{\mathbf{M}} & =\mu\left(\left\{w \mid e_{w}(\varphi)=1\right\}\right) \\
\left\|\neg_{モ} \Phi\right\|_{\mathbf{M}} & =1-\|\Phi\|_{\mathbf{M}} \\
\left\|\Phi \rightarrow_{£} \Psi\right\|_{\mathbf{M}} & =\min \left\{1,1-\|\Phi\|_{\mathbf{M}}+\|\Psi\|_{\mathbf{M}}\right\} \\
\|\Phi \oplus \Psi\|_{\mathbf{M}} & =\min \left\{1,\|\Phi\|_{\mathbf{M}}+\|\Psi\|_{\mathbf{M}}\right\} \\
\|\Phi \ominus \Psi\|_{\mathbf{M}} & =\max \left\{0,\|\Phi\|_{\mathbf{M}}-\|\Psi\|_{\mathbf{M}}\right\}
\end{aligned}
$$

Axiomatization

Definition 2.72

The logic FP of probability inside Łukasiewicz logic is given by the axiomatic system consisting of:

- the axioms and rules of CL for non-modal formulas,
- axioms and rules of $€$ for modal formulas,
- modal axioms

```
(FPO) \(\neg \ddagger(\overline{0})\)
    (FP1) \(\square(\varphi \rightarrow \psi) \rightarrow_{\mathrm{E}}\left(\square \varphi \rightarrow_{\mathrm{E}} \square \psi\right)\)
    (FP2) \(\neg_{\text {£ }} \square(\varphi) \rightarrow_{\mathrm{E}} \square(\neg \varphi)\)
    (FP3) \(\square(\varphi \vee \psi) \rightarrow_{\mathrm{E}}(\square \psi \oplus(\square \varphi \ominus \square(\varphi \wedge \psi)))\)
```

- a unary modal rule:

$$
\varphi \vdash \square \varphi
$$

The notion of provability $\vdash_{\text {FP }}$ (from both modal and non-modal premises) is defined as usual.

Completeness theorem

Theorem 2.73 (Hájek)
Let $\Gamma \cup\{\Psi\}$ be a set of modal formulas. TFAE:

- $\Gamma \vdash_{F P} \Psi$
- $\|\Psi\|_{\mathbf{M}}=1$ for each Kripke model \mathbf{M} where $\|\Phi\|_{\mathbf{M}}=1$ for each $\Phi \in \Gamma$.

Variations

- changing the measure of uncertainty (necessity, possibility, belief functions)
- changing the upper logic: replacing Łukasiewicz logic by any other fuzzy logic
- changing the lower logic: e.g. replacing CL by Łukasiewicz logic to speak about probability of vague events Ex: Messi will score soon in the second half of the match
- adding more modalities
- any combination of the above four options

We can build also a general theory for these two-layer modal logics

