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Syntax

We consider primitive connectives L = {→,∧,∨, 0} and defined
connectives ¬, 1, and↔:

¬ϕ = ϕ→ 0 1 = ¬0 ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

Formulas are built from a fixed countable set of atoms using the
connectives.

Let us by FmL denote the set of all formulas.
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A Hilbert-style proof system

Axioms:
(Tr) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) transitivity
(We) ϕ→ (ψ → ϕ) weakening
(Ex) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)) exchange
(∧a) ϕ ∧ ψ → ϕ
(∧b) ϕ ∧ ψ → ψ
(∧c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(∨a) ϕ→ ϕ ∨ ψ
(∨b) ψ → ϕ ∨ ψ
(∨c) (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))
(Prl) (ϕ→ ψ) ∨ (ψ → ϕ) prelinearity
(EFQ) 0→ ϕ Ex falso quodlibet
(Con) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) contraction

Inference rule: from ϕ and ϕ→ ψ infer ψ modus ponens
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The relation of provability

Proof: a proof of a formula ϕ from a set of formulas (theory) Γ is a finite
sequence of formulas 〈ψ1, . . . , ψn〉 such that:

ψn = ϕ

for every i ≤ n, either ψi ∈ Γ, or ψi is an instance of an axiom, or
there are j, k < i such that ψk = ψj → ψi.

We write Γ `G ϕ if there is a proof of ϕ from Γ.

A formula ϕ is a theorem of Gödel–Dummett logic if `G ϕ.

Proposition 2.1
The provability relation of Gödel–Dummett logic is finitary: if Γ `G ϕ,
then there is a finite Γ0 ⊆ Γ such that Γ0 `G ϕ.
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Algebraic semantics

A Gödel algebra (or just G-algebra) is a structure
B = 〈B,∧B,∨B,→B, 0B

, 1B〉 such that:

(1) 〈B,∧B,∨B, 0B
, 1B〉 is a bounded lattice

(2) z ≤ x→B y iff x ∧B z ≤ y (residuation)

(3) (x→B y) ∨B (y→B x) = 1B
(prelinearity)

where x ≤B y is defined as x ∧B y = x or (equivalently) as x→B y = 1B
.

A G-algebra B is linearly ordered (or G-chain) if ≤B is a total order.

By G (or Glin resp.) we denote the class of all G-algebras (G-chains resp.)
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Standard semantics

Consider algebra [0, 1]G = 〈[0, 1],∧[0,1]G ,∨[0,1]G ,→[0,1]G , 0, 1〉, where:

a ∧[0,1]G b = min{a, b}

a ∨[0,1]G b = max{a, b}

a→[0,1]G b =

{
1 if a ≤ b,
b otherwise.

Exercise 1
(a) Prove that [0, 1]G is the unique G-chain with the lattice reduct
〈[0, 1],min,max, 0, 1〉.
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Semantical consequence

Definition 2.2
A B-evaluation is a mapping e from FmL to B such that:

e(0) = 0B

e(ϕ ∧ ψ) = e(ϕ) ∧B e(ψ)

e(ϕ ∨ ψ) = e(ϕ) ∨B e(ψ)

e(ϕ→ ψ) = e(ϕ)→B e(ψ)

Definition 2.3
A formula ϕ is a logical consequence of a set of formulas Γ
w.r.t. a class K of G-algebras, Γ |=K ϕ, if for every B ∈ K and
every B-evaluation e:

if e(γ) = 1 for every γ ∈ Γ, then e(ϕ) = 1.
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Completeness theorem

Theorem 2.4
The following are equivalent for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ `G ϕ

2 Γ |=G ϕ

3 Γ |=Glin ϕ

4 Γ |=[0,1]G ϕ

Exercise 1
(a) Prove the implications from top to bottom.
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Some theorems and derivations in G

Proposition 2.5
(T1) `G ϕ→ ϕ
(T2) `G ϕ→ (ψ → ϕ ∧ ψ)

(D1) 1↔ ϕ `G ϕ and ϕ `G 1↔ ϕ
(D2) ϕ→ ψ `G ϕ ∧ ψ ↔ ϕ and ϕ ∧ ψ ↔ ϕ `G ϕ→ ψ
(D3) ϕ→ (ψ → χ) `G ϕ ∧ ψ → χ and ϕ ∧ ψ → χ `G ϕ→ (ψ → χ)

Proposition 2.6

`G ϕ ∧ ψ ↔ ψ ∧ ϕ `G ϕ ∨ ψ ↔ ψ ∨ ϕ
`G ϕ ∧ (ψ ∧ χ)↔ (ϕ ∧ ψ) ∧ χ `G ϕ ∨ (ψ ∨ χ)↔ (ϕ ∨ ψ) ∨ χ
`G ϕ ∧ (ϕ ∨ ψ)↔ ϕ `G ϕ ∨ (ϕ ∧ ψ)↔ ϕ

`G 1 ∧ ϕ↔ ϕ `G 0 ∨ ϕ↔ ϕ

`G (ϕ→ ψ) ∨ (ψ → ϕ)↔ 1
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The rule of substitution

Proposition 2.7

ϕ↔ ψ `G (ϕ ∧ χ)↔ (ψ ∧ χ) ϕ↔ ψ `G (ϕ ∨ χ)↔ (ψ ∨ χ)
ϕ↔ ψ `G (χ ∧ ϕ)↔ (χ ∧ ψ) ϕ↔ ψ `G (χ ∨ ϕ)↔ (χ ∨ ψ)
ϕ↔ ψ `G (ϕ→ χ)↔ (ψ → χ) ϕ↔ ψ `G (χ→ ϕ)↔ (χ→ ψ)

`G ϕ↔ ϕ ϕ↔ ψ `G ψ ↔ ϕ ϕ↔ ψ,ψ ↔ χ `G ϕ↔ χ

Corollary 2.8
ϕ↔ ψ `G χ↔ χ′, where χ′ results from χ by replacing

its subformula ϕ by ψ.

Exercise 2
(a) Prove this corollary and the two previous propositions.
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Lindenbaum–Tarski algebra

Definition 2.9
Let Γ be a theory. We define

[ϕ]Γ = {ψ | Γ `G ϕ↔ ψ} LΓ = {[ϕ]Γ | ϕ ∈ FmL}

The Lindenbaum–Tarski algebra of a theory Γ (LindΓ) as an algebra
with the domain LΓ and operations:

0LindΓ = [0]Γ

1LindΓ = [1]Γ

[ϕ]Γ →LindΓ [ψ]Γ = [ϕ→ ψ]Γ

[ϕ]Γ ∧LindΓ [ψ]Γ = [ϕ ∧ ψ]Γ

[ϕ]Γ ∨LindΓ [ψ]Γ = [ϕ ∨ ψ]Γ
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Lindenbaum–Tarski algebra: basic properties
Proposition 2.10

1 [ϕ]Γ = [ψ]Γ iff Γ `G ϕ↔ ψ

2 [ϕ]Γ ≤LindΓ [ψ]Γ iff Γ `G ϕ→ ψ

3 1LindΓ = [ϕ]Γ iff Γ `G ϕ

4 LindΓ is a G-algebra
5 LindΓ is a G-chain iff Γ `G ϕ→ ψ or Γ `G ψ → ϕ for each ϕ,ψ

Proof.
1. Left-to-right is the just definition and ‘reflexivity’ of↔. Conversely, we
use ‘transitivity’ and ‘symmetry’ of↔.
2. [ϕ]Γ ≤LindΓ [ψ]Γ iff [ϕ]Γ ∧LindΓ [ψ]Γ = [ϕ]Γ iff [ϕ ∧ ψ]Γ = [ϕ]Γ iff (by 1.)

Γ `G ϕ ∧ ψ ↔ ϕ iff (by (D2)) Γ `G ϕ→ ψ.

3. 1LindΓ = [ϕ]Γ iff (by 1.) Γ `G 1↔ ϕ iff (by (D1)) Γ `G ϕ.
5. Trivial after we prove 4.
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Lindenbaum–Tarski algebra: basic properties
Proposition 2.10

1 [ϕ]Γ = [ψ]Γ iff Γ `G ϕ↔ ψ

2 [ϕ]Γ ≤LindΓ [ψ]Γ iff Γ `G ϕ→ ψ

3 1LindΓ = [ϕ]Γ iff Γ `G ϕ

4 LindΓ is a G-algebra
5 LindΓ is a G-chain iff Γ `G ϕ→ ψ or Γ `G ψ → ϕ for each ϕ,ψ

Proof.
4. First we note that the definition of LindΓ is sound due to 1. and
Proposition 2.7.
The lattice identities hold due to 1. and Proposition 2.6, prelinearity due
to 3. and axiom (Prl).
Finally, the residuation: [ϕ]Γ ≤LindΓ [ψ]Γ →LindΓ [χ]Γ = [ψ → χ]Γ iff

Γ `G ϕ→ (ψ → χ) iff (by (D3)) Γ `G ϕ ∧ ψ → χ iff
[ϕ]Γ ∧LindΓ [ψ]Γ ≤LindΓ [χ]Γ.
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General/linear/standard completeness theorem

Theorem 2.4
The following are equivalent for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ `G ϕ

2 Γ |=G ϕ

3 Γ |=Glin ϕ

4 Γ |=[0,1]G ϕ

Proof.
2. implies 1.: contrapositively, assume that Γ 6`G ϕ.
We know that LindΓ ∈ G and the function e defined as e(ψ) = [ψ]Γ

is a LindΓ-evaluation and

e(ψ) = 1LindΓ iff Γ `G ψ.

Thus clearly e(χ) = 1LindΓ for each χ ∈ Γ and e(ϕ) 6= 1LindΓ .
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Deduction Theorem
Theorem 2.11 (Deduction theorem)
For every set of formulas Γ ∪ {ϕ,ψ},

Γ, ϕ `G ψ iff Γ `G ϕ→ ψ

Proof.
⇐: follows from modus ponens
⇒: let α1, . . . , αn = ψ be the proof of ψ in Γ, ϕ. We show by induction
that Γ `G ϕ→ αi for each i ≤ n.
If αi = ϕ we use (T1); if αi is an axiom or αi ∈ Γ then Γ `G αi and so
we can use axiom (We) and MP.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 15 / 100



Deduction Theorem
Theorem 2.11 (Deduction theorem)
For every set of formulas Γ ∪ {ϕ,ψ},

Γ, ϕ `G ψ iff Γ `G ϕ→ ψ

Proof.
⇐: follows from modus ponens
⇒: let α1, . . . , αn = ψ be the proof of ψ in Γ, ϕ. We show by induction
that Γ `G ϕ→ αi for each i ≤ n.
Otherwise there has to be k, j < i such that αk = αj → αi.
Induction assumption gives: Γ `G ϕ→ αj and Γ ` ϕ→ (αj → αi).
Using Γ ` ϕ→ (αj → αi), (Ex), and MP we get Γ ` αj → (ϕ→ αi),
using this, Γ `G ϕ→ αj, (Tr), and MP twice we get Γ ` ϕ→ (ϕ→ αi).
Finally we use (Con) and MP.
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Semilinearity Property

Lemma 2.12 (Semilinearity Property)
If Γ, ϕ→ ψ `G χ and Γ, ψ → ϕ `G χ, then Γ `G χ.

Proof.
By the deduction theorem: Γ `G (ϕ→ ψ)→ χ and Γ `G (ψ → ϕ)→ χ.

Thus by (∨c) we get Γ `G (ϕ→ ψ) ∨ (ψ → ϕ)→ χ.

Axiom (Prl) completes the proof.
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Linear Extension Property
Definition 2.13
A theory Γ is linear if Γ `G ϕ→ ψ or Γ `G ψ → ϕ for each ϕ,ψ.

Lemma 2.14 (Linear Extension Property)
If Γ 0G ϕ, then there is a linear theory Γ′ ⊇ Γ such that Γ′ 0G ϕ.

Proof.
Enumerate all pairs of formulas: 〈ϕ0, ψ0〉, 〈ψ1, ϕ1〉, . . .
Construct theories Γ0,Γ1, . . . such that Γ0 =Γ; Γi⊆Γi+1, and Γi 0G ϕ:

if Γi, ϕi → ψi 0G ϕ, then Γi+1 = Γi ∪ {ϕi → ψi}

if Γi, ϕi → ψi `G ϕ, then Γi+1 = Γi ∪ {ψi → ϕi}

Clearly Γi+1 0G ϕ (the 1st case is obvious; in the 2nd Γi+1 `G ϕ would
entail Γi `G ϕ by the Semilinearity Property, a contradiction with the IH.
Define Γ′ =

⋃
Γi. Clearly Γ′ is linear, Γ′ ⊇ Γ, and Γ′ 0G ϕ.
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General/linear/standard completeness theorem
Theorem 2.4
The following are equivalent for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ `G ϕ

2 Γ |=G ϕ

3 Γ |=Glin ϕ

4 Γ |=[0,1]G ϕ

Proof.
3. implies 1.: contrapositively, assume that Γ 6`G ϕ. Due to the Linear
Extension Property there is a linear theory Γ′ ⊇ Γ such that Γ′ 6`G ϕ.
We know that LindΓ′ ∈ Glin and the function e defined as e(ψ) = [ψ]Γ′

is a LindΓ′-evaluation and

e(ψ) = 1LindΓ′ iff Γ′ `G ψ

Thus e(χ) = 1LindΓ′ for each χ ∈ Γ (as Γ′ `G χ) and e(ϕ) 6= 1LindΓ′.
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The proof of the standard completeness theorem

We continue the previous proof: note that the algebra LindΓ′ is
countable.

There has to be (because every countable order can be monotonously
embedded into a dense one) a mapping f : LΓ′ → [0, 1] such that
f (0LindΓ′

) = 0, f (1LindΓ′
) = 1, and for each a, b ∈ LT′ we have:

a ≤ b iff f (a) ≤ f (b)

We define a mapping ē : FmL → [0, 1] as

ē(ψ) = f (e(ψ))

and prove (by induction) that it is an [0, 1]G-evaluation.

Then ē(ψ) = 1 iff e(ψ) = 1LindΓ′ and so ē[Γ] ⊆ {1} and ē(ϕ) 6= 1.
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Syntax

We consider primitive connectives L = {→,∧,∨, 0} and defined
connectives ¬, 1, and↔:

¬ϕ = ϕ→ 0 1 = ¬0 ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

Formulas are built from a fixed countable set of atoms using the
connectives.

Let us by FmL denote the set of all formulas.

We also use additional connectives ⊕ and & defined as:

ϕ⊕ ψ = ¬ϕ→ ψ ϕ& ψ = ¬(ϕ→ ¬ψ)
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A Hilbert-style proof system

Axioms:
(Tr) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) transitivity
(We) ϕ→ (ψ → ϕ) weakening
(Ex) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)) exchange
(∧a) ϕ ∧ ψ → ϕ
(∧b) ϕ ∧ ψ → ψ
(∧c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(∨a) ϕ→ ϕ ∨ ψ
(∨b) ψ → ϕ ∨ ψ
(∨c) (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))
(Prl) (ϕ→ ψ) ∨ (ψ → ϕ) prelinearity
(EFQ) 0→ ϕ Ex falso quodlibet
(Waj) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ) Wajsberg axiom

Inference rule: from ϕ and ϕ→ ψ infer ψ modus ponens
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The relation of provability

Proof: a proof of a formula ϕ from a set of formulas (theory) Γ is a finite
sequence of formulas 〈ψ1, . . . , ψn〉 such that:

ψn = ϕ

for every i ≤ n, either ψi ∈ Γ, or ψi is an instance of an axiom, or
there are j, k < i such that ψk = ψj → ψi.

We write Γ `� ϕ if there is a proof of ϕ from Γ.

A formula ϕ is a theorem of Łukasiewicz logic if `� ϕ.

Proposition 2.15
The provability relation of Łukasiewicz logic is finitary: if Γ `� ϕ, then
there is a finite Γ0 ⊆ Γ such that Γ0 `� ϕ.
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Algebraic semantics

An MV-algebra is a structure B = 〈B,⊕,¬, 0〉 such that:
(1) 〈B,⊕, 0〉 is a commutative monoid,
(2) ¬¬x = x,
(3) x⊕ ¬0 = ¬0,
(4) ¬(¬x⊕ y)⊕ y = ¬(¬y⊕ x)⊕ x.

In each MV-algebra we define additional operations:

x→ y is ¬x⊕ y implication
x & y is ¬(¬x⊕ ¬y) strong conjunction
x ∨ y is ¬(¬x⊕ y)⊕ y max-disjunction
x ∧ y is ¬(¬x ∨ ¬y) min-conjunction

1 is ¬0 top

Exercise 3
Prove that 〈B,∧,∨, 0, 1〉 is a bounded lattice.
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Algebraic semantics cont. and standard semantics
We say that an MV-algebra B is linearly ordered (or MV-chain) if its
lattice reduct is.

By MV (or MVlin resp.) we denote the class of all MV-algebras
(MV-chains resp.)

Take the algebra [0, 1]� = 〈[0, 1],⊕,¬, 0〉, with operations defined as:

¬a = 1− a a⊕ b = min{1, a + b}.

Proposition 2.16
[0, 1]� is the unique (up to isomorphism) MV-chain with the lattice
reduct 〈[0, 1],min,max, 0, 1〉.

Exercise 1
(b) Check that [0, 1]� is an MV-chain and find another MV-chain

isomorphic to [0, 1]� with the same lattice reduct.
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Semantical consequence

Definition 2.17
A B-evaluation is a mapping e from FmL to B such that:

e(0) = 0B

e(ϕ→ ψ) = e(ϕ)→B e(ψ) = ¬Be(ϕ)⊕B e(ψ)

e(ϕ ∧ ψ) = e(ϕ) ∧B e(ψ) = · · ·
e(ϕ ∨ ψ) = e(ϕ) ∨B e(ψ) = · · ·

Definition 2.18
A formula ϕ is a logical consequence of a set of formulas Γ
w.r.t. a class K of MV-algebras, Γ |=K ϕ, if for every B ∈ K and
every B-evaluation e:

if e(γ) = 1 for every γ ∈ Γ, then e(ϕ) = 1.
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General/linear/standard completeness theorem

Theorem 2.19
The following are equivalent for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ `� ϕ
2 Γ |=MV ϕ

3 Γ |=MVlin ϕ

If Γ is finite we can add:
4 Γ |=[0,1]� ϕ

Exercise 1
(b) Prove the implications from top to bottom.
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Some theorems and derivations

Proposition 2.20
(T1) `� ϕ→ ϕ
(T2) `� ϕ→ (ψ → ϕ ∧ ψ)
(T3) `� ϕ ∨ χ→ ((ϕ→ ψ) ∨ χ→ ψ ∨ χ)
(T4) `� ϕ ∨ ϕ→ ϕ
(T5) `� ϕ ∨ ψ → ψ ∨ ϕ
(D1) 1↔ ϕ `� ϕ and ϕ `� 1↔ ϕ
(D2) ϕ→ ψ `� ϕ ∧ ψ ↔ ϕ and ϕ ∧ ψ ↔ ϕ `� ϕ→ ψ
(D3′) ϕ→ (ψ → χ) `G ϕ& ψ → χ and ϕ& ψ → χ `G ϕ→ (ψ → χ)

Proposition 2.21

`� ϕ⊕ ψ ↔ ψ ⊕ ϕ `� ¬¬ϕ↔ ϕ

`� ϕ⊕ (ψ ⊕ χ)↔ (ϕ⊕ ψ)⊕ χ `� ϕ⊕ ¬0↔ ¬0
`� 0⊕ ϕ↔ ϕ `� ¬(¬ϕ⊕ ψ)⊕ ψ ↔ ¬(¬ψ ⊕ ϕ)⊕ ϕ
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The rule of substitution

Proposition 2.22
ϕ↔ ψ `� (ϕ ∧ χ)↔ (ψ ∧ χ) ϕ↔ ψ `� (ϕ ∨ χ)↔ (ψ ∨ χ)
ϕ↔ ψ `� (χ ∧ ϕ)↔ (χ ∧ ψ) ϕ↔ ψ `� (χ ∨ ϕ)↔ (χ ∨ ψ)
ϕ↔ ψ `� (ϕ→ χ)↔ (ψ → χ) ϕ↔ ψ `� (χ→ ϕ)↔ (χ→ ψ)

`� ϕ↔ ϕ ϕ↔ ψ `� ψ ↔ ϕ ϕ↔ ψ,ψ ↔ χ `� ϕ↔ χ

Corollary 2.23
ϕ↔ ψ `� χ↔ χ′, where χ′ results from χ by replacing

its subformula ϕ by ψ.

Exercise 2
(b) Prove this corollary and the two previous propositions.
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Lindenbaum–Tarski algebra

Definition 2.24
Let Γ be a theory. We define

[ϕ]Γ = {ψ | Γ `� ϕ↔ ψ} LΓ = {[ϕ]Γ | ϕ ∈ FmL}

The Lindenbaum–Tarski algebra of a theory Γ (LindΓ) as an algebra
with the domain LΓ and operations:

0LindΓ = [0]Γ

¬LindΓ [ϕ]Γ = [¬ϕ]Γ

[ϕ]Γ ⊕LindΓ [ψ]Γ = [ϕ⊕ ψ]Γ
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Lindenbaum–Tarski algebra: basic properties
Proposition 2.25

1 [ϕ]Γ = [ψ]Γ iff Γ `� ϕ↔ ψ

2 [ϕ]Γ ≤LindΓ [ψ]Γ iff Γ `� ϕ→ ψ

3 1LindΓ = [ϕ]Γ iff Γ `� ϕ
4 LindΓ is an MV-algebra
5 LindΓ is an MV-chain iff Γ `� ϕ→ ψ or Γ `� ψ → ϕ for each ϕ,ψ

Proof.
1. Left-to-right is the just definition and ‘reflexivity’ of↔. Conversely, we
use ‘transitivity’ and ‘symmetry’ of↔.
2. [ϕ]Γ ≤LindΓ [ψ]Γ iff [ϕ]Γ ∧LindΓ [ψ]Γ = [ϕ]Γ iff [ϕ ∧ ψ]Γ = [ϕ]Γ iff (by 1.)

Γ `� ϕ ∧ ψ ↔ ϕ iff (by (D2)) Γ `� ϕ→ ψ.

3. 1LindΓ = [ϕ]Γ iff (by 2.) Γ `� 1→ ϕ iff (by (D1)) Γ `� ϕ.
5. Trivial after we prove 4.
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Lindenbaum–Tarski algebra: basic properties
Proposition 2.25

1 [ϕ]Γ = [ψ]Γ iff Γ `� ϕ↔ ψ

2 [ϕ]Γ ≤LindΓ [ψ]Γ iff Γ `� ϕ→ ψ

3 1LindΓ = [ϕ]Γ iff Γ `� ϕ
4 LindΓ is an MV-algebra
5 LindΓ is an MV-chain iff Γ `� ϕ→ ψ or Γ `� ψ → ϕ for each ϕ,ψ

Proof.
4. First we note that the definition of LindΓ is sound due to 1. and
Proposition 2.7.
The identities defining MV-algebras hold due to 1. and Proposition 2.21.
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Łukasiewicz logic vs. Gödel–Dummett

Some things are the same, not only (T1), (T2), (D1), and (D2), but also:

ϕ ∧ ψ → χ `� ϕ→ (ψ → χ) ϕ ∧ ψ → χ `G ϕ→ (ψ → χ)
`� ϕ→ ¬¬ϕ `G ϕ→ ¬¬ϕ
`� (ϕ→ ψ)→ (¬ψ → ¬ϕ) `G (ϕ→ ψ)→ (¬ψ → ¬ϕ)

Some are different:
ϕ→ (ψ → χ) 0� ϕ ∧ ψ → χ ϕ→ (ψ → χ) `G ϕ ∧ ψ → χ
`� ¬¬ϕ→ ϕ 0G ¬¬ϕ→ ϕ
`� (¬ψ → ¬ϕ)→ (ϕ→ ψ) 0G (¬ψ → ¬ϕ)→ (ϕ→ ψ)

Contrast this with known derivation (D3′):

ϕ→ (ψ → χ) `� ϕ& ψ → χ ϕ& ψ → χ `� ϕ→ (ψ → χ)
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Failure of the Deduction Theorem

Assume that we would have that for every set of formulas Γ ∪ {ϕ,ψ},

Γ, ϕ `� ψ iff Γ `� ϕ→ ψ

Clearly (MP twice): ϕ,ϕ→ (ϕ→ ψ) `� ψ.

Thus by the deduction theorem we would get

`� (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ).

This is the axiom of contraction known to fail in Łukasiewicz logic
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A possible solution

We can prove that:

`� ϕ&ψ ↔ ψ&ϕ `� ϕ& 1↔ ϕ `� (ϕ&ψ) &χ↔ ψ& (ϕ&χ)

Thus it makes sense to define ϕ0 = 1 and ϕn+1 = ϕn & ϕ

Exercise 4
Let χ be a &-conjunction of n formulas ϕ with arbitrary bracketing.
Prove that `� χ↔ ϕn. Furthermore prove that ϕ `� ϕn.
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Local Deduction Theorem
Theorem 2.26 (Local deduction theorem)
For every set of formulas Γ ∪ {ϕ,ψ},

Γ, ϕ `� ψ iff there is n such that Γ `� ϕn → ψ

Proof.
⇐: follows from modus ponens and the previous exercise
⇒: let α1, . . . , αn = ψ be the proof of ψ in Γ, ϕ. We show by induction
that for each i ≤ n there is ni such that Γ `� ϕni → αi

If αi = ϕ we set ni = 1 and use (T1); if αi is an axiom or αi ∈ Γ, then
Γ `� αi and so we can set ni = 1 and use axiom (We) and MP.
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Local Deduction Theorem
Theorem 2.26 (Local deduction theorem)
For every set of formulas Γ ∪ {ϕ,ψ},

Γ, ϕ `� ψ iff there is n such that Γ `� ϕn → ψ

Proof.
⇐: follows from modus ponens and the previous exercise
⇒: let α1, . . . , αn = ψ be the proof of ψ in Γ, ϕ. We show by induction
that for each i ≤ n there is ni such that Γ `� ϕni → αi

Otherwise there has to be k, j < i such that αk = αj → αi.
Induction assumption gives: Γ `� ϕnj → αj and Γ ` ϕnk → (αj → αi).
Using Γ ` ϕnk → (αj → αi), (Ex), and MP we get Γ ` αj → (ϕnk → αi),
using this, Γ `� ϕnj → αj, (Tr), and MP we get Γ ` ϕnj → (ϕnk → αi).
Finally we use (D3′) and the previous exercise to get Γ ` ϕnj+nk → αi.
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Proof by Cases Property

Theorem 2.27 (Proof by Cases Property)
If Γ, ϕ `� χ and Γ, ψ `� χ, then Γ, ϕ ∨ ψ `� χ.

Proof.
Claim If Γ `� ϕ, then Γ ∨ χ `� δ ∨ χ for each formula χ and each δ
appearing in the proof of ϕ from Γ.

Proof of the claim: trivial for δ ∈ Γ or δ an axiom; if we used MP, then
by IH there has to be η st.

Γ ∨ χ `� η ∨ χ Γ ∨ χ `� (η → δ) ∨ χ thus (T3) completes the proof.

Now using the claim: Γ ∨ ψ,ϕ ∨ ψ `� χ ∨ ψ and Γ ∨ χ, ψ ∨ χ `� χ ∨ χ.
Using (∨a), (T4), and (T5) we get Γ, ϕ ∨ ψ `� ψ ∨ χ and Γ, ψ ∨ χ `� χ
and the rest is trivial.
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Semilinearity Property

Lemma 2.28 (Semilinearity Property)
If Γ, ϕ→ ψ `� χ and Γ, ψ → ϕ `� χ, then Γ `� χ.

Proof.
By the Proof by Cases Property and axiom (Prl).
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Linear Extensions Property

Definition 2.29
A theory Γ is linear if Γ `� ϕ→ ψ or Γ `� ψ → ϕ for each ϕ,ψ.

Lemma 2.30 (Linear Extension Property)
If Γ 0� ϕ, then there is a linear theory Γ′ ⊇ Γ such that Γ′ 0� ϕ.

Proof.
The same as in the case of Gödel–Dummett logic.
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Linear Extensions Property

Definition 2.29
A theory Γ is linear if Γ `� ϕ→ ψ or Γ `� ψ → ϕ for each ϕ,ψ.

Lemma 2.30 (Linear Extension Property)
If Γ 0� ϕ, then there is a linear theory Γ′ ⊇ Γ such that Γ′ 0� ϕ.

Proof.
Enumerate all pairs of formulas: 〈ϕ0, ψ0〉, 〈ψ1, ϕ1〉, . . .
Construct theories Γ0,Γ1, . . . such that Γ0 =Γ; Γi⊆Γi+1, and Γi 0� ϕ:

if Γi, ϕi → ψi 0� ϕ, then Γi+1 = Γi ∪ {ϕi → ψi}

if Γi, ϕi → ψi `� ϕ, then Γi+1 = Γi ∪ {ψi → ϕi}

Clearly Γi+1 0� ϕ (the 1st case is obvious; in the 2nd Γi+1 `� ϕ would
entail Γi `� ϕ by the Semilinearity Property, a contradiction with the IH.
Define Γ′ =

⋃
Γi. Clearly Γ′ is linear, Γ′ ⊇ Γ, and Γ′ 0� ϕ.
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General/linear/standard completeness theorem

Theorem 2.19
The following are equivalent for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ `� ϕ
2 Γ |=MV ϕ

3 Γ |=MVlin ϕ

If Γ is finite we can add:
4 Γ |=[0,1]� ϕ

The proof of the equivalence of the first three claims is the same as in
the case of Gödel–Dummett logic.

We give a proof of 4. implies 1. but first . . .
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MV-algebras and LOAGs

A lattice ordered Abelian group (LOAG for short) is a structure
〈G,+, 0,−,≤〉 such that 〈G,+, 0,−〉 is an Abelian group and:

(i) 〈G,≤〉 is a lattice,
(ii) if x ≤ y, then x + z ≤ y + z for all z ∈ G.

A
strong unit u is an element such that

(∀x ∈ G)(∃n ∈ N)(x ≤ nu)

For LOAG G = 〈G,+, 0,−,≤〉 and strong unit u we define algebra
Γ(G, u) = 〈[0, u],⊕,¬, 0〉, where x⊕ y = min{u, x + y}, ¬x = u− x, 0 = 0.

We denote by R the additive LOAG of reals.

Proposition 2.31
Γ(G, u) is an MV-algebra and for each u > 0, Γ(R, u) is isomorphic to
the standard MV-algebra [0, 1]�.
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The proof of the standard completeness theorem

If Γ 0� ϕ we know that there is a countable MV-chain B s.t. Γ 6|=B ϕ.
Let x1, . . . , xn be variables occurring in Γ ∪ {ϕ}. Then:

6|=B (∀x1, . . . , xn)
∧
ψ∈Γ

(ψ ≈ 1)⇒ (ϕ ≈ 1)

Let us define an algebra B′ = 〈Z × B,+,−, 0〉 as:

〈i, x〉+ 〈j, y〉 =

{
〈i + j, x⊕ y〉 if x & y = 0

〈i + j + 1, x & y〉 otherwise

−〈i, x〉 = 〈−i− 1,¬x〉 and 0 = 〈0, 0〉

Proposition 2.32

B′ is a LOAG and B = Γ(B′, 〈1, 0〉).
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The proof of the standard completeness theorem

Let us fix an extra variable u, we define a translation of MV-terms into
LOAG-terms:

x′ = x 0′ = 0 (¬t)′ = u− t′ (t1 ⊕ t2)′ = (t′1 + t′2) ∧ u.

Recall that we have:

6|=B (∀x1, . . . , xn)
∧
ψ∈Γ

(ψ ≈ 1)⇒ (ϕ ≈ 1),

Thus also:

6|=B′ (∀u)(∀x1, . . . , xn)[(0 < u) ∧
∧
i≤n

(xi ≤ u) ∧ (0 ≤ xi) ∧
∧
ψ∈Γ

(ψ′ ≈ u)⇒ (ϕ′ ≈ u)]
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The proof of the standard completeness theorem

Gurevich–Kokorin theorem: each ∀1-sentence of LOAGs is true in
additive LOAG of reals iff it is true in all linearly ordered LOAGs.
Thus

6|=R (∀u)(∀x1, . . . , xn)[(0 < u) ∧
∧
i≤n

(xi ≤ u) ∧ (0 ≤ xi) ∧
∧
ψ∈Γ

(ψ′ ≈ u)⇒ (ϕ′ ≈ u)]

And so
6|=Γ(R,u) (∀x1, . . . , xn)

∧
ψ∈Γ

(ψ ≈ 1)⇒ (ϕ ≈ 1)

And so
6|=[0,1]� (∀x1, . . . , xn)

∧
ψ∈Γ

(ψ ≈ 1)⇒ (ϕ ≈ 1)

i.e., Γ 6|=[0,1]� ϕ
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Failure of standard completeness for infinite theories
Non-theorem
For every set of formulas Γ ∪ {ϕ} ⊆ FmL we have:

Γ `� ϕ if, and only if, Γ |=[0,1]� ϕ.

Consider the theory Γ = {(p⊕ n. . .⊕ p)→ q | n ≥ 1} ∪ {¬p→ q}.
Note that for any [0, 1]�-evaluation e such that e[Γ] = {1} we have

e(q) = 1 and so Γ |=[0,1]� q.

Thus by our Non-theorem Γ `� q and, since proofs are finite,
there must be a finite Γ0 ⊆ Γ such that Γ0 `� q.

Thus, Γ0 |=[0,1]� q.

Let n be the maximal n such that (p⊕ n. . .⊕ p)→ q ∈ Γ0.

The [0, 1]�-evaluation e(p) = 1
n+1 and e(q) = n

n+1 yields a
contradiction.
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The classical case

Theorem 2.33 (Functional completeness)
Every Boolean function (i.e. any function f : {0, 1}n → {0, 1} for some
n ≥ 1) is representable by some formula of classical logic.
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The fuzzy case

Let L be either � of G.

Definition 2.34
A function f : [0, 1]n → [0, 1] is represented by a formula ϕ(v1, . . . , vn) in
L if e(ϕ) = f (e(v1), e(v2), . . . , e(vn)) for each [0, 1]L-evaluation e.

Definition 2.35
The functional representation of L is the set FL of all functions from
any power of [0, 1] into [0, 1] that are represented in L by some formula.
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Relation with Lindenbaum–Tarski algebra

Let us fix L = �.
Let fi be functions of ni variables, i ∈ {1, 2}. We say that f1 = f2 iff
f1(x1, x2, . . . , xn1) = f2(x1, x2, . . . , xn2) for every xj ∈ [0, 1]. Let us for each
f ∈ F� define a class

[f ] = {g ∈ F� | f = g} F = {[f ] | f ∈ F�}

We define an MV-algebra F with domain F and operations:

0F
= [0] ¬F[f ] = [1− f ]T [f ]⊕F [g] = [min{1, f + g}]

Theorem 2.36
The algebras F and Lind∅ are isomorphic.

In the case of G, the definitions and the result are analogous.
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A proof

Let the atoms be enumerated as v1, v2, . . . . Any formula with variables
with maximal index n is viewed as formula in variables v1, . . . , vn.
We define the homomorphism:

g : L∅ → F as g([ϕ]) = [fϕ] where fϕ is the function represented by ϕ.

Then:
the definition is sound and g is one-one: [ϕ] = [ψ] iff `� ϕ↔ ψ iff
(due to the standard completeness theorem) e(ϕ) = e(ψ) for each
[0, 1]�-evaluation e iff [fϕ] = [fψ].
g is a homomorphism:
g([ϕ]⊕ [ψ]) = g([ϕ⊕ ψ]) = [fϕ⊕ψ] = [fϕ ⊕ fψ] = [fϕ]⊕ [fψ].
g is onto (obvious).
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How do the functions from F� look like?

Observations
they are all continuous
they are piece-wise linear
all pieces have integer coefficients
if x1, . . . , xn ∈ {0, 1}n, then f (x1, . . . , xn) ∈ {0, 1}
if x1, . . . , xn ∈ ([0, 1] ∩Q)n, then f (x1, . . . , xn) ∈ [0, 1] ∩Q

Definition 2.37
A McNaughton function f : [0, 1]n → [0, 1] is a continuous piece-wise
linear function, where each of the pieces has integer coefficients.

Theorem 2.38 (McNaughton theorem)
F� is the set of all McNaughton functions.
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A lemma
Lemma 2.39

Let f : [0, 1]n → R be an integer linear polynomial, i.e. of the form

f (x1, . . . , xn) =
n∑

i=1

aixi + b for some a1, . . . , an, b ∈ Z

Then there is a formula ϕf representing the function
f # = max{0,min{1, f}}.

Proof.
By induction on m =

∑n
i=1 |ai|. If m = 0 then f # is either constantly 0 or

1, then we can take as ϕ either the term 0 or 1, respectively. Assume
now m > 0 and let aj be such that |aj| = maxn

i=1 |ai|. WLOG we can
assume aj > 0: indeed otherwise we consider f ′ = 1− f , here aj > 0
and so we have ϕ1−f . Note that clearly ϕf = ¬ϕ1−f . . . .
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A lemma: continuation of the proof
Let us consider the function g = f − xj: by IH we have formulas ϕg and
ϕg+1. If we show that

(g + xj)
# = (g# ⊕ xj) & (g + 1)# (1)

the proof is done as:

ϕf = ϕg+xj = (ϕg ⊕ xj) & ϕg+1.

So we need to prove (2.1). Let L and R be its left/right side :
if |g(~x)| > 1 then L = R = 1 or L = R = 0

0 ≤ g(~x) ≤ 1 then L = min{1, g(~x) + xj}, g(~x) = g#(~x) and
(g + 1)#(~x) = 1. Hence R = g(~x)⊕ xj = min{1, g(~x) + xj} = L.
−1 ≤ g(~x) ≤ 0 then L = max{0, g(~x) + xj}, g#(~x) = 0 and
(g + 1)#(~x) = g(~x) + 1. Hence g#(~x)⊕ xj = xj and so
R = max{0, xj + g(~x) + 1− 1} = max{0, xj + g(~x)} = L.
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The proof for one variable functions

Definition 2.40
Let a, b ∈ [0, 1]∩Q. Then any McNaughton function f such that f (x) = 1
iff x ∈ [a, b] is called pseudo characteristic function of interval [a, b].

Exercise 5
Prove that each interval has a pseudo characteristic function and find a
formula representing it. Hint: use Lemma 2.39.

Lemma 2.41
Let a, b ∈ [0, 1]∩Q. Then for each ε > 0 there is a pseudo characteristic
function of the interval [a, b], s.t. f (x) = 0 for x ∈ [0, a− ε] ∪ [b + ε, 1].

Proof.
If f is a pseudo char. function of some interval, so is f n for each n.
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The proof for one variable functions

Let p be a McNaughton function of one variable given by n integer
linear polynomials p1, . . . , pn. For each i ∈ {1, 2, . . . n} let Pi = [ai, bi] be
the interval in which p uses pi. Note that:

[0, 1] =
⋃
i

Pi

ai, bi ∈ [0, 1] ∩Q
there is a pseudo characteristic function fi of [ai, bi] such that
p(x) ≥ (fi & p#

i )(x) for each x /∈ Pi.
Then

p(x) =
∨

i

(fi & p#
i )(x) and thus ϕp =

∨
i

ϕfi & ϕpi .
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The classical case, FMP and decidability
CL is complete with respect to a finite algebra, 2.

Definition 2.42
A logic has the finite model property (FMP) if it is complete with
respect to a set of finite algebras.

From the FMP, we obtain decidability:

Thanks to our finite notion of proof, the set of theorems is
recursively enumerable.
Thanks to FMP, the set of non-theorems is also recursively
enumerable (we can check validity in bigger and bigger finite
algebras until we find a countermodel).
Therefore, theoremhood is a decidable problem.
Note: provability from finitely-many premises is also decidable
(using deduction theorem).
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Finite chains

Lemma 2.43
Let B be a subalgebra of an MV- or G-algebra A. Then |=A ⊆ |=B.

Exercise 6
(a) Prove that each n-valued G-chain is isomorphic to the

subalgebra Gn of [0, 1]G with the domain { i
n−1 | i ≤ n− 1}.

(b) Prove that each n-valued MV-chain is isomorphic to the
subalgebra �n of [0, 1]� with the domain { i

n−1 | i ≤ n− 1}.

Lemma 2.44
|=Gm ⊆ |=Gn iff n ≤ m.

|=�m ⊆ |=�n iff n− 1 divides m− 1.

Let us denote by Lfin the class of finite L-chains.
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The case of Gödel–Dummett logic
Theorem 2.45
Let ϕ be a formula with n− 2 variables. Then: `G ϕ iff |=Gn ϕ.

Proof.
Contrapositively: assume that 6`G ϕ and let e be a [0, 1]G-evaluation
such that e(ϕ) 6= 1. Let X = {0, 1} ∪ {e(vi) | 1 ≤ i ≤ n− 2} and note that
it is a subuniverse of [0, 1]G, thus e can be seen as an X-evaluation and
so 6|=X ϕ. The previous exercise and lemma complete the proof.

Theorem 2.46
For every finite set of formulas Γ ∪ {ϕ} ⊆ FmL. The following are
equivalent:

1 Γ `G ϕ

2 Γ |=[0,1]G ϕ

3 Γ |=Gfin ϕ

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 58 / 100



The case of Łukasiewicz logic
Theorem 2.47
For every finite set of formulas Γ ∪ {ϕ} ⊆ FmL, TFAE:

1 Γ `� ϕ
2 Γ |=[0,1]� ϕ

3 Γ |=MVfin ϕ

Proof: we show it for one variable v.
Let us define the set E of [0, 1]�-evaluations such that e[Γ] ⊆ {1}. Note
that E can be seen as a union of real intervals. Assume that there is
e ∈ E such that e(ϕ) 6= 1. If we show that there is an evaluation f ∈ E,
such that f (v) = p

n−1 and f (ϕ) 6= 1 we are done as f can be seen as
�n-evaluation.

Either e lies on the border of some interval, then f = e OR
there has to be a neighborhood X ⊆ E such that f (ϕ) 6= 1 for each
f ∈ X, then there has to be such f .
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The classical case

ϕ ∈ SAT(CL) if there is a 2-evaluation e such that e(ϕ) = 1.

ϕ ∈ TAUT(CL) if for each 2-evaluation e holds e(ϕ) = 1.

Recall:

ϕ ∈ TAUT(CL) iff ¬ϕ 6∈ SAT(CL)
ϕ ∈ SAT(CL) iff ¬ϕ 6∈ TAUT(CL).

Both problems, SAT(CL) and TAUT(CL), are decidable.

But how difficult are their computations?
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Complexity classes

f , g : N→ N. f ∈ O(g) iff there are c, n0 ∈ N such that for each n ≥ n0
we have f (n) ≤ c g(n).

TIME(f ): the class of problems P such that there is a deterministic
Turing machine M that accepts P and operates in time O(f ).
NTIME(f ): analogous class for nondeterministic Turing machines.
SPACE(f ): the class of problems P such that there is a
deterministic Turing machine M that accepts P and operates in
space O(f ).
NSPACE(f ): the analogous class for nondeterministic Turing
machines.
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Complexity classes

P =
⋃
k∈N

TIME(nk)

NP =
⋃
k∈N

NTIME(nk)

PSPACE =
⋃
k∈N

SPACE(nk)

If C is a complexity class, we denote coC = {P | P ∈ C}, the class of
complements of problems in C.
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Complexity classes

Each deterministic complexity class C is closed under
complementation: if P ∈ C, then also P ∈ C.
Is NP closed under complementation?
P ⊆ NP, P ⊆ coNP, NP ⊆ PSPACE.
Are the inclusions P ⊆ NP ⊆ PSPACE proper?
Each of the classes P, NP, coNP, and PSPACE is closed under
finite unions and intersections.
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Complexity classes

A problem P is said to be C-hard iff any decision problem P′ in C is
reducible to P.

A problem P is C-complete iff P is C-hard and P ∈ C.
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The classical case

SAT(CL) ∈ NP: guess an evaluation and check whether it satisfies
the formula (a polynomial matter).
TAUT(CL) ∈ coNP: ϕ ∈ TAUT(CL) iff ¬ϕ 6∈ SAT(CL).
Cook Theorem: Let SATCNF(CL) be the SAT problem for formulas
in conjunctive normal form. Then: SATCNF(CL) is NP-complete.
SATCNF(CL) is a fragment of SAT(CL), therefore SAT(CL) is
NP-complete and TAUT(CL) is coNP-complete.
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The fuzzy case: basic definitions

Let L be either Łukasiewicz logic Ł or Gödel logic G. We define:

ϕ ∈ SAT(L) if there is an evaluation e such that e(ϕ) = 1.

ϕ ∈ SATpos(L) if there is an evaluation e such that e(ϕ) > 0.

ϕ ∈ TAUT(L) if for each evaluation e holds e(ϕ) = 1.

ϕ ∈ TAUTpos(L) if for each evaluation e holds e(ϕ) > 0.

Note that ϕ ∨ ¬ϕ ∈ TAUTpos(L) but ϕ ∨ ¬ϕ 6∈ TAUT(L)

Note that ϕ ∧ ¬ϕ ∈ SATpos(�) but ϕ ∧ ¬ϕ 6∈ SAT(�)
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The fuzzy case: basic reductions

Lemma 2.48
Let L be either Łukasiewicz logic � or Gödel logic G. Then
ϕ ∈ TAUTpos(L) iff ¬ϕ 6∈ SAT(L)

ϕ ∈ SATpos(L) iff ¬ϕ 6∈ TAUT(L).

Lemma 2.49
ϕ ∈ SAT(�) iff ¬ϕ 6∈ TAUTpos(�)

ϕ ∈ TAUT(�) iff ¬ϕ 6∈ SATpos(�).

Exercise 7
Prove the above two lemmata, show that the last equivalence fails for
G and the one but last holds there. (Hint: for the last part use
properties of these sets proved in the next few slides).
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The case of Łukasiewicz logic

Theorem 2.50
The sets SAT(�) and SATpos(�) are NP-complete. Therefore the sets
TAUT(�) and TAUTpos(�) are coNP-complete.

We prove it in a series of lemmata. First we show that SAT(�) is
NP-hard:

Lemma 2.51
Let ϕ be a formula with variables p1, . . . pn.

ϕ ∈ SAT(CL) IFF ϕ ∧
n∧

i=1

(pi ∨ ¬pi) ∈ SAT(�).
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SATpos(�) is NP-hard

Lemma 2.52
Let ϕ be a formula with variables p1, . . . pn built using: ∧,∨,¬.

ϕ ∈ SAT(CL) IFF ϕ2 ∧
n∧

i=1

(pi ∨ ¬pi)
2 ∈ SATpos(�).

Proof.
Let e positively satisfy the right-hand formula. Then
e((pi ∨ ¬pi)

2) > 0 ergo e(pi) 6= 0.5. We define the evaluation

e′(pi) =

{
1 if e(pi) > 0.5
0 if e(pi) < 0.5

Clearly this can be extended to ϕ. And, since e(ϕ2) > 0, we have
e(ϕ) > 0.5 and so e′(ϕ) = 1.
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SAT(�) and SATpos(�) are in NP

Lemma 2.53

e(ϕ→ ψ) ≥ r IFF ∃i, j ∈ [0, 1]
e(ϕ) ≤ i
e(ψ) ≥ j

r + i− j ≤ 1

e(ϕ→ ψ) ≤ r IFF ∃i, j ∈ [0, 1], y ∈ {0, 1}

e(ϕ) ≥ i
e(ψ) ≤ j
y− r ≤ 0
y + i ≤ 1
y− j ≤ 0

y + r + i− j ≥ 1

Using this lemma we can reduce the question of (positive) satisfiability
to the question of Mixed Integer Programming (MIP) which is known to
be in NP:

For SAT(�) start with e(ϕ) ≥ 1 for SATpos(�) start with
e(ϕ) ≥ i0

i0 > 0

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 71 / 100



The case of Gödel–Dummett logic

Lemma 2.54
The mapping f : [0, 1]→ {0, 1} defined as f (0) = 0 and f (x) = 1 if x 6= 0
is a homomorphism from [0, 1]G to 2.

Corollary 2.55

SATpos(G) ⊆ SAT(CL) TAUT(CL) ⊆ TAUTpos(G).
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The case of Gödel–Dummett logic

Corollary 2.56
ϕ ∈ SATpos(G) iff ϕ ∈ SAT(G) iff ϕ ∈ SAT(CL)
ϕ ∈ TAUTpos(G) iff ¬¬ϕ ∈ TAUT(G) iff ϕ ∈ TAUT(CL)

Proof.
Just observe that:

SAT(G) ⊆ SATpos(G) ⊆ SAT(CL) ⊆ SAT(G).

And that

ϕ ∈ TAUTpos(G)⇒ ¬ϕ /∈ SAT(G)⇒ ¬ϕ /∈ SATpos(G)

⇒ ¬¬ϕ ∈ TAUT(G)⇒ ϕ ∈ TAUT(CL)⇒ ϕ ∈ TAUTpos(G).

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 73 / 100



The case of Gödel–Dummett logic

Corollary 2.56
ϕ ∈ SATpos(G) iff ϕ ∈ SAT(G) iff ϕ ∈ SAT(CL)
ϕ ∈ TAUTpos(G) iff ¬¬ϕ ∈ TAUT(G) iff ϕ ∈ TAUT(CL)

Theorem 2.57
The sets SAT(G) and SATpos(G) are NP-complete and the sets
TAUT(G) and TAUTpos(G) are coNP-complete.

Proof.
The only non clear case is TAUT(G): it is coNP-hard due to the last reduction
of the previous corollary. We present a non-deterministic polynomial
‘algorithm’ (sound due to Theorem 2.58) for FmL \ TAUT(G):
Step 1: guess a Gn-evaluation e (assuming that ϕ has n− 2 variables)
Step 2: compute the value of e(ϕ) (clearly in polynomial time)
Output: if e(ϕ) 6= 1 output ϕ /∈ TAUT(G).
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Equational consequence

An equation in the language L is a formal expression of the form
ϕ ≈ ψ, where ϕ,ψ ∈ FmL.

We say that an equation ϕ ≈ ψ is a consequence of a set of equations
Π w.r.t. a class K of L-algebras if for each A ∈ K and each
A-evaluation e we have e(ϕ) = e(ψ) whenever e(α) = e(β) for each
α ≈ β ∈ Π; we denote it by Π |=K ϕ ≈ ψ.

A quasiequation in the language L is a formal expression of the form
(
∧n

i=1 ϕi ≈ ψi)⇒ ϕ ≈ ψ, where ϕ1, . . . , ϕn, ϕ, ψ1, . . . , ψn, ψ ∈ FmL.
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Varieties and quasivarieties

Type of class Presented by Closed under
variety equations H, S, and P
quasivariety quasiequations I, S, P, and PU

I isomorphic images
H homomorphic images
S subalgebras
P direct products
PU ultraproducts
V generated variety
Q generated quasivariety
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Algebraization of Łukasiewicz logic

1 For every Γ ∪ {ϕ} ⊆ FmL,
Γ `� ϕ iff {ψ ≈ 1 | ψ ∈ Γ} |=MV ϕ ≈ 1

2 For every set of equations Π ∪ {ϕ ≈ ψ},
Π |=MV ϕ ≈ ψ iff {α↔ β | α ≈ β ∈ Π} `� ϕ↔ ψ

3 For every ϕ ∈ FmL,
ϕ `� ϕ↔ 1 and ϕ↔ 1 `� ϕ

4 For every ϕ,ψ ∈ FmL,
ϕ ≈ ψ |=MV ϕ↔ ψ ≈ 1 and ϕ↔ ψ ≈ 1 |=MV ϕ ≈ ψ

Translations:

τ : ϕ 7→ ϕ ≈ 1

ρ : α ≈ β 7→ α↔ β

MV-algebras are the equivalent algebraic semantics of �.
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MV is a variety

MV is a variety of algebras, i.e. an equational class:

(1) x⊕ (y⊕ z) ≈ (x⊕ y)⊕ z,
(2) x⊕ y ≈ y⊕ x,
(3) x⊕ 0 ≈ x,
(4) ¬¬x ≈ x,
(5) x⊕ ¬0 ≈ ¬0,
(6) ¬(¬x⊕ y)⊕ y ≈ ¬(¬y⊕ x)⊕ x.
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Algebraization of Gödel–Dummett logic

1 For every Γ ∪ {ϕ} ⊆ FmL,
Γ `G ϕ iff {ψ ≈ 1 | ψ ∈ Γ} |=G ϕ ≈ 1

2 For every set of equations Π ∪ {ϕ ≈ ψ},
Π |=G ϕ ≈ ψ iff {α↔ β | α ≈ β ∈ Π} `G ϕ↔ ψ

3 For every ϕ ∈ FmL,
ϕ `G ϕ↔ 1 and ϕ↔ 1 `G ϕ

4 For every ϕ,ψ ∈ FmL,
ϕ ≈ ψ |=G ϕ↔ ψ ≈ 1 and ϕ↔ ψ ≈ 1 |=G ϕ ≈ ψ

Translations:

τ : ϕ 7→ ϕ ≈ 1

ρ : α ≈ β 7→ α↔ β

G-algebras are the equivalent algebraic semantics of G.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 80 / 100



G is a variety

G is a variety of algebras, i.e. an equational class:

E1 x→ x ≈ 1

E2 1→ x ≈ x

E3 x→ (y→ z) ≈ (x→ y)→ (x→ z)

E4 (x→ y)→ ((y→ x)→ y) ≈ (y→ x)→ ((x→ y)→ x)

E5 x→ x ∨ y ≈ 1, y→ x ∨ y ≈ 1

E6 (x→ y)→ ((y→ z)→ (x ∨ y→ z)) ≈ 1

E7 x ∧ y→ x ≈ 1, x ∧ y→ y ≈ 1

E8 (x→ y)→ ((x→ z)→ (x→ y ∧ z)) ≈ 1

E9 0→ x ≈ 1

E10 (x→ y) ∨ (y→ x) ≈ 1
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Algebraization of finitary extensions

Let L be � or G.

S = L + Ax + R (Ax is a set of axioms and R a set of finitary rules)
S = {A ∈ L | A satisfies τ(ϕ) for each ϕ ∈ Ax and∧n

i=1 τ(ϕi)⇒ τ(ψ) for each 〈ϕ1, . . . , ϕn, ψ〉 ∈ R}.
We obtain the same relation between the logic and the algebraic
semantics as before:

1 Γ `S ϕ iff τ [Γ] |=S τ(ϕ)
2 Π |=S ϕ ≈ ψ iff ρ[Π] `S ρ(ϕ ≈ ψ)
3 ϕ `S ρ(τ(ϕ)) and ρ(τ(ϕ)) `S ϕ
4 ϕ ≈ ψ |=S τ(ρ(ϕ ≈ ψ)) and τ(ρ(ϕ ≈ ψ)) |=S ϕ ≈ ψ

S is the equivalent algebraic semantics of S.
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Algebraization of finitary extensions

The translations τ and ρ between formulas and equations give bijective
correspondences (dual lattice isomorphisms):

1 between finitary extensions of L and quasivarieties of L-algebras
2 between axiomatic extensions of L and varieties of L-algebras.
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Proof by Cases Property for extensions

Theorem 2.58 (Proof by Cases Property)
Assume that for each 〈ϕ1, . . . , ϕn, ψ〉 ∈ R, ϕ1 ∨ χ, . . . ϕn ∨ χ `S ψ ∨ χ. If
Γ, ϕ `S χ and Γ, ψ `S χ, then Γ, ϕ ∨ ψ `S χ.

Proof.
Claim If Γ `S ϕ, then Γ ∨ χ `S δ ∨ χ for each formula χ and each δ
appearing in the proof of ϕ from Γ.

Proof of the claim: trivial for δ ∈ Γ or δ an axiom; if we used MP, then
by IH there has to be η st.

Γ ∨ χ `S η ∨ χ Γ ∨ χ `S (η → δ) ∨ χ thus (T7) completes the proof.

Now using the claim: Γ ∨ ψ,ϕ ∨ ψ `S χ ∨ ψ and Γ ∨ χ, ψ ∨ χ `S χ ∨ χ.
Using (A6a), (T8), and (T9) we get Γ, ϕ ∨ ψ `S ψ ∨ χ and Γ, ψ ∨ χ `S χ
and the rest is trivial.
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Chain-completeness for extensions

Corollary 2.59
Assume that for each 〈ϕ1, . . . , ϕn, ψ〉 ∈ R, ϕ1 ∨ χ, . . . ϕn ∨ χ `S ψ ∨ χ
(this is the case, in particular, if S is an axiomatic extension). Then for
every set of formulas Γ ∪ {ϕ} ⊆ FmL: Γ `S ϕ iff Γ |=Slin ϕ.

Exercise 8
Prove it.
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The case of Gödel–Dummett logic
For each n ≥ 1, recall the canonical n-valued G-chain:
Gn = 〈{ i

n−1 | i ≤ n− 1},min,max,→, 0, 1〉.
Gn = G +

∨n−1
i=0 (pi → pi+1).

Theorem 2.60
for each n ≥ 1, Gn-algebras are the subvariety of G-algebras
satisfying

∨n−1
i=0 (pi → pi+1) ≈ 1 and it coincides with V(Gn).

G is locally finite, i.e. each finite subset of a G-algebra generates a
finite subalgebra.
If C is an infinite G-chain, then V(C) = G.
the subvarieties of G are exactly:
V(G1) ( V(G2) ( V(G3) ( . . . ( V(Gn) ( V(Gn+1) ( . . .G.

Exercise 9
Prove it.
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The case of Gödel–Dummett logic

Theorem 2.61
There are no other finitary extensions of G than Gns (i.e. G has no
proper subquasivarieties).

Lemma 2.62
Gödel–Dummett logic proves:

(ϕ→ (ψ → χ))↔ ((ϕ→ ψ)→ (ϕ→ χ))

(ϕ→ (ψ ∧ χ))↔ ((ϕ→ ψ) ∧ (ϕ→ χ))

(ϕ→ (ψ ∨ χ))↔ ((ϕ→ ψ) ∨ (ϕ→ χ))

Define a substitution σϕ(p) = ϕ→ p. Then if 0 does not occur in ϕ we
have: `G σϕ(ψ)↔ (ϕ→ ψ), ψ `G σϕ(ψ), and `G σϕ(ϕ).
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Deduction theorems
Lemma 2.63
Any finitary extension L of G enjoys the deduction theorem.

Proof.
Assume that ϕ `L ψ. Let χf be the formula resulting from χ by
replacing all occurrences of 0 by a fresh fixed variable f . Define a
substitution σ(q) = 0 for q = f and q otherwise; observe σ(χf ) = χ.

Claim: {f → q | q in {ϕ,ψ}}, ϕf `L ψf .

Thus σσϕf [{f → q | q in {ϕ,ψ}} ∪ {ϕf }] `L σσϕf (ψf ). And so
{(ϕ→ 0)→ (ϕ→ q) | q in {ϕ,ψ}}, σσϕf (ϕ) `L σσϕf (ψ). Since, clearly,
`L σσϕf (χf )↔ (ϕ→ χ), we obtain `L ϕ→ ψ.

Exercise 10
Complete the proof (including the claim!).
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Structural completeness

The proof of Theorem 2.88.
Obvious as the previous lemma allows us to replace any additional
rule of L by an axiom.

Definition 2.64
A logic is structurally complete if each proper extension has some new
theorems. A logic is hereditarily structurally complete if each of its
extensions is structurally complete.

Corollary 2.65
G is hereditarily structurally complete.

Exercise 11
� is not structurally complete. (hint: use the rule ϕ↔ ¬ϕ ` 0)
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Important MV-chains

Recall the functor Γ which turns each Lattice ordered Abelian group
with strong unit into and MV-algebra

For each n ≥ 1, recall the canonical n-valued MV-chain:
�n = 〈{ i

n−1 | i ≤ n− 1},⊕,¬, 0〉.

for each u > 0, [0, 1]� ∼= Γ(R, u).
�n ∼= Γ(Qn−1, 1)

Kn = Γ(Qn−1 ⊗ Z, 〈1, 0〉).

where on Qn−1 is the additive group of rationals whose denominator is
n− 1, and Qn−1 ⊗ Z is the lexicographic product (direct product with the
lexicographic order).
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Varieties of MV-algebras

Proposition 2.66
V([0, 1]�) = MV
If I ⊆ N is infinite, then V({�i | i ∈ I}) = MV
V(�i) ⊆ V(�j) iff i− 1 divides j− 1.

Theorem 2.67 (Komori)
Let K ⊆MV be a variety. K 6= MV iff there are two finite disjoint sets
I, J ⊆ N such that:

K = V({�i | i ∈ I} ∪ {Kj | j ∈ J}).
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Varieties of MV-algebras

Definition 2.68
If i ∈ N, δ(i) = {n ∈ N | n is a divisor of i}. If J ⊆ N is finite and
nonempty, ∆(i, J) = δ(i) \

⋃
j∈J δ(j).

Theorem 2.69 (Di Nola, Lettieri)
Let I, J ⊆ N be finite disjoint sets. Then the variety
V({�i | i ∈ I} ∪ {Kj | j ∈ J}) has the following equational base:

Eq(1) ((n + 1)xn)2 ≈ 2xn+1 with n = max(I ∪ J),

Eq(2) (pxp−1)n+1 ≈ (n + 1)xp,

Eq(3) (n + 1)xq ≈ (n + 2)xq,

for every positive integer 1 < p < n such that p is not a divisor of any
i ∈ I ∪ J and for every q ∈

⋃
i∈I ∆(i, J).
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Fuzzy logic for reasoning about probability

Fuzziness 6= probability

Probability of ϕ = �ϕ = truth degree of it is probable that ϕ

Let us take:
the classical logic CL in language→,¬,∨,∧, 0
Łukasiewicz logic � in language→�,¬�,⊕,	
an extra symbol �

We define three kinds of formulas of a two-level language over a fixed
set of variables Var:

non-modal: built from Var using→,¬,∨,∧, 0
atomic modal: of the form �ϕ, for each non-modal ϕ
modal: built from atomic ones using→�,¬�,⊕,	
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Probability Kripke frames and Kripke models

Definition 2.70
A probability Kripke frame is a system F = 〈W, µ〉 where

W is a set (of possible worlds)
µ is a finitely additive probability measure defined on

a sublattice of 2W

Definition 2.71
A Kripke model M over a probability Kripke frame F = 〈W, µ〉 is a tuple
M = 〈F, (ew)w∈W〉 where:

ew is a classical evaluation of non-modal formulas
the domain of µ contains the set {w | ew(ϕ) = 1}

for each non-modal formula ϕ
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Truth definition

The truth values of modal formulas are defined uniformly:

||�ϕ||M =µ({w | ew(ϕ) = 1})
||¬�Φ||M =1− ||Φ||M

||Φ→� Ψ||M = min{1, 1− ||Φ||M + ||Ψ||M}
||Φ⊕Ψ||M = min{1, ||Φ||M + ||Ψ||M}
||Φ	Ψ||M = max{0, ||Φ||M − ||Ψ||M}
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Axiomatization

Definition 2.72
The logic FP of probability inside Łukasiewicz logic is given by the
axiomatic system consisting of:

the axioms and rules of CL for non-modal formulas,
axioms and rules of � for modal formulas,
modal axioms

(FP0) ¬��(0)
(FP1) �(ϕ→ ψ)→� (�ϕ→� �ψ)
(FP2) ¬��(ϕ)→� �(¬ϕ)
(FP3) �(ϕ ∨ ψ)→� (�ψ ⊕ (�ϕ	�(ϕ ∧ ψ)))

a unary modal rule:
ϕ ` �ϕ

The notion of provability `FP (from both modal and non-modal
premises) is defined as usual.
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Completeness theorem

Theorem 2.73 (Hájek)
Let Γ ∪ {Ψ} be a set of modal formulas. TFAE:

Γ `FP Ψ

||Ψ||M = 1 for each Kripke model M where ||Φ||M = 1
for each Φ ∈ Γ.
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Variations

changing the measure of uncertainty (necessity, possibility, belief
functions)
changing the upper logic: replacing Łukasiewicz logic by any other
fuzzy logic
changing the lower logic: e.g. replacing CL by Łukasiewicz logic to
speak about probability of vague events
Ex: Messi will score soon in the second half of the match
adding more modalities
any combination of the above four options

We can build also a general theory for these two-layer modal logics
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