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The classical case

Theorem 3.1 (Functional completeness)
Every Boolean function (i.e. any function f : {0, 1}n → {0, 1} for some
n ≥ 1) is representable by some formula of classical logic.
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The fuzzy case

Let L be either Ł of G.

Definition 3.2
A function f : [0, 1]n → [0, 1] is represented by a formula ϕ(v1, . . . , vn) in
L if e(ϕ) = f (e(v1), e(v2), . . . , e(vn)) for each [0, 1]L-evaluation e.

Definition 3.3
The functional representation of L is the set FL of all functions from
any power of [0, 1] into [0, 1] that are represented in L by some formula.
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Relation with Lindenbaum–Tarski algebra

Let us fix L = Ł.
Let fi be functions of ni variables, i ∈ {1, 2}. We say that f1 = f2 iff
f1(x1, x2, . . . , xn1) = f2(x1, x2, . . . , xn2) for every xj ∈ [0, 1]. Let us for each
f ∈ FŁ define a class

[f ] = {g ∈ FŁ | f = g} F = {[f ] | f ∈ FŁ}

We define an MV-algebra F with domain F and operations:

0F
= [0] ¬F[f ] = [1− f ]T [f ]⊕F [g] = [min{1, f + g}]

Theorem 3.4
The algebras F and Lind∅ are isomorphic.

In the case of G, the definitions and the result are analogous.
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A proof

Let the atoms be enumerated as v1, v2, . . . . Any formula with variables
with maximal index n is viewed as formula in variables v1, . . . , vn.
We define the homomorphism:

g : L∅ → F as g([ϕ]) = [fϕ] where fϕ is the function represented by ϕ.

Then:
the definition is sound and g is one-one: [ϕ] = [ψ] iff `Ł ϕ↔ ψ iff
(due to the standard completeness theorem) e(ϕ) = e(ψ) for each
[0, 1]Ł-evaluation e iff [fϕ] = [fψ].
g is a homomorphism:
g([ϕ]⊕ [ψ]) = g([ϕ⊕ ψ]) = [fϕ⊕ψ] = [fϕ ⊕ fψ] = [fϕ]⊕ [fψ].
g is onto (obvious).
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How do the functions from FŁ look like?

Observations
they are all continuous
they are piece-wise linear
all pieces have integer coefficients
if x1, . . . , xn ∈ {0, 1}n, then f (x1, . . . , xn) ∈ {0, 1}
if x1, . . . , xn ∈ ([0, 1] ∩Q)n, then f (x1, . . . , xn) ∈ [0, 1] ∩Q

Definition 3.5
A McNaughton function f : [0, 1]n → [0, 1] is a continuous piece-wise
linear function, where each of the pieces has integer coefficients.

Theorem 3.6 (McNaughton theorem)
FŁ is the set of all McNaughton functions.
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A lemma (for one variable only)

Lemma 3.7

Let f : [0, 1]→ R be an integer linear polynomial, i.e. of the form

f (x) = mx + n for some m, n ∈ Z

Then there is a formula ϕf representing the function
f# = max{0,min{1, f}}.

Proof.
By induction on |m|. If |m| = 0 then f# is either constantly 0 or 1, then
we can take as ϕ either the term 0 or 1, respectively. Assume now
|m| > 0. WLOG we can assume m > 0: indeed otherwise we consider
f ′ = 1− f , here m > 0 and so we have ϕ1−f . Note that clearly
ϕf = ¬ϕ1−f . . . .
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A lemma: continuation of the proof
Let us consider the function g = f − x: by IH we have formulas ϕg and
ϕg+1. If we show that

(g + x)# = (g# ⊕ x) & (g + 1)# (1)

the proof is done as:

ϕf = ϕg+x = (ϕg ⊕ x) & ϕg+1.

We need to prove (1) for any a ∈ [0, 1]. Let L and R be its left/right side:
if |g(a)| > 1 then L = R = 1 or L = R = 0

0 ≤ g(a) ≤ 1 then L = min{1, g(a) + a}, g(a) = g#(a) and
(g + 1)#(a) = 1. Hence R = g(a)⊕ a = min{1, g(a) + a} = L.
−1 ≤ g(a) ≤ 0 then L = max{0, g(a) + a}, g#(a) = 0 and
(g + 1)#(a) = g(a) + 1. Hence g#(a)⊕ a = a and so
R = max{0, a + g(a) + 1− 1} = max{0, a + g(a)} = L.
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The proof for one variable functions

Definition 3.8
Let a, b ∈ [0, 1] ∩Q. Then any McNaughton function f s.t. f (x) = 1 iff
x ∈ [a, b] is called pseudo characteristic function of interval [a, b].

Exercise 9
Prove that each interval has a pseudo characteristic function and find a
formula representing it. Hint: use Lemma 3.7.

Lemma 3.9
Let a, b ∈ [0, 1]∩Q. Then for each ε > 0 there is a pseudo characteristic
function of the interval [a, b], s.t. f (x) = 0 for x ∈ [0, a− ε] ∪ [b + ε, 1].

Proof.
If f is a pseudo char. function of some interval, so is f n for each n.
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The proof for one variable functions

Let p be a McNaughton function of one variable given by n integer
linear polynomials p1, . . . , pn. For each i ∈ {1, 2, . . . n} let Pi = [ai, bi] be
the interval in which p coincides with pi. Note that:

[0, 1] =
⋃
i

Pi

ai, bi ∈ [0, 1] ∩Q
there is a pseudo characteristic function fi of [ai, bi] such that
p(x) ≥ (fi & p#i )(x) for each x /∈ Pi.

Then
p(x) =

∨
i

(fi & p#i )(x) and thus ϕp =
∨

i

ϕfi & ϕpi .
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The classical case, FMP and decidability
CL is complete with respect to a finite algebra, 2.

Definition 3.10
A logic has the finite model property (FMP) if it is complete with
respect to a set of finite algebras.

From the FMP, we obtain decidability:

Thanks to our finite notion of proof, the set of theorems is
recursively enumerable.
Thanks to FMP, the set of non-theorems is also recursively
enumerable (we can check validity in bigger and bigger finite
algebras until we find a countermodel).
Therefore, theoremhood is a decidable problem.
Note: provability from finitely-many premises is also decidable
(using deduction theorem).
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Finite chains

Lemma 3.11
Let A2 be a subalgebra of an MV- or G-algebra A1. Then |=A1 ⊆ |=A2 .

Exercise 10
(a) Prove that each n-valued G-chain is isomorphic to the

subalgebra Gn of [0, 1]G with the domain { i
n−1 | i ≤ n− 1}.

(b) Prove that each n-valued MV-chain is isomorphic to the
subalgebra �n of [0, 1]Ł with the domain { i

n−1 | i ≤ n− 1}.

Lemma 3.12
|=Gm ⊆ |=Gn iff n ≤ m.

|=�m ⊆ |=�n iff n− 1 divides m− 1.

Let us denote by Lfin the class of finite L-chains.
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The case of Gödel–Dummett logic
Theorem 3.13
Let ϕ be a formula with n− 2 variables. Then: `G ϕ iff |=Gn ϕ.

Proof.
Contrapositively: assume that 6`G ϕ and let e be a [0, 1]G-evaluation s.t.
e(ϕ) 6= 1. Let X = {0, 1} ∪ {e(vi) | 1 ≤ i ≤ n− 2} and note that it is a
subuniverse of [0, 1]G, thus e can be seen as an X-evaluation and so
6|=X ϕ. The previous exercise and lemma complete the proof.

Theorem 3.14
For every finite set of formulas Γ ∪ {ϕ} ⊆ FmL, TFAE:

1 Γ `G ϕ

2 Γ |=[0,1]G ϕ

3 Γ |=Gfin ϕ
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The case of Łukasiewicz logic
Theorem 3.15
For every finite set of formulas Γ ∪ {ϕ} ⊆ FmL, TFAE:

1 Γ `Ł ϕ

2 Γ |=[0,1]Ł ϕ

3 Γ |=MVfin ϕ

Proof: we show it for one variable v.
Let us define the set E of [0, 1]Ł-evaluations s.t. e[Γ] ⊆ {1}. Note that E
can be seen as a union of real intervals. Assume that there is e ∈ E s.t.
e(ϕ) 6= 1. If we show that there is an evaluation f ∈ E, s.t. f (v) = p

n−1
and f (ϕ) 6= 1 we are done as f can be seen as �n-evaluation.

Either e lies on the border of some interval, then f = e OR
there has to be a neighborhood X ⊆ E s.t. g(ϕ) 6= 1 for each g ∈ X.
Therefore there has to be f we need.
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The classical case

ϕ ∈ SAT(CL) if there is a 2-evaluation e such that e(ϕ) = 1.

ϕ ∈ TAUT(CL) if for each 2-evaluation e holds e(ϕ) = 1.

Recall:

ϕ ∈ TAUT(CL) iff ¬ϕ 6∈ SAT(CL)
ϕ ∈ SAT(CL) iff ¬ϕ 6∈ TAUT(CL).

Both problems, SAT(CL) and TAUT(CL), are decidable.

But how difficult are their computations?
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Complexity classes

f , g : N→ N. f ∈ O(g) iff there are c, n0 ∈ N such that for each n ≥ n0
we have f (n) ≤ c g(n).

TIME(f ): the class of problems P such that there is a deterministic
Turing machine M that accepts P and operates in time O(f ).
NTIME(f ): analogous class for nondeterministic Turing machines.
SPACE(f ): the class of problems P such that there is a
deterministic Turing machine M that accepts P and operates in
space O(f ).
NSPACE(f ): the analogous class for nondeterministic Turing
machines.
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Complexity classes

P =
⋃
k∈N

TIME(nk)

NP =
⋃
k∈N

NTIME(nk)

PSPACE =
⋃
k∈N

SPACE(nk)

If C is a complexity class, we denote coC = {P | P ∈ C}, the class of
complements of problems in C.
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Complexity classes

Each deterministic complexity class C is closed under
complementation: if P ∈ C, then also P ∈ C.
Is NP closed under complementation?
P ⊆ NP, P ⊆ coNP, NP ⊆ PSPACE.
Are the inclusions P ⊆ NP ⊆ PSPACE proper?
Each of the classes P, NP, coNP, and PSPACE is closed under
finite unions and intersections.
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Complexity classes

A problem P is said to be C-hard iff any decision problem P′ in C is
polynomialy reducible to P, i.e.: there is a polynomially computable
function f such that:

x ∈ P′ iff f (x) ∈ P′

A problem P is C-complete iff P is C-hard and P ∈ C.
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The classical case

SAT(CL) ∈ NP: guess an evaluation and check whether it satisfies
the formula (a polynomial matter).
TAUT(CL) ∈ coNP: ϕ ∈ TAUT(CL) iff ¬ϕ 6∈ SAT(CL).
Cook Theorem: Let SATCNF(CL) be the SAT problem for formulas
in conjunctive normal form. Then: SATCNF(CL) is NP-complete.
SATCNF(CL) is a fragment of SAT(CL), therefore SAT(CL) is
NP-complete and TAUT(CL) is coNP-complete.
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The fuzzy case: basic definitions

Let L be either Łukasiewicz logic Ł or Gödel logic G. We define:

ϕ ∈ SAT(L) if there is an evaluation e such that e(ϕ) = 1.

ϕ ∈ SATpos(L) if there is an evaluation e such that e(ϕ) > 0.

ϕ ∈ TAUT(L) if for each evaluation e holds e(ϕ) = 1.

ϕ ∈ TAUTpos(L) if for each evaluation e holds e(ϕ) > 0.

Note that p ∨ ¬p ∈ TAUTpos(L) but p ∨ ¬p 6∈ TAUT(L)

Note that p ∧ ¬p ∈ SATpos(Ł) but p ∧ ¬p 6∈ SAT(Ł)
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The fuzzy case: basic reductions

Lemma 3.16
Let L be either Łukasiewicz logic Ł or Gödel logic G. Then
ϕ ∈ TAUTpos(L) iff ¬ϕ 6∈ SAT(L)

ϕ ∈ SATpos(L) iff ¬ϕ 6∈ TAUT(L).

Lemma 3.17
ϕ ∈ SAT(Ł) iff ¬ϕ 6∈ TAUTpos(Ł)

ϕ ∈ TAUT(Ł) iff ¬ϕ 6∈ SATpos(Ł).

Exercise 11
Prove the above two lemmata, show that the last equivalence fails for
G and the one but last holds there. (Hint: for the last part use
properties of these sets proved in the next few slides).
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The case of Łukasiewicz logic

Theorem 3.18
The sets SAT(Ł) and SATpos(Ł) are NP-complete. Therefore the sets
TAUT(Ł) and TAUTpos(Ł) are coNP-complete.

We prove it in a series of lemmata. First we show that SAT(Ł) is
NP-hard:

Lemma 3.19
Let ϕ be a formula with variables p1, . . . pn.

ϕ ∈ SAT(CL) iff ϕ ∧
n∧

i=1

(pi ∨ ¬pi) ∈ SAT(Ł).
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SATpos(Ł) is NP-hard

Lemma 3.20
Let ϕ be a formula with variables p1, . . . pn built using: ∧,∨,¬.

ϕ ∈ SAT(CL) iff ϕ2 ∧
n∧

i=1

(pi ∨ ¬pi)
2 ∈ SATpos(Ł).

Proof.
Let e positively satisfy the right-hand formula. Then
e((pi ∨ ¬pi)

2) > 0 ergo e(pi) 6= 0.5. We define the evaluation

e′(pi) =

{
1 if e(pi) > 0.5
0 if e(pi) < 0.5

Clearly this can be extended to ϕ. And, since e(ϕ2) > 0, we have
e(ϕ) > 0.5 and so e′(ϕ) = 1.
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SAT(Ł) and SATpos(Ł) are in NP
Lemma 3.21

e(ϕ→ ψ) ≥ r IFF ∃x, y ∈ [0, 1]
e(ϕ) ≤ x
e(ψ) ≥ y

r ≤ 1− x + y

e(ϕ→ ψ) ≤ r IFF ∃x, y ∈ [0, 1], i ∈ {0, 1}

e(ϕ) ≥ x
e(ψ) ≤ y
i− r ≤ 0
i + x ≤ 1
i− y ≤ 0
i + r ≥ 1− x + y

Using this lemma we can reduce the question of (positive) satisfiability
to the question of Mixed Integer Programming (MIP) which is known to
be in NP:

For SAT(Ł) start with e(ϕ) ≥ 1 for SATpos(Ł) start with
e(ϕ) ≥ i0

i0 > 0
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The case of Gödel–Dummett logic

Lemma 3.22
The mapping f : [0, 1]→ {0, 1} defined as f (0) = 0 and f (x) = 1 if x 6= 0
is a homomorphism from [0, 1]G to 2.

Corollary 3.23

SATpos(G) ⊆ SAT(CL) TAUT(CL) ⊆ TAUTpos(G).
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The case of Gödel–Dummett logic

Corollary 3.24
ϕ ∈ SATpos(G) iff ϕ ∈ SAT(G) iff ϕ ∈ SAT(CL)
ϕ ∈ TAUTpos(G) iff ¬¬ϕ ∈ TAUT(G) iff ϕ ∈ TAUT(CL)

Proof.
Just observe that:

SAT(G) ⊆ SATpos(G) ⊆ SAT(CL) ⊆ SAT(G).

And that

ϕ ∈ TAUTpos(G)⇒ ¬ϕ /∈ SAT(G)⇒ ¬ϕ /∈ SATpos(G)

⇒ ¬¬ϕ ∈ TAUT(G)⇒ ϕ ∈ TAUT(CL)⇒ ϕ ∈ TAUTpos(G).
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The case of Gödel–Dummett logic

Corollary 3.24
ϕ ∈ SATpos(G) iff ϕ ∈ SAT(G) iff ϕ ∈ SAT(CL)
ϕ ∈ TAUTpos(G) iff ¬¬ϕ ∈ TAUT(G) iff ϕ ∈ TAUT(CL)

Theorem 3.25
The sets SAT(G) and SATpos(G) are NP-complete and the sets
TAUT(G) and TAUTpos(G) are coNP-complete.

Proof.
The only non clear case is TAUT(G): it is coNP-hard due to the last reduction
of the previous corollary. We present a non-deterministic polynomial
‘algorithm’ (sound due to Theorem 3.14) for FmL \ TAUT(G):
Step 1: guess a Gn-evaluation e (assuming that ϕ has n− 2 variables)
Step 2: compute the value of e(ϕ) (clearly in polynomial time)
Output: if e(ϕ) 6= 1 output ϕ /∈ TAUT(G).
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Reasoning with imperfect information

To understand reasoning we need to handle imperfect information:

Vagueness: Some facts are expressed using vague predicates
(i.e. properties that admit borderline cases)

Incompleteness: Some relevant facts are not known, there is
uncertainty

Inconsistency: The information contains (or entails) contradictions

These phenomena are mutually independent, but can often be
found together
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Uncertainty measures vs fuzzy logics

Uncertainty measures, in general,
deal with uncertain classical events
by assigning them numerical values with various interpretations

(usually from [0, 1])
are not compositional

Fuzzy logics, in general,
deal with vague events
by assigning them truth values (usually from [0, 1])
but are compositional (truth-functional)
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Uncertainty measures and fuzzy logic

Observation: uncertainty is itself a gradual notion:

P(ϕ) = truth degree of “ϕ is probable”

belief degree of ϕ = truth degree of “ϕ is believed”

P. Hájek, D. Harmancová, F. Esteva, P. Garcia, and Lluís Godo.
On modal logics for qualitative possibility in a fuzzy setting.
In Proceedings of Uncertainty in Artificial Intelligence, 1994.

Petr Hájek, Lluís Godo, and Francesc Esteva.
Fuzzy logic and probability.
In Proceedings of Uncertainty in Artificial Intelligence, 1995.
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Two-layer classical modal logics of probability

An older idea: interpret modality ‘�ϕ’ as ‘probably ϕ’, and saying it is
true if the probability of ϕ is bigger than a given threshold

Two-layer syntax consisting of:

classical non-modal formulas describing the events
atomic modal formulas of the form �ϕ, for each non-modal ϕ
modal formulas built from atomic ones

Classical logic governs the behavior of modal and non-modal formulae

C. L. Hamblin. The modal ‘probably’. Mind, 1959.

R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about
probabilities. Information and Computation, 1990.
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Fuzzy logic for reasoning about probability

Let us take:
the classical logic CL in language→,¬,∨,∧, 0
Łukasiewicz logic Ł in language→Ł,¬Ł,⊕,	
an extra symbol �

We define three kinds of formulas of a two-level language over a fixed
set of variables Var:

non-modal: built from Var using→,¬,∨,∧, 0
atomic modal: of the form �ϕ, for each non-modal ϕ
modal: built from atomic ones using→Ł,¬Ł,⊕,	
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Probability Kripke frames and Kripke models

Definition 3.26
A probability Kripke frame is a system F = 〈W, µ〉 where

W is a set (of possible worlds)
µ is a finitely additive probability measure defined on

a sublattice of 2W

Definition 3.27
A Kripke model M over a probability Kripke frame F = 〈W, µ〉 is a tuple
M = 〈F, 〈ew〉w∈W〉 where:

ew is a classical evaluation of non-modal formulas
for each non-modal formula ϕ, the domain of µ contains the set

ϕM = {w | ew(ϕ) = 1}
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Truth definition

The truth values of non-modal formulas in world w are given by ew

The truth values of atomic modal formulas are defined uniformly:

||�ϕ||M = µ({w | ew(ϕ) = 1}) = µ(ϕM)

The truth values of other modal formulas are computed as :

||¬Łϕ||M =1− ||ϕ||M
||ϕ→Ł ψ||M = min{1, 1− ||ϕ||M + ||ψ||M}
||ϕ⊕ ψ||M = min{1, ||ϕ||M + ||ψ||M}
||ϕ	 ψ||M = max{0, ||ϕ||M − ||ψ||M}
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Axiomatization

Definition 3.28
The logic FP of probability inside Łukasiewicz logic is given by the
axiomatic system consisting of:

the axioms and rules of CL for non-modal formulas,
axioms and rules of Ł for modal formulas,
modal axioms

(FP0) ¬Ł�(0)
(FP1) �(ϕ→ ψ)→Ł (�ϕ→Ł �ψ)
(FP2) ¬Ł�(ϕ)→Ł �(¬ϕ)
(FP3) �(ϕ ∨ ψ)→Ł (�ψ ⊕ (�ϕ	�(ϕ ∧ ψ)))

a unary modal rule:
ϕ ` �ϕ
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Completeness theorem

Theorem 3.29
Let Γ ∪ {Ψ} be a set of modal formulas. TFAE:

Γ `FP Ψ

||Ψ||M = 1 for each Kripke model M where ||Φ||M = 1
for each Φ ∈ Γ

Lluís Godo, Francesc Esteva, and Petr Hájek.
Reasoning about probability using fuzzy logic. NNW, 2000.
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Variations: Changing the measure

Definition 3.30
A necessity Kripke frame is a system F = 〈W, µ〉 where

W is a set (of possible worlds)
µ is a necessity measure on a subset of 2W

To keep the completeness we just replace the axioms:

(FN0) ¬Ł�(0)

(FN1) �(ϕ→ ψ)→Ł (�ϕ→Ł �ψ)

(FN3) (�ϕ ∧Ł �ψ)→Ł �(ϕ ∧ ψ)
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More variations

Variations considered in the literature:
changing the measure
changing the ‘upper’ logic: replacing the Łukasiewicz logic by any
other t-norm-based logic
changing the ‘lower’ logic: e.g. replacing CL by the Łukasiewicz
logic to speak about probability of ‘fuzzy’ events
adding more modalities, also binary ones
any combination of the above four options

Lluís Godo, Tommaso Flaminio and Enrico Marchioni.
Reasoning about uncertainty of fuzzy events.
In Understanding Vagueness, 2011
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