Fuzzy Logic

3. Additional properties of propositional Łukasiewicz and Gödel-Dummett logics

Petr Cintula

Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic

www.cs.cas.cz/cintula/mfl-tuw

The classical case

Theorem 3.1 (Functional completeness)

Every Boolean function (i.e. any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ for some $n \geq 1$) is representable by some formula of classical logic.

The fuzzy case

Let L be either Ł of G.

Definition 3.2

A function $f:[0,1]^{n} \rightarrow[0,1]$ is represented by a formula $\varphi\left(v_{1}, \ldots, v_{n}\right)$ in L if $e(\varphi)=f\left(e\left(v_{1}\right), e\left(v_{2}\right), \ldots, e\left(v_{n}\right)\right)$ for each $[0,1]_{\mathrm{L}}$-evaluation e.

Definition 3.3

The functional representation of L is the set \mathcal{F}_{L} of all functions from any power of $[0,1]$ into $[0,1]$ that are represented in L by some formula.

Relation with Lindenbaum-Tarski algebra

Let us fix $\mathrm{L}=\mathrm{Ł}$.
Let f_{i} be functions of n_{i} variables, $i \in\{1,2\}$. We say that $f_{1}=f_{2}$ iff $f_{1}\left(x_{1}, x_{2}, \ldots, x_{n_{1}}\right)=f_{2}\left(x_{1}, x_{2}, \ldots, x_{n_{2}}\right)$ for every $x_{j} \in[0,1]$. Let us for each $f \in \mathcal{F}_{\mathrm{E}}$ define a class

$$
[f]=\left\{g \in \mathcal{F}_{\mathrm{E}} \mid f=g\right\} \quad F=\left\{[f] \mid f \in \mathcal{F}_{\mathrm{E}}\right\}
$$

We define an MV-algebra \boldsymbol{F} with domain F and operations:

$$
\overline{0}^{\boldsymbol{F}}=[0] \quad \neg^{\boldsymbol{F}}[f]=[1-f]_{T} \quad[f] \oplus^{\boldsymbol{F}}[g]=[\min \{1, f+g\}]
$$

Theorem 3.4
The algebras \boldsymbol{F} and $\operatorname{Lind}_{\emptyset}$ are isomorphic.
In the case of G , the definitions and the result are analogous.

A proof

Let the atoms be enumerated as v_{1}, v_{2}, \ldots Any formula with variables with maximal index n is viewed as formula in variables v_{1}, \ldots, v_{n}. We define the homomorphism:
$g: L_{\emptyset} \rightarrow F$ as $g([\varphi])=\left[f_{\varphi}\right]$ where f_{φ} is the function represented by φ.

Then:

- the definition is sound and g is one-one: $[\varphi]=[\psi]$ iff $\vdash_{Ł} \varphi \leftrightarrow \psi$ iff (due to the standard completeness theorem) $e(\varphi)=e(\psi)$ for each $[0,1]_{\mathrm{E}}$-evaluation e iff $\left[f_{\varphi}\right]=\left[f_{\psi}\right]$.
- g is a homomorphism:

$$
g([\varphi] \oplus[\psi])=g([\varphi \oplus \psi])=\left[f_{\varphi \oplus \psi}\right]=\left[f_{\varphi} \oplus f_{\psi}\right]=\left[f_{\varphi}\right] \oplus\left[f_{\psi}\right] .
$$

- g is onto (obvious).

How do the functions from $\mathcal{F}_{\mathfrak{E}}$ look like?

Observations

- they are all continuous
- they are piece-wise linear
- all pieces have integer coefficients
- if $x_{1}, \ldots, x_{n} \in\{0,1\}^{n}$, then $f\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}$
- if $x_{1}, \ldots, x_{n} \in([0,1] \cap \mathrm{Q})^{n}$, then $f\left(x_{1}, \ldots, x_{n}\right) \in[0,1] \cap \mathrm{Q}$

Definition 3.5

A McNaughton function $f:[0,1]^{n} \rightarrow[0,1]$ is a continuous piece-wise linear function, where each of the pieces has integer coefficients.

Theorem 3.6 (McNaughton theorem)
\mathcal{F}_{E} is the set of all McNaughton functions.

A lemma (for one variable only)

Lemma 3.7

Let $f:[0,1] \rightarrow R$ be an integer linear polynomial, i.e. of the form

$$
f(x)=m x+n \quad \text { for some } m, n \in \mathbf{Z}
$$

Then there is a formula φ_{f} representing the function

$$
f^{\#}=\max \{0, \min \{1, f\}\} .
$$

Proof.

By induction on $|m|$. If $|m|=0$ then $f^{\#}$ is either constantly 0 or 1 , then we can take as φ either the term $\overline{0}$ or $\overline{1}$, respectively. Assume now $|m|>0$. WLOG we can assume $m>0$: indeed otherwise we consider $f^{\prime}=1-f$, here $m>0$ and so we have φ_{1-f}. Note that clearly $\varphi_{f}=\neg \varphi_{1-f} \ldots$

A lemma: continuation of the proof

Let us consider the function $g=f-x$: by IH we have formulas φ_{g} and φ_{g+1}. If we show that

$$
\begin{equation*}
(g+x)^{\#}=\left(g^{\#} \oplus x\right) \&(g+1)^{\#} \tag{1}
\end{equation*}
$$

the proof is done as:

$$
\varphi_{f}=\varphi_{g+x}=\left(\varphi_{g} \oplus x\right) \& \varphi_{g+1}
$$

We need to prove (1) for any $a \in[0,1]$. Let L and R be its left/right side:

- if $|g(a)|>1$ then $L=R=1$ or $L=R=0$
- $0 \leq g(a) \leq 1$ then $L=\min \{1, g(a)+a\}, g(a)=g^{\#}(a)$ and $(g+1)^{\#}(a)=1$. Hence $R=g(a) \oplus a=\min \{1, g(a)+a\}=L$.
- $-1 \leq g(a) \leq 0$ then $L=\max \{0, g(a)+a\}, g^{\#}(a)=0$ and $(g+1)^{\#}(a)=g(a)+1$. Hence $g^{\#}(a) \oplus a=a$ and so $R=\max \{0, a+g(a)+1-1\}=\max \{0, a+g(a)\}=L$.

The proof for one variable functions

Definition 3.8

Let $a, b \in[0,1] \cap \mathrm{Q}$. Then any McNaughton function f s.t. $f(x)=1$ iff $x \in[a, b]$ is called pseudo characteristic function of interval $[a, b]$.

Exercise 9

Prove that each interval has a pseudo characteristic function and find a formula representing it. Hint: use Lemma 3.7.

Lemma 3.9

Let $a, b \in[0,1] \cap \mathrm{Q}$. Then for each $\epsilon>0$ there is a pseudo characteristic function of the interval $[a, b]$, s.t. $f(x)=0$ for $x \in[0, a-\epsilon] \cup[b+\epsilon, 1]$.

Proof.

If f is a pseudo char. function of some interval, so is f^{n} for each n.

The proof for one variable functions

Let p be a McNaughton function of one variable given by n integer linear polynomials p_{1}, \ldots, p_{n}. For each $i \in\{1,2, \ldots n\}$ let $P_{i}=\left[a_{i}, b_{i}\right]$ be the interval in which p coincides with p_{i}. Note that:

- $[0,1]=\bigcup_{i} P_{i}$
- $a_{i}, b_{i} \in[0,1] \cap \mathrm{Q}$
- there is a pseudo characteristic function f_{i} of $\left[a_{i}, b_{i}\right]$ such that $p(x) \geq\left(f_{i} \& p_{i}^{\#}\right)(x)$ for each $x \notin P_{i}$.
Then

$$
p(x)=\bigvee_{i}\left(f_{i} \& p_{i}^{\#}\right)(x) \text { and thus } \varphi_{p}=\bigvee_{i} \varphi_{f_{i}} \& \varphi_{p_{i}} .
$$

The classical case, FMP and decidability

$C L$ is complete with respect to a finite algebra, 2.

Definition 3.10

A logic has the finite model property (FMP) if it is complete with respect to a set of finite algebras.

From the FMP, we obtain decidability:

- Thanks to our finite notion of proof, the set of theorems is recursively enumerable.
- Thanks to FMP, the set of non-theorems is also recursively enumerable (we can check validity in bigger and bigger finite algebras until we find a countermodel).
- Therefore, theoremhood is a decidable problem.
- Note: provability from finitely-many premises is also decidable (using deduction theorem).

Finite chains

Lemma 3.11

Let $\boldsymbol{A}_{\boldsymbol{2}}$ be a subalgebra of an MV- or G-algebra $\boldsymbol{A}_{\boldsymbol{1}}$. Then $\models_{\boldsymbol{A}_{1}} \subseteq \models_{\boldsymbol{A}_{2}}$.

Exercise 10

(a) Prove that each n-valued G-chain is isomorphic to the subalgebra $\boldsymbol{G}_{\boldsymbol{n}}$ of $[0,1]_{\mathrm{G}}$ with the domain $\left\{\left.\frac{i}{n-1} \right\rvert\, i \leq n-1\right\}$.
(b) Prove that each n-valued MV-chain is isomorphic to the subalgebra E_{n} of $[0,1]_{\mathrm{E}}$ with the domain $\left\{\left.\frac{i}{n-1} \right\rvert\, i \leq n-1\right\}$.

Lemma 3.12

$$
\begin{array}{ll}
\models_{\boldsymbol{G}_{m}} \subseteq \models_{\boldsymbol{G}_{n}} \quad \text { iff } \quad n \leq m . \\
\models_{\boldsymbol{E}_{m}} \subseteq \models_{\boldsymbol{E}_{n}} \quad \text { iff } \quad n-1 \text { divides } m-1 .
\end{array}
$$

Let us denote by $\mathbb{L}_{\text {fin }}$ the class of finite L-chains.

The case of Gödel-Dummett logic

Theorem 3.13
Let φ be a formula with $n-2$ variables. Then: $\vdash_{\mathrm{G}} \varphi$ iff $\models_{\boldsymbol{G}_{n}} \varphi$.

Proof.

Contrapositively: assume that $\Vdash_{\mathrm{G}} \varphi$ and let e be a $[0,1]_{\mathrm{G}}$-evaluation s.t. $e(\varphi) \neq 1$. Let $X=\{0,1\} \cup\left\{e\left(v_{i}\right) \mid 1 \leq i \leq n-2\right\}$ and note that it is a subuniverse of $[0,1]_{\mathrm{G}}$, thus e can be seen as an X-evaluation and so $\nexists_{X} \varphi$. The previous exercise and lemma complete the proof.

Theorem 3.14
For every finite set of formulas $\Gamma \cup\{\varphi\} \subseteq F m_{\mathcal{L}}$, TFAE:
(1) $\Gamma \vdash_{\mathrm{G}} \varphi$
(2) $\Gamma \models_{[0,1]_{\mathrm{G}}} \varphi$
(3) $\Gamma \models_{G_{\text {fin }}} \varphi$

The case of Łukasiewicz logic

Theorem 3.15
For every finite set of formulas $\Gamma \cup\{\varphi\} \subseteq F m_{\mathcal{L}}$, TFAE:
(1) $\Gamma \vdash_{Ł} \varphi$
(2) $\Gamma \models_{[0,1]_{ \pm}} \varphi$
(3) $\Gamma \models_{M_{\text {fin }}} \varphi$

Proof: we show it for one variable v.

Let us define the set E of $[0,1]_{\mathrm{E}}$-evaluations s.t. $e[\Gamma] \subseteq\{1\}$. Note that E can be seen as a union of real intervals. Assume that there is $e \in E$ s.t. $e(\varphi) \neq 1$. If we show that there is an evaluation $f \in E$, s.t. $f(v)=\frac{p}{n-1}$ and $f(\varphi) \neq 1$ we are done as f can be seen as E_{n}-evaluation.

- Either e lies on the border of some interval, then $f=e \mathrm{OR}$
- there has to be a neighborhood $X \subseteq E$ s.t. $g(\varphi) \neq \overline{1}$ for each $g \in X$. Therefore there has to be f we need.

The classical case

- $\varphi \in \operatorname{SAT}(\mathrm{CL})$ if there is a 2 -evaluation e such that $e(\varphi)=1$.
- $\varphi \in \operatorname{TAUT}(\mathrm{CL})$ if for each 2 -evaluation e holds $e(\varphi)=1$.

Recall:

$$
\begin{array}{lll}
\varphi \in \operatorname{TAUT}(\mathrm{CL}) & \text { iff } & \neg \varphi \notin \operatorname{SAT}(\mathrm{CL}) \\
\varphi \in \operatorname{SAT}(\mathrm{CL}) & \text { iff } & \neg \varphi \notin \operatorname{TAUT}(\mathrm{CL}) .
\end{array}
$$

Both problems, SAT(CL) and TAUT(CL), are decidable.
But how difficult are their computations?

Complexity classes

$f, g: \mathrm{N} \rightarrow \mathrm{N} . f \in O(g)$ iff there are $c, n_{0} \in \mathrm{~N}$ such that for each $n \geq n_{0}$ we have $f(n) \leq c g(n)$.

- TIME (f) : the class of problems P such that there is a deterministic Turing machine M that accepts P and operates in time $O(f)$.
- NTIME (f) : analogous class for nondeterministic Turing machines.
- $\mathbf{S P A C E}(f)$: the class of problems P such that there is a deterministic Turing machine M that accepts P and operates in space $O(f)$.
- NSPACE (f) : the analogous class for nondeterministic Turing machines.

Complexity classes

$$
\begin{aligned}
\mathbf{P} & =\bigcup_{k \in \mathrm{~N}} \operatorname{TIME}\left(n^{k}\right) \\
\mathbf{N P} & =\bigcup_{k \in \mathrm{~N}} \mathbf{N T I M E}\left(n^{k}\right) \\
\text { PSPACE } & =\bigcup_{k \in \mathrm{~N}} \operatorname{SPACE}\left(n^{k}\right)
\end{aligned}
$$

If \mathbf{C} is a complexity class, we denote $\mathbf{c o C}=\{P \mid \bar{P} \in \mathbf{C}\}$, the class of complements of problems in \mathbf{C}.

Complexity classes

- Each deterministic complexity class \mathbf{C} is closed under complementation: if $P \in \mathbf{C}$, then also $\bar{P} \in \mathbf{C}$.
- Is NP closed under complementation?
- $\mathbf{P} \subseteq \mathbf{N P}, \mathbf{P} \subseteq \mathbf{c o N P}, \mathbf{N P} \subseteq \mathbf{P S P A C E}$.
- Are the inclusions $\mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E}$ proper?
- Each of the classes $\mathbf{P}, \mathbf{N P}$, coNP, and PSPACE is closed under finite unions and intersections.

Complexity classes

A problem P is said to be \mathbf{C}-hard iff any decision problem P^{\prime} in \mathbf{C} is polynomialy reducible to P, i.e.: there is a polynomially computable function f such that:

$$
x \in P^{\prime} \quad \text { iff } \quad f(x) \in P^{\prime}
$$

A problem P is \mathbf{C}-complete iff P is \mathbf{C}-hard and $P \in \mathbf{C}$.

The classical case

- $\operatorname{SAT}(\mathrm{CL}) \in$ NP: guess an evaluation and check whether it satisfies the formula (a polynomial matter).
- TAUT(CL) \in coNP: $\varphi \in \operatorname{TAUT}(\mathrm{CL})$ iff $\neg \varphi \notin \operatorname{SAT}(\mathrm{CL})$.
- Cook Theorem: Let $\operatorname{SAT}^{\mathrm{CNF}}(\mathrm{CL})$ be the SAT problem for formulas in conjunctive normal form. Then: $\mathrm{SAT}^{\mathrm{CNF}}(\mathrm{CL})$ is NP-complete.
- $\mathrm{SAT}^{\mathrm{CNF}}(\mathrm{CL})$ is a fragment of $\mathrm{SAT}(\mathrm{CL})$, therefore $\mathrm{SAT}(\mathrm{CL})$ is NP-complete and TAUT(CL) is coNP-complete.

The fuzzy case: basic definitions

Let L be either Łukasiewicz logic $Ł$ or Gödel logic G. We define:

- $\varphi \in \operatorname{SAT}(\mathrm{L})$ if there is an evaluation e such that $e(\varphi)=1$.
- $\varphi \in \operatorname{SAT}_{\text {pos }}(\mathrm{L})$ if there is an evaluation e such that $e(\varphi)>0$.
- $\varphi \in \operatorname{TAUT}(\mathrm{L})$ if for each evaluation e holds $e(\varphi)=1$.
- $\varphi \in \operatorname{TAUT}_{\text {pos }}(\mathrm{L})$ if for each evaluation e holds $e(\varphi)>0$.

Note that $p \vee \neg p \in \operatorname{TAUT}_{\mathrm{pos}}(\mathrm{L})$ but $p \vee \neg p \notin \operatorname{TAUT}(\mathrm{~L})$
Note that $p \wedge \neg p \in \operatorname{SAT}_{\mathrm{pos}}(\mathrm{L})$ but $p \wedge \neg p \notin \operatorname{SAT}(\mathrm{~L})$

The fuzzy case: basic reductions

Lemma 3.16

Let L be either Łukasiewicz logic Ł or Gödel logic G. Then

$\varphi \in \operatorname{TAUT}_{\mathrm{pos}}(\mathrm{L})$	iff	$\neg \varphi \notin \operatorname{SAT}(\mathrm{L})$
$\varphi \in \operatorname{SAT}_{\mathrm{pos}}(\mathrm{L})$	iff	$\neg \varphi \notin \operatorname{TAUT}(\mathrm{L})$.

Lemma 3.17
$\varphi \in \operatorname{SAT}(\mathrm{E}) \quad$ iff $\quad \neg \varphi \notin \operatorname{TAUT}_{\text {pos }}(\mathrm{E})$
$\varphi \in \operatorname{TAUT}(\mathrm{E}) \quad$ iff $\quad \neg \varphi \notin \operatorname{SAT}_{\mathrm{pos}}(\mathrm{E})$.

Exercise 11

Prove the above two lemmata, show that the last equivalence fails for G and the one but last holds there. (Hint: for the last part use properties of these sets proved in the next few slides).

The case of Łukasiewicz logic

Theorem 3.18

The sets $\mathrm{SAT}(\mathrm{E})$ and $\mathrm{SAT}_{\text {pos }}(\mathrm{E})$ are $\mathbf{N P}$-complete. Therefore the sets TAUT (E) and $\mathrm{TAUT}_{\text {pos }}(\mathrm{E})$ are coNP-complete.

We prove it in a series of lemmata. First we show that $\operatorname{SAT}(\mathrm{E})$ is NP-hard:

Lemma 3.19
Let φ be a formula with variables $p_{1}, \ldots p_{n}$.

$$
\varphi \in \operatorname{SAT}(\mathrm{CL}) \quad \text { iff } \quad \varphi \wedge \bigwedge_{i=1}^{n}\left(p_{i} \vee \neg p_{i}\right) \in \operatorname{SAT}(\mathrm{E})
$$

$\mathrm{SAT}_{\mathrm{pos}}(\mathrm{Z})$ is NP-hard

Lemma 3.20
Let φ be a formula with variables $p_{1}, \ldots p_{n}$ built using: \wedge, \vee, \neg.

$$
\varphi \in \operatorname{SAT}(\mathrm{CL}) \quad \text { iff } \quad \varphi^{2} \wedge \bigwedge_{i=1}^{n}\left(p_{i} \vee \neg p_{i}\right)^{2} \in \mathrm{SAT}_{\mathrm{pos}}(\mathrm{E}) .
$$

Proof.

Let e positively satisfy the right-hand formula. Then $e\left(\left(p_{i} \vee \neg p_{i}\right)^{2}\right)>0$ ergo $e\left(p_{i}\right) \neq 0.5$. We define the evaluation

$$
e^{\prime}\left(p_{i}\right)= \begin{cases}1 & \text { if } e\left(p_{i}\right)>0.5 \\ 0 & \text { if } e\left(p_{i}\right)<0.5\end{cases}
$$

Clearly this can be extended to φ. And, since $e\left(\varphi^{2}\right)>0$, we have $e(\varphi)>0.5$ and so $e^{\prime}(\varphi)=1$.

$\operatorname{SAT}(\mathrm{Ł})$ and $\operatorname{SAT}_{\text {pos }}(\mathrm{E})$ are in NP

Lemma 3.21

$$
\begin{aligned}
& \begin{aligned}
e(\varphi) & \leq x \\
e(\varphi \rightarrow \psi) \geq r & \text { IFF } \exists x, y \in[0,1] \quad \\
e(\psi) & \geq y \\
& \\
& \leq 1-x+y \\
& \\
& e(\varphi) \geq x \\
& e(\psi) \leq y \\
e(\varphi \rightarrow \psi) \leq r \quad \text { IFF } \exists x, y \in[0,1], i \in\{0,1\} & i-r \leq 0 \\
& i+x \leq 1 \\
& i-y \leq 0 \\
& i+r \geq 1-x+y
\end{aligned}
\end{aligned}
$$

Using this lemma we can reduce the question of (positive) satisfiability to the question of Mixed Integer Programming (MIP) which is known to be in NP:
For $\operatorname{SAT}(\mathrm{E})$ start with $e(\varphi) \geq 1 \quad$ for $\operatorname{SAT}_{\text {pos }}(\mathrm{E})$ start with $\begin{aligned} e(\varphi) & \geq i_{0} \\ i_{0} & >0\end{aligned}$

The case of Gödel-Dummett logic

Lemma 3.22

The mapping $f:[0,1] \rightarrow\{0,1\}$ defined as $f(0)=0$ and $f(x)=1$ if $x \neq 0$ is a homomorphism from $[0,1]_{\mathrm{G}}$ to 2 .

Corollary 3.23

$$
\mathrm{SAT}_{\mathrm{pos}}(\mathrm{G}) \subseteq \mathrm{SAT}(\mathrm{CL}) \quad \mathrm{TAUT}(\mathrm{CL}) \subseteq \operatorname{TAUT}_{\mathrm{pos}}(\mathrm{G})
$$

The case of Gödel-Dummett logic

Corollary 3.24

$$
\begin{aligned}
& \varphi \in \operatorname{SAT}_{\text {pos }}(\mathrm{G}) \quad \text { iff } \quad \varphi \in \operatorname{SAT}(\mathrm{G}) \quad \text { iff } \varphi \in \operatorname{SAT}(\mathrm{CL}) \\
& \varphi \in \operatorname{TAUT}_{\text {pos }}(\mathrm{G}) \quad \text { iff } \quad \neg \neg \varphi \in \operatorname{TAUT}(\mathrm{G}) \quad \text { iff } \quad \varphi \in \operatorname{TAUT}(\mathrm{CL})
\end{aligned}
$$

Proof.

Just observe that:

$$
\operatorname{SAT}(\mathrm{G}) \subseteq \operatorname{SAT}_{\mathrm{pos}}(\mathrm{G}) \subseteq \operatorname{SAT}(\mathrm{CL}) \subseteq \operatorname{SAT}(\mathrm{G}) .
$$

And that

$$
\begin{aligned}
& \varphi \in \operatorname{TAUT}_{\mathrm{pos}}(\mathrm{G}) \Rightarrow \neg \varphi \notin \operatorname{SAT}(\mathrm{G}) \Rightarrow \neg \varphi \notin \operatorname{SAT}_{\mathrm{pos}}(\mathrm{G}) \\
\Rightarrow & \neg \neg \varphi \in \operatorname{TAUT}(\mathrm{G}) \Rightarrow \varphi \in \operatorname{TAUT}(\mathrm{CL}) \Rightarrow \varphi \in \operatorname{TAUT}_{\mathrm{pos}}(\mathrm{G}) .
\end{aligned}
$$

The case of Gödel-Dummett logic

Corollary 3.24

$$
\begin{array}{llll}
\varphi \in \operatorname{SAT}_{\text {pos }}(\mathrm{G}) & \text { iff } & \varphi \in \operatorname{SAT}(\mathrm{G}) & \text { iff } \\
\varphi \in \operatorname{TAUT}_{\text {pos }}(\mathrm{G}) & \text { iff } & \neg \neg \varphi \in \operatorname{TAUT}(\mathrm{SAL}) \\
\text { iff } & \varphi \in \operatorname{TAUT}(\mathrm{CL})
\end{array}
$$

Theorem 3.25

The sets $\mathrm{SAT}(\mathrm{G})$ and $\mathrm{SAT}_{\text {pos }}(\mathrm{G})$ are NP-complete and the sets TAUT(G) and TAUT $\mathrm{pos}_{\text {pos }}(\mathrm{G})$ are coNP-complete.

Proof.

The only non clear case is TAUT(G): it is coNP-hard due to the last reduction of the previous corollary. We present a non-deterministic polynomial 'algorithm' (sound due to Theorem 3.14) for $\mathrm{Fm}_{\mathcal{L}} \backslash$ TAUT(G):
Step 1: guess a \boldsymbol{G}_{n}-evaluation e (assuming that φ has $n-2$ variables)
Step 2: compute the value of $e(\varphi)$ (clearly in polynomial time)
Output: if $e(\varphi) \neq 1$ output $\varphi \notin \operatorname{TAUT}(\mathrm{G})$.

Reasoning with imperfect information

To understand reasoning we need to handle imperfect information:

- Vagueness: Some facts are expressed using vague predicates
(i.e. properties that admit borderline cases)
- Incompleteness: Some relevant facts are not known, there is
uncertainty
- Inconsistency: The information contains (or entails) contradictions

These phenomena are mutually independent, but can often be found together

Uncertainty measures vs fuzzy logics

Uncertainty measures, in general,

- deal with uncertain classical events
- by assigning them numerical values with various interpretations (usually from $[0,1]$)
- are not compositional

Fuzzy logics, in general,

- deal with vague events
- by assigning them truth values (usually from $[0,1]$)
- but are compositional (truth-functional)

Uncertainty measures and fuzzy logic

Observation: uncertainty is itself a gradual notion:

$$
P(\varphi)=\text { truth degree of " } \varphi \text { is probable" }
$$

belief degree of $\varphi=$ truth degree of " φ is believed"

P. Hájek, D. Harmancová, F. Esteva, P. Garcia, and Lluís Godo.

On modal logics for qualitative possibility in a fuzzy setting. In Proceedings of Uncertainty in Artificial Intelligence, 1994.

Petr Hájek, Lluís Godo, and Francesc Esteva.
Fuzzy logic and probability.
In Proceedings of Uncertainty in Artificial Intelligence, 1995.

Two-layer classical modal logics of probability

An older idea: interpret modality ' $\square \varphi$ ' as 'probably φ ', and saying it is true if the probability of φ is bigger than a given threshold

Two-layer syntax consisting of:

- classical non-modal formulas describing the events
- atomic modal formulas of the form $\square \varphi$, for each non-modal φ
- modal formulas built from atomic ones

Classical logic governs the behavior of modal and non-modal formulae
C. L. Hamblin. The modal 'probably'. Mind, 1959.
R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about probabilities. Information and Computation, 1990.

Fuzzy logic for reasoning about probability

Let us take:

- the classical logic $C L$ in language $\rightarrow, \neg, \vee, \wedge, \overline{0}$
- Łukasiewicz logic Ł in language $\rightarrow_{\mathrm{E}}, \neg_{\mathrm{E}}, \oplus, \ominus$
- an extra symbol \square

We define three kinds of formulas of a two-level language over a fixed set of variables Var:

- non-modal: built from Var using $\rightarrow, \neg, \vee, \wedge, \overline{0}$
- atomic modal: of the form $\square \varphi$, for each non-modal φ
- modal: built from atomic ones using $\rightarrow_{\mathrm{E}}, \neg_{\mathrm{E}}, \oplus, \ominus$

Probability Kripke frames and Kripke models

Definition 3.26

A probability Kripke frame is a system $\mathbf{F}=\langle W, \mu\rangle$ where

- W is a set (of possible worlds)
- μ is a finitely additive probability measure defined on a sublattice of 2^{W}

Definition 3.27

A Kripke model \mathbf{M} over a probability Kripke frame $\mathbf{F}=\langle W, \mu\rangle$ is a tuple $\mathbf{M}=\left\langle\mathbf{F},\left\langle e_{w}\right\rangle_{w \in W}\right\rangle$ where:

- e_{w} is a classical evaluation of non-modal formulas
- for each non-modal formula φ, the domain of μ contains the set

$$
\varphi^{\mathbf{M}}=\left\{w \mid e_{w}(\varphi)=1\right\}
$$

Truth definition

The truth values of non-modal formulas in world w are given by e_{w}
The truth values of atomic modal formulas are defined uniformly:

$$
\|\square \varphi\|_{\mathbf{M}}=\mu\left(\left\{w \mid e_{w}(\varphi)=1\right\}\right)=\mu\left(\varphi^{\mathbf{M}}\right)
$$

The truth values of other modal formulas are computed as :

$$
\begin{aligned}
\left\|\neg_{£} \varphi\right\|_{\mathbf{M}} & =1-\|\varphi\|_{\mathbf{M}} \\
\left\|\varphi \rightarrow_{£} \psi\right\|_{\mathbf{M}} & =\min \left\{1,1-\|\varphi\|_{\mathbf{M}}+\|\psi\|_{\mathbf{M}}\right\} \\
\|\varphi \oplus \psi\|_{\mathbf{M}} & =\min \left\{1,\|\varphi\|_{\mathbf{M}}+\|\psi\|_{\mathbf{M}}\right\} \\
\|\varphi \ominus \psi\|_{\mathbf{M}} & =\max \left\{0,\|\varphi\|_{\mathbf{M}}-\|\psi\|_{\mathbf{M}}\right\}
\end{aligned}
$$

Axiomatization

Definition 3.28

The logic FP of probability inside Łukasiewicz logic is given by the axiomatic system consisting of:

- the axioms and rules of CL for non-modal formulas,
- axioms and rules of $Ł$ for modal formulas,
- modal axioms

$$
\begin{aligned}
& \text { (FP0) } \neg_{\mathrm{E}} \square(\overline{0}) \\
& \text { (FP1) } \square(\varphi \rightarrow \psi) \rightarrow_{\mathrm{E}}\left(\square \varphi \rightarrow_{\mathrm{E}} \square \psi\right) \\
& \text { (FP2) } \neg \pm \square(\varphi) \rightarrow_{\mathrm{E}} \square(\neg \varphi) \\
& \text { (FP3) } \square(\varphi \vee \psi) \rightarrow_{\mathrm{E}}(\square \psi \oplus(\square \varphi \ominus \square(\varphi \wedge \psi)))
\end{aligned}
$$

- a unary modal rule:

$$
\varphi \vdash \square \varphi
$$

Completeness theorem

Theorem 3.29

Let $\Gamma \cup\{\Psi\}$ be a set of modal formulas. TFAE:

- $\Gamma \vdash_{\mathrm{FP}} \Psi$
- $\|\Psi\|_{\mathbf{M}}=1$ for each Kripke model \mathbf{M} where $\|\Phi\|_{\mathbf{M}}=1$ for each $\Phi \in \Gamma$

Lluís Godo, Francesc Esteva, and Petr Hájek. Reasoning about probability using fuzzy logic. NNW, 2000.

Variations: Changing the measure

Definition 3.30
A necessity Kripke frame is a system $\mathbf{F}=\langle W, \mu\rangle$ where

- W is a set (of possible worlds)
- μ is a necessity measure on a subset of 2^{W}

To keep the completeness we just replace the axioms:
(FNO) $\neg_{\mathrm{E}} \square(\overline{0})$
(FN1) $\square(\varphi \rightarrow \psi) \rightarrow_{\mathrm{E}}\left(\square \varphi \rightarrow_{\mathrm{E}} \square \psi\right)$
(FN3) $\left(\square \varphi \wedge_{\mathrm{E}} \square \psi\right) \rightarrow_{\mathrm{E}} \square(\varphi \wedge \psi)$

More variations

Variations considered in the literature:

- changing the measure
- changing the 'upper' logic: replacing the Łukasiewicz logic by any other t-norm-based logic
- changing the 'lower' logic: e.g. replacing CL by the Łukasiewicz logic to speak about probability of 'fuzzy' events
- adding more modalities, also binary ones
- any combination of the above four options

Lluís Godo, Tommaso Flaminio and Enrico Marchioni.
Reasoning about uncertainty of fuzzy events.
In Understanding Vagueness, 2011

