A Gentle Introduction to Mathematical Fuzzy Logic

3. Predicate Łukasiewicz and Gödel–Dummett logic

Petr Cintula¹ and Carles Noguera²

¹Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic

²Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic

www.cs.cas.cz/cintula/MFL

Predicate language

Predicate language: $\mathcal{P}=\langle P,F,ar\rangle$: predicate and function symbols with arity

Object variables: denumerable set OV

 \mathcal{P} -terms:

- if $v \in OV$, then v is a \mathcal{P} -term
- if $f \in \mathbf{F}$, $\operatorname{ar}(\mathbf{F}) = n$, and t_1, \ldots, t_n are \mathcal{P} -terms, then so is $f(t_1, \ldots, t_n)$

Formulas

Atomic \mathcal{P} -formulas: propositional constant $\overline{0}$ and expressions of the form $R(t_1, \ldots, t_n)$, where $R \in \mathbf{P}$, $\operatorname{ar}(\mathbf{R}) = n$, and t_1, \ldots, t_n are \mathcal{P} -terms.

\mathcal{P} -formulas:

- the atomic \mathcal{P} -formulas are \mathcal{P} -formulas
- if α and β are \mathcal{P} -formulas, then so are $\alpha \land \beta$, $\alpha \lor \beta$, and $\alpha \rightarrow \beta$
- if $x \in OV$ and α is a \mathcal{P} -formula, then so are $(\forall x)\alpha$ and $(\exists x)\alpha$

Basic syntactical notions

 \mathcal{P} -theory: a set of \mathcal{P} -formulas

A closed \mathcal{P} -term is a \mathcal{P} -term without variables.

An occurrence of a variable *x* in a formula φ is bound if it is in the scope of some quantifier over *x*; otherwise it is called a free occurrence.

A variable is free in a formula φ if it has a free occurrence in φ .

A \mathcal{P} -sentence is a \mathcal{P} -formula with no free variables.

A term *t* is substitutable for the object variable *x* in a formula $\varphi(x, \vec{z})$ if no occurrence of any variable occurring in *t* is bound in $\varphi(t, \vec{z})$ unless it was already bound in $\varphi(x, \vec{z})$.

Axiomatic system

A Hilbert-style proof system for $CL\forall$ can be obtained as:

- $(\mathsf{P}) \quad \text{ axioms of } \mathrm{CL} \text{ substituting propositional variables by } \mathcal{P}\text{-formulas}$
- $(\forall 1) \quad (\forall x)\varphi(x,\vec{z}) \to \varphi(t,\vec{z})$
- $(\forall 2) \quad (\forall x)(\chi \to \varphi) \to (\chi \to (\forall x)\varphi)$
- $(MP) \quad \textit{modus ponens} \text{ for } \mathcal{P}\text{-formulas}$
- (gen) from φ infer $(\forall x)\varphi$.

Let us denote as $\vdash_{CL\forall}$ the provability relation.

t substitutable for x in φ

x not free in χ

Semantics

Classical \mathcal{P} -structure: a tuple $\mathbf{M} = \langle M, \langle P_{\mathbf{M}} \rangle_{P \in \mathbf{P}}, \langle f_{\mathbf{M}} \rangle_{f \in \mathbf{F}} \rangle$ where

- $M \neq \emptyset$
- $P_{\mathbf{M}} \subseteq M^n$, for each *n*-ary $P \in \mathbf{P}$
- $f_{\mathbf{M}} \colon M^n \to M$ for each *n*-ary $f \in \mathbf{F}$.

M-evaluation v: a mapping v: $OV \rightarrow M$

$$\mathbf{v}[x:m](y) = \begin{cases} m & \text{if } y = x \\ \mathbf{v}(y) & \text{otherwise} \end{cases}$$

Tarski truth definition

Interpretation of \mathcal{P} -terms

$$\begin{aligned} \|x\|_{\mathbf{v}}^{\mathbf{M}} &= \mathbf{v}(x) & \text{for } x \in \mathrm{OV} \\ \|f(t_1, \dots, t_n)\|_{\mathbf{v}}^{\mathbf{M}} &= f_{\mathbf{M}}(\|t_1\|_{\mathbf{v}}^{\mathbf{M}}, \dots, \|t_n\|_{\mathbf{v}}^{\mathbf{M}}) & \text{for } n\text{-ary } f \in \mathbf{F} \end{aligned}$$

$$\begin{split} \|P(t_1,\ldots,t_n)\|_{v}^{\mathbf{M}} &= 1 \quad \text{iff} \quad \left\langle \|t_1\|_{v}^{\mathbf{M}},\ldots,\|t_n\|_{v}^{\mathbf{M}} \right\rangle \in P_{\mathbf{M}} \quad \text{for } P \in \mathbf{P} \\ & \left\|\overline{0}\right\|_{v}^{\mathbf{M}} = 0 \\ & \left\|\alpha \wedge \beta\right\|_{v}^{\mathbf{M}} = 1 \quad \text{iff} \quad \left\|\alpha\right\|_{v}^{\mathbf{M}} = 1 \text{ and } \left\|\beta\right\|_{v}^{\mathbf{M}} = 1 \\ & \left\|\alpha \vee \beta\right\|_{v}^{\mathbf{M}} = 1 \quad \text{iff} \quad \left\|\alpha\right\|_{v}^{\mathbf{M}} = 1 \text{ or } \left\|\beta\right\|_{v}^{\mathbf{M}} = 1 \\ & \left\|\alpha \rightarrow \beta\right\|_{v}^{\mathbf{M}} = 1 \quad \text{iff} \quad \left\|\alpha\right\|_{v}^{\mathbf{M}} = 0 \text{ or } \left\|\beta\right\|_{v}^{\mathbf{M}} = 1 \\ & \left\|(\forall x)\varphi\right\|_{v}^{\mathbf{M}} = 1 \quad \text{iff} \quad \text{for each } m \in M \text{ we have } \left\|\varphi\right\|_{v[x:m]}^{\mathbf{M}} = 1 \\ & \left\|(\exists x)\varphi\right\|_{v}^{\mathbf{M}} = 1 \quad \text{iff} \quad \text{there is } m \in M \text{ such that } \left\|\varphi\right\|_{v[x:m]}^{\mathbf{M}} = 1 \end{split}$$

Model and semantical consequence

We write $\mathbf{M} \models \varphi$ if $\|\varphi\|_{\mathbf{v}}^{\mathbf{M}} = 1$ for each **M**-evaluation **v**.

Model: We say that a \mathcal{P} -structure **M** is a \mathcal{P} -model of a \mathcal{P} -theory *T*, **M** \models *T* in symbols, if **M** $\models \varphi$ for each $\varphi \in T$.

Consequence: A \mathcal{P} -formula φ is a semantical consequence of a \mathcal{P} -theory $T, T \models_{\mathsf{CL}\forall} \varphi$, if each \mathcal{P} -model of T is also a model of φ .

Problem of completeness of $CL\forall$: formulated by Hilbert and Ackermann (1928) and solved by Gödel (1929):

Theorem 3.1 (Gödel's completeness theorem) For every predicate language \mathcal{P} and for every set $T \cup \{\varphi\}$ of \mathcal{P} -formulas :

$$T \vdash_{\mathsf{CL}\forall} \varphi \qquad iff \qquad T \models_{\mathsf{CL}\forall} \varphi$$

Some history

- 1947 Henkin: alternative proof of Gödel's completeness theorem
- 1961 Mostowski: interpretation of existential (resp. universal) guantifiers as suprema (resp. infima)
- 1963 Rasiowa, Sikorski: first-order intuitionistic logic
- 1963 Hay: infinitary standard Łukasiewicz first-order logic
- 1969 Horn: first-order Gödel–Dummett logic
- 1974 Rasiowa: first-order implicative logics
- 1990 Novák: first-order Pavelka logics
- 1992 Takeuti, Titani: first-order Gödel-Dummett logic with

additional connectives

- 1998 Hájek: first-order axiomatic extensions of HL
- 2005 Cintula, Hájek: first-order core fuzzy logics
- 2011 Cintula, Noguera: first-order semilinear logics

Basic syntax is the again the same

- Let L be G or \Bbbk and $\mathbb L$ be $\mathbb G$ or $\mathbb M\mathbb V$ correspondingly
- Predicate language: $\mathcal{P} = \langle \mathbf{P}, \mathbf{F}, \mathbf{ar} \rangle$
- Object variables: denumerable set OV
- \mathcal{P} -terms, (atomic) \mathcal{P} -formulas, \mathcal{P} -theories: as in CL \forall
- free/bounded variables, substitutable terms, sentences: as in $\mbox{CL}\forall$

Recall classical semantics

Classical \mathcal{P} -structure: a tuple $\mathbf{M} = \langle M, \langle P_{\mathbf{M}} \rangle_{P \in \mathbf{P}}, \langle f_{\mathbf{M}} \rangle_{f \in \mathbf{F}} \rangle$ where

- $M \neq \emptyset$
- $P_{\mathbf{M}} \subseteq M^n$, for each *n*-ary $P \in \mathbf{P}$
- $f_{\mathbf{M}} \colon M^n \to M$ for each *n*-ary $f \in \mathbf{F}$.

M-evaluation v: a mapping v: $OV \rightarrow M$

$$\mathbf{v}[x:m](y) = \begin{cases} m & \text{if } y = x \\ \mathbf{v}(y) & \text{otherwise} \end{cases}$$

Reformulating classical semantics

Classical \mathcal{P} -structure: a tuple $\mathbf{M} = \langle M, \langle P_{\mathbf{M}} \rangle_{P \in \mathbf{P}}, \langle f_{\mathbf{M}} \rangle_{f \in \mathbf{F}} \rangle$ where

- $M \neq \emptyset$
- $P_{\mathbf{M}}: M^n \to \{0, 1\}$, for each *n*-ary $P \in \mathbf{P}$
- $f_{\mathbf{M}} \colon M^n \to M$ for each *n*-ary $f \in \mathbf{F}$.

M-evaluation v: a mapping v: $OV \rightarrow M$

$$\mathbf{v}[x:m](y) = \begin{cases} m & \text{if } y = x \\ \mathbf{v}(y) & \text{otherwise} \end{cases}$$

And now the 'fuzzy' semantics for logic L ...

A- \mathcal{P} -structure ($A \in \mathbb{L}$): a tuple $\mathbf{M} = \langle M, \langle P_{\mathbf{M}} \rangle_{P \in \mathbf{P}}, \langle f_{\mathbf{M}} \rangle_{f \in \mathbf{F}} \rangle$ where

- $M \neq \emptyset$
- $P_{\mathbf{M}}: M^n \to A$, for each *n*-ary $P \in \mathbf{P}$
- $f_{\mathbf{M}} \colon M^n \to M$ for each *n*-ary $f \in \mathbf{F}$.

M-evaluation v: a mapping v: $OV \rightarrow M$

$$\mathbf{v}[x:m](y) = \begin{cases} m & \text{if } y = x \\ \mathbf{v}(y) & \text{otherwise} \end{cases}$$

Recall classical Tarski truth definition

Interpretation of \mathcal{P} -terms

$$\begin{aligned} \|x\|_{v}^{\mathbf{M}} &= v(x) & \text{for } x \in \mathrm{OV} \\ \|f(t_{1}, \dots, t_{n})\|_{v}^{\mathbf{M}} &= f_{\mathbf{M}}(\|t_{1}\|_{v}^{\mathbf{M}}, \dots, \|t_{n}\|_{v}^{\mathbf{M}}) & \text{for } n\text{-ary } f \in \mathbf{F} \end{aligned}$$

$$\begin{split} \|P(t_1,\ldots,t_n)\|_{v}^{\mathbf{M}} &= 1 \quad \text{iff} \quad \langle \|t_1\|_{v}^{\mathbf{M}},\ldots,\|t_n\|_{v}^{\mathbf{M}} \rangle \in P_{\mathbf{M}} \quad \text{for n-ary $P \in \mathbf{P}$} \\ & \|\overline{\mathbf{0}}\|_{v}^{\mathbf{M}} = 0 \\ & \|\alpha \wedge \beta\|_{v}^{\mathbf{M}} = 1 \quad \text{iff} \quad \|\alpha\|_{v}^{\mathbf{M}} = 1 \text{ and } \|\beta\|_{v}^{\mathbf{M}} = 1 \\ & \|\alpha \vee \beta\|_{v}^{\mathbf{M}} = 1 \quad \text{iff} \quad \|\alpha\|_{v}^{\mathbf{M}} = 1 \text{ or } \|\beta\|_{v}^{\mathbf{M}} = 1 \\ & \|\alpha \rightarrow \beta\|_{v}^{\mathbf{M}} = 1 \quad \text{iff} \quad \|\alpha\|_{v}^{\mathbf{M}} = 0 \text{ or } \|\beta\|_{v}^{\mathbf{M}} = 1 \\ & \|(\forall x)\varphi\|_{v}^{\mathbf{M}} = 1 \quad \text{iff} \quad \text{for each $m \in M$ we have } \|\varphi\|_{v[x:m]}^{\mathbf{M}} = 1 \\ & \|(\exists x)\varphi\|_{v}^{\mathbf{M}} = 1 \quad \text{iff} \quad \text{there is $m \in M$ such that } \|\varphi\|_{v[x:m]}^{\mathbf{M}} = 1 \end{split}$$

Reformulating classical Tarski truth definition

Interpretation of \mathcal{P} -terms

$$\begin{aligned} \|x\|_{\mathbf{v}}^{\mathbf{M}} &= \mathbf{v}(x) & \text{for } x \in \mathrm{OV} \\ \|f(t_1, \dots, t_n)\|_{\mathbf{v}}^{\mathbf{M}} &= f_{\mathbf{M}}(\|t_1\|_{\mathbf{v}}^{\mathbf{M}}, \dots, \|t_n\|_{\mathbf{v}}^{\mathbf{M}}) & \text{for } n\text{-ary } f \in \mathbf{F} \end{aligned}$$

$$\begin{aligned} \|P(t_1,\ldots,t_n)\|_{v}^{\mathbf{M}} &= P_{\mathbf{M}}(\|t_1\|_{v}^{\mathbf{M}},\ldots,\|t_n\|_{v}^{\mathbf{M}}) & \text{for } n\text{-ary } P \in \mathbf{P} \\ \|\overline{0}\|_{v}^{\mathbf{M}} &= \overline{0}^{2} \\ \|\alpha \wedge \beta\|_{v}^{\mathbf{M}} &= \min_{\leq 2}\{\|\alpha\|_{v}^{\mathbf{M}},\|\beta\|_{v}^{\mathbf{M}}\} \\ \|\alpha \vee \beta\|_{v}^{\mathbf{M}} &= \max_{\leq 2}\{\|\alpha\|_{v}^{\mathbf{M}},\|\beta\|_{v}^{\mathbf{M}}\} \\ \|\alpha \rightarrow \beta\|_{v}^{\mathbf{M}} &= \|\alpha\|_{v}^{\mathbf{M}} \rightarrow^{2}\|\beta\|_{v}^{\mathbf{M}} \\ \|(\forall x)\varphi\|_{v}^{\mathbf{M}} &= \inf_{\leq 2}\{\|\varphi\|_{v[x:m]}^{\mathbf{M}} \mid m \in M\} \\ \|(\exists x)\varphi\|_{v}^{\mathbf{M}} &= \sup_{\leq 2}\{\|\varphi\|_{v[x:m]}^{\mathbf{M}} \mid m \in M\} \end{aligned}$$

And now the Tarski truth definition for 'fuzzy' semantics

Interpretation of \mathcal{P} -terms

$$\begin{aligned} \|x\|_{v}^{\mathbf{M}} &= v(x) & \text{for } x \in \mathrm{OV} \\ \|f(t_{1}, \dots, t_{n})\|_{v}^{\mathbf{M}} &= f_{\mathbf{M}}(\|t_{1}\|_{v}^{\mathbf{M}}, \dots, \|t_{n}\|_{v}^{\mathbf{M}}) & \text{for } n\text{-ary } f \in \mathbf{F} \end{aligned}$$

$$\begin{aligned} \|P(t_1,\ldots,t_n)\|_{v}^{\mathbf{M}} &= P_{\mathbf{M}}(\|t_1\|_{v}^{\mathbf{M}},\ldots,\|t_n\|_{v}^{\mathbf{M}}) & \text{for } n\text{-ary } P \in \mathbf{P} \\ \|\overline{0}\|_{v}^{\mathbf{M}} &= \overline{0}^{\mathbf{A}} \\ \|\alpha \wedge \beta\|_{v}^{\mathbf{M}} &= \min_{\leq \mathbf{A}} \{\|\alpha\|_{v}^{\mathbf{M}},\|\beta\|_{v}^{\mathbf{M}}\} \\ \|\alpha \vee \beta\|_{v}^{\mathbf{M}} &= \max_{\leq \mathbf{A}} \{\|\alpha\|_{v}^{\mathbf{M}},\|\beta\|_{v}^{\mathbf{M}}\} \\ \|\alpha \rightarrow \beta\|_{v}^{\mathbf{M}} &= \|\alpha\|_{v}^{\mathbf{M}} \rightarrow^{\mathbf{A}} \|\beta\|_{v}^{\mathbf{M}} \\ \|(\forall x)\varphi\|_{v}^{\mathbf{M}} &= \inf_{\leq \mathbf{A}} \{\|\varphi\|_{v[x:m]}^{\mathbf{M}} \mid m \in M\} \\ \|(\exists x)\varphi\|_{v}^{\mathbf{M}} &= \sup_{\leq \mathbf{A}} \{\|\varphi\|_{v[x:m]}^{\mathbf{M}} \mid m \in M\} \end{aligned}$$

Model and semantical consequence

Problem: the infimum/supremum need not exist! In such case we take its value (and values of all its superformulas) as undefined

Definition 3.2 (Model)

A tuple $\mathfrak{M} = \langle \mathbf{A}, \mathbf{M} \rangle$ is a \mathbb{K} - \mathcal{P} -model of $T, \mathfrak{M} \models T$ in symbols, if

- \mathfrak{M} is A- \mathcal{P} -structure for some $A \in \mathbb{K} \subseteq \mathbb{L}$
- $\|\varphi\|_{v}^{\mathfrak{M}}$ is defined M-evaluation v and each formula φ
- $\|\psi\|_{v}^{\mathfrak{M}} = \overline{1}^{A}$ for each **M**-evaluation v and each $\psi \in T$

Definition 3.3 (Semantical consequence)

A \mathcal{P} -formula φ is a semantical consequence of a \mathcal{P} -theory T w.r.t. the class \mathbb{K} of L-algebras, $T \models_{\mathbb{K}} \varphi$ in symbols, if for each \mathbb{K} - \mathcal{P} -model \mathfrak{M} of T we have $\mathfrak{M} \models \varphi$.

The semantics of chains

Proposition 3.4 (Assume that *x* is not free in ψ ...)

$$\varphi \models_{\mathbb{L}} (\forall x)\varphi \quad thus \quad \varphi \models_{\mathbb{K}} (\forall x)\varphi$$
$$\varphi \lor \psi \models_{\mathbb{L}_{\text{lin}}} ((\forall x)\varphi) \lor \psi \quad BUT \quad \varphi \lor \psi \not\models_{\mathbb{G}} ((\forall x)\varphi) \lor \psi$$

Observation

Thus $\models_\mathbb{L} \subsetneq \models_{\mathbb{L}_{lin}}$ even though in propositional logic $\models_\mathbb{L} = \models_{\mathbb{L}_{lin}}$

Petr Cintula and Carles Noguera (CAS)

Axiomatization: two first-order logics over L

Minimal predicate logic $L\forall^m$:

(P) first-order substitutions of axioms and the rule of L

- $(\forall 1)$ $(\forall x)\varphi(x,\vec{z}) \rightarrow \varphi(t,\vec{z})$ t substitutable for x in φ
- $(\exists 1) \quad \varphi(t, \vec{z}) \to (\exists x)\varphi(x, \vec{z}) \qquad t \text{ substitutable for } x \text{ in } \varphi$
- $(\forall 2) \quad (\forall x)(\chi \to \varphi) \to (\chi \to (\forall x)\varphi)$
- $(\exists 2) \quad (\forall x)(\varphi \to \chi) \to ((\exists x)\varphi \to \chi)$
- (gen) from φ infer $(\forall x)\varphi$

- - x not free in χ
 - x not free in χ

Predicate logic $L\forall$: an the extension of $L\forall^m$ by:

 $(\forall 3) \quad (\forall x)(\varphi \lor \chi) \to ((\forall x)\varphi) \lor \chi$ x not free in χ

Theorems (for *x* not free in χ)

The logic $L \forall^m$ proves:

1. $\chi \leftrightarrow (\forall x)\chi$

3.
$$(\forall x)(\varphi \to \psi) \to ((\forall x)\varphi \to (\forall x)\psi)$$

5.
$$(\forall x)(\varphi \to \psi) \to ((\exists x)\varphi \to (\exists x)\psi)$$

7.
$$(\forall x)(\chi \to \varphi) \leftrightarrow (\chi \to (\forall x)\varphi)$$

9.
$$(\exists x)(\chi \to \varphi) \to (\chi \to (\exists x)\varphi)$$

11.
$$(\exists x)(\varphi \lor \psi) \leftrightarrow (\exists x)\varphi \lor (\exists x)\psi$$

13. $(\exists x)(\varphi^n) \leftrightarrow ((\exists x)\varphi)^n$

2.
$$(\exists x)\chi \leftrightarrow \chi$$

4.
$$(\forall x)(\forall y)\varphi \leftrightarrow (\forall y)(\forall x)\varphi$$

6.
$$(\exists x)(\exists y)\varphi \leftrightarrow (\exists y)(\exists x)\varphi$$

8.
$$(\forall x)(\varphi \to \chi) \leftrightarrow ((\exists x)\varphi \to \chi)$$

10.
$$(\exists x)(\varphi \to \chi) \to ((\forall x)\varphi \to \chi)$$

12.
$$(\exists x)(\varphi \& \chi) \leftrightarrow (\exists x)\varphi \& \chi$$

The logic $L\forall$ furthermore proves:

14. $(\forall x)\varphi \lor \chi \leftrightarrow (\forall x)(\varphi \lor \chi)$ **15.** $(\exists x)(\varphi \land \chi) \leftrightarrow (\exists x)\varphi \land \chi$

Exercise 13

Prove these theorems.

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

$\mathbf{k} \forall = \mathbf{k} \forall^m$

Proposition 3.5

 $\mathbf{k} \forall = \mathbf{k} \forall^m$.

Proof.

It is enough to show that $\mathbb{E}\forall^m$ proves $(\forall 3)$. From $(\alpha \lor \beta) \leftrightarrow ((\alpha \to \beta) \to \beta)$ and (3) we obtain $(\forall x)(\varphi \lor \psi) \to (\forall x)((\psi \to \varphi) \to \varphi)$. Now, again by (3), we have $(\forall x)((\psi \to \varphi) \to \varphi) \to ((\forall x)(\psi \to \varphi) \to (\forall x)\varphi)$. By (7) and suffixing, $((\forall x)(\psi \to \varphi) \to (\forall x)\varphi) \to ((\psi \to (\forall x)\varphi) \to (\forall x)\varphi)$, and finally we have $((\psi \to (\forall x)\varphi) \to (\forall x)\varphi) \to (\forall x)\varphi \lor \psi$. Transitivity ends the proof.

Syntactical properties of $\vdash_{L^{\forall m}}$ and $\vdash_{L^{\forall}}$

Let \vdash be either $\vdash_{L\forall^m}$ or $\vdash_{L\forall}$.

Theorem 3.6 (Congruence Property)

Let φ, ψ be sentences, χ a formula, and $\hat{\chi}$ a formula resulting from χ by replacing some occurrences of φ by ψ . Then

$$\begin{split} \vdash \varphi \leftrightarrow \varphi & \varphi \leftrightarrow \psi \vdash \psi \leftrightarrow \varphi \\ \varphi \leftrightarrow \psi \vdash \chi \leftrightarrow \hat{\chi} & \varphi \leftrightarrow \delta, \delta \leftrightarrow \psi \vdash \varphi \leftrightarrow \psi. \end{split}$$

Theorem 3.7 (Constants Theorem)

Let $\Sigma \cup \{\varphi(x, \vec{z})\}$ be a theory and *c* a constant not occurring there. Then $\Sigma \vdash \varphi(c, \vec{z})$ iff $\Sigma \vdash \varphi(x, \vec{z})$.

Exercise 14

Prove the Constants Theorem for $\vdash_{G\forall^m}$.

Petr Cintula and Carles Noguera (CAS)

Deduction theorems

Theorem 3.8

For each \mathcal{P} -theory $T \cup \{\varphi, \psi\}$:

٩	$T,\varphi \vdash_{\mathbf{G} \forall^{\mathbf{m}}} \psi$	iff	$T \vdash_{\mathbf{G} \forall^{\mathbf{m}}} \varphi \to \psi.$	
٩	$T,\varphi \vdash_{G \forall} \psi$	iff	$T \vdash_{G\forall} \varphi \to \psi.$	
٩	$T, \varphi \vdash_{\mathbb{L} \forall} \psi$	iff	$T \vdash_{\mathbb{E}\forall} \varphi^n \to \psi$	for some $n \in N$.

Petr Cintula and Carles Noguera (CAS)

Syntactical properties of $\vdash_{L\forall}$

Theorem 3.9 (Proof by Cases Property) For a \mathcal{P} -theory T and \mathcal{P} -sentences φ, ψ, χ : $\frac{T, \varphi \vdash_{L\forall} \chi}{T, \varphi \lor \psi \vdash_{L\forall} \chi}$

Proof.

We show by induction $T \lor \chi \vdash \varphi \lor \chi$ whenever $T \vdash \varphi$ and χ is a sentence; the rest is the same as in the propositional case. Let δ be an element of the proof of φ from *T*: the claim is

- trivial if $\delta \in T$ or δ is an axiom;
- proved as in the propositional case if δ is obtained using (MP)

• easy if $\delta = (\forall x)\psi$ is obtained using (gen): from the IH we get $T \lor \chi \vdash \psi \lor \chi$ and using (gen), (\forall 3), and (MP) we obtain $T \lor \chi \vdash ((\forall x)\psi) \lor \chi$.

(PCP)

Syntactical properties of $\vdash_{L\forall}$

Theorem 3.9 (Proof by Cases Property) For a \mathcal{P} -theory T and \mathcal{P} -sentences φ, ψ, χ : $\frac{T, \varphi \vdash_{L\forall} \chi}{T, \varphi \lor \psi \vdash_{L\forall} \chi}$

(PCP)

Theorem 3.10 (Semilinearity Property)For a \mathcal{P} -theory T and \mathcal{P} -sentences φ, ψ, χ : $\frac{T, \varphi \rightarrow \psi \vdash_{L\forall} \chi}{T \vdash_{L\forall} \chi} \qquad (SLP)$

Proof.

 $\text{Easy using PCP and } \vdash_{\mathsf{L}\forall} (\varphi \to \psi) \lor (\psi \to \varphi).$

Soundness

Exercise 15

Prove for L be either E of G that

$$\bullet \vdash_{\mathsf{L}\forall} \subseteq \models_{\mathbb{L}_{\mathsf{lin}}}$$

$$\bullet \vdash_{\mathbb{L}\forall} \subseteq \models_{\mathbb{M}\mathbb{V}}$$

Recall that $\vdash_{G \forall} \not\subseteq \models_{\mathbb{G}}$

Failure of certain classical theorems (for *x* not free in χ)

Recall:

$$\begin{split} \vdash_{\mathrm{L}\forall} (\forall x)\varphi \lor \chi \leftrightarrow (\forall x)(\varphi \lor \chi) & \vdash_{\mathrm{L}\forall} (\exists x)(\varphi \land \chi) \leftrightarrow (\exists x)\varphi \land \chi \\ \vdash_{\mathrm{L}\forall^{\mathrm{m}}} (\forall x)(\chi \to \varphi) \leftrightarrow (\chi \to (\forall x)\varphi) & \vdash_{\mathrm{L}\forall^{\mathrm{m}}} (\forall x)(\varphi \to \chi) \leftrightarrow ((\exists x)\varphi \to \chi) \\ \vdash_{\mathrm{L}\forall^{\mathrm{m}}} (\exists x)(\chi \to \varphi) \to (\chi \to (\exists x)\varphi) & \vdash_{\mathrm{L}\forall^{\mathrm{m}}} (\exists x)(\varphi \to \chi) \to ((\forall x)\varphi \to \chi) \end{split}$$

Proposition 3.11

The formulas in the first row are not provable in $G\forall^m$ and the converse directions of formulas in the last row are provable $E\forall^m$ but not in $G\forall$.

Exercise 16

Prove the second part of the previous proposition.

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

www.cs.cas.cz/cintula/MFL 29/79

Towards completeness: Lindenbaum–Tarski algebra

Let L be G or Ł and \vdash be either $\vdash_{L\forall^m}$ or $\vdash_{L\forall}$. Let T be a \mathcal{P} -theory. Lindenbaum–Tarski algebra of T (LindT_T):

• domain $L_T = \{ [\varphi]_T \mid \varphi \text{ a } \mathcal{P}\text{-sentence} \}$ where

 $[\varphi]_T = \{ \psi \mid \psi \text{ a } \mathcal{P}\text{-sentence and } T \vdash \varphi \leftrightarrow \psi \}.$

• operations:

$$\circ^{\mathbf{Lind}\mathbf{T}_T}([\varphi_1]_T,\ldots,[\varphi_n]_T)=[\circ(\varphi_1,\ldots,\varphi_n)]_T$$

Exercise 17

- Lind $\mathbf{T}_T \in \mathbb{L}$
- $[\varphi]_T \leq_{\mathbf{LindT}_T} [\psi]_T \text{ iff } T \vdash \varphi \to \psi$
- Lind $\mathbf{T}_T \in \mathbb{L}_{\text{lin}}$ if, and only if, *T* is linear.

Canonical model (\mathfrak{CM}_T) of a \mathcal{P} -theory T (in \vdash): \mathcal{P} -structure $\langle \mathbf{LindT}_T, \mathbf{M} \rangle$ such that

- domain of M: the set CT of closed \mathcal{P} -terms
- $f_{\mathbf{M}}(t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$ for each *n*-ary $f \in \mathbf{F}$, and

•
$$P_{\mathbf{M}}(t_1, \ldots, t_n) = [P(t_1, \ldots, t_n)]_T$$
 for each *n*-ary $P \in \mathbf{P}$.

A \mathcal{P} -theory T is \forall -Henkin if for each \mathcal{P} -formula ψ such that $T \nvDash (\forall x)\psi(x)$ there is a constant c in \mathcal{P} such that $T \nvDash \psi(c)$.

 \forall -Henkin: $T \nvDash (\forall x)\psi(x)$ implies $T \nvDash \psi(c)$ for some constant c

Proposition 3.12

Let *T* be a \forall -Henkin \mathcal{P} -theory. Then for each \mathcal{P} -sentence φ we have $\|\varphi\|^{\mathfrak{CM}_T} = [\varphi]_T$ and so $\mathfrak{CM}_T \models \varphi$ iff $T \vdash \varphi$.

Proof.

Let v be evaluation s.t. $v(x) = t^x$ for some $t^x \in CT$. We show by induction that $\|\varphi(x_1, \ldots, x_n)\|_v^{\mathfrak{CM}_T} = [\varphi(t_1^x, \ldots, t_n^x)]_T$.

 \forall -Henkin: $T \nvDash (\forall x)\psi(x)$ implies $T \nvDash \psi(c)$ for some constant c

Proposition 3.12

Let *T* be a \forall -Henkin \mathcal{P} -theory. Then for each \mathcal{P} -sentence φ we have $\|\varphi\|^{\mathfrak{CM}_T} = [\varphi]_T$ and so $\mathfrak{CM}_T \models \varphi$ iff $T \vdash \varphi$.

Proof.

Let v be evaluation s.t. $v(x) = t^x$ for some $t^x \in CT$. We show by induction that $\|\varphi(x_1, \ldots, x_n)\|_v^{\mathfrak{CM}_T} = [\varphi(t_1^x, \ldots, t_n^x)]_T$.

The base case and the induction step for connectives is just the definition.

 \forall -Henkin: $T \nvDash (\forall x)\psi(x)$ implies $T \nvDash \psi(c)$ for some constant c

Proposition 3.12

Let *T* be a \forall -Henkin \mathcal{P} -theory. Then for each \mathcal{P} -sentence φ we have $\|\varphi\|^{\mathfrak{CM}_T} = [\varphi]_T$ and so $\mathfrak{CM}_T \models \varphi$ iff $T \vdash \varphi$.

Proof.

Let v be evaluation s.t. $v(x) = t^x$ for some $t^x \in CT$. We show by induction that $\|\varphi(x_1, \ldots, x_n)\|_v^{\mathfrak{CM}_T} = [\varphi(t_1^x, \ldots, t_n^x)]_T$.

Quantifiers: $[(\forall x)\varphi]_T \stackrel{?}{=} ||(\forall x)\varphi||^{\mathfrak{CM}_T} = \inf_{\leq_{\mathbf{LindT}_T}} \{ [\varphi(t)]_T \mid t \in CT \}$

From $T \vdash (\forall x)\varphi \rightarrow \varphi(t)$ we get that $[(\forall x)\varphi]_T$ is a lower bound.

We show it is the largest one: take any χ s.t. $[\chi]_T \not\leq_{\text{LindT}_T} [(\forall x)\varphi]_T$; thus $T \not\vdash \chi \rightarrow (\forall x)\varphi$, and so $T \not\vdash (\forall x)(\chi \rightarrow \varphi)$. So there is $c \in CT$ s.t. $T \not\vdash (\chi \rightarrow \varphi(c))$, i.e., $[\chi]_T \not\leq_{\text{LindT}_T} [\varphi(c)]_T$.

Completeness theorem for $L \forall^m$

Theorem 3.13 (Completeness theorem for $L \forall^m$) Let L be either L or G and $T \cup \{\varphi\}$ a \mathcal{P} -theory. Then: $T \vdash_{L\forall^m} \varphi$ iff $T \models_{\mathbb{L}} \varphi$.

All we need to prove this theorem is to show that:

Lemma 3.14 (Extension lemma for $L\forall^m$)

Let $T \cup \{\varphi\}$ be a \mathcal{P} -theory such that $T \nvDash_{L \forall m} \varphi$. Then there is $\mathcal{P}' \supseteq \mathcal{P}$ and a \forall -Henkin \mathcal{P}' -theory $T' \supseteq T$ such that $T' \nvDash_{L \forall m} \varphi$.

Proof.

 $\begin{array}{l} \mathcal{P}' = \mathcal{P} + \text{countably many new object constants. Let } T' \text{ be } T \text{ as} \\ \mathcal{P}'\text{-theory. Take any } \mathcal{P}'\text{-formula } \psi(x) \text{, such that } T' \nvDash_{L\forall^m} (\forall x)\psi(x) \text{. Thus} \\ T' \nvDash_{L\forall^m} \psi(x) \text{ and so } T' \nvDash_{L\forall^m} \psi(c) \text{ for some } c \in \mathcal{P}' \text{ not occurring in} \\ T' \cup \{\psi\} \text{ (by Constants Theorem).} \end{array}$

Completeness theorem for $L \forall$

Theorem 3.15 (Completeness theorem for $L\forall$) Let L be either L or G and $T \cup \{\varphi\}$ a \mathcal{P} -theory. Then $T \vdash_{L\forall} \varphi$ iff $T \models_{Lin} \varphi$.

All we need to prove this theorem is to show that:

Lemma 3.16 (Extension lemma for $L\forall$)

Let $T \cup \{\varphi\}$ be a \mathcal{P} -theory such that $T \nvdash_{L\forall} \varphi$. Then there is a predicate language $\mathcal{P}' \supseteq \mathcal{P}$ and a linear \forall -Henkin \mathcal{P}' -theory $T' \supseteq T$ such that $T' \nvdash_{L\forall} \varphi$.

Initializing the construction

Let \mathcal{P}' be the expansion of \mathcal{P} by countably many new constants.

We enumerate all \mathcal{P}' -formulas with one free variable: { $\chi_i(x) \mid i \in \mathbb{N}$ }.

We construct a sequence of \mathcal{P}' -sentences φ_i and an increasing chain of \mathcal{P}' -theories T_i such that $T_i \nvDash \varphi_j$ for each $j \leq i$.

Take $T_0 = T$ and $\varphi_0 = \varphi$, which fulfils our conditions.

In the induction step we distinguish two possibilities and show that the required conditions are met:
The induction step

(H1) If $T_i \vdash \varphi_i \lor (\forall x)\chi_{i+1}(x)$: then we define $\varphi_{i+1} = \varphi_i$ and $T_{i+1} = T_i \cup \{(\forall x)\chi_{i+1}(x)\}.$

(H2) If $T_i \not\vdash \varphi_i \lor (\forall x)\chi_{i+1}(x)$, then we define $T_{i+1} = T_i$ and $\varphi_{i+1} = \varphi_i \lor \chi_{i+1}(c)$ for some *c* not occurring in $T_i \cup \{\varphi_j \mid j \leq i\}$.

Assume, for a contradiction, that $T_{i+1} \vdash \varphi_j$ for some $j \leq i+1$. Then also $T_{i+1} \vdash \varphi_{i+1}$.

Thus in case (H1) we have $T_i \cup \{(\forall x)\chi_{i+1}(x)\} \vdash \varphi_i$. Since, trivially, $T_i \cup \{\varphi_i\} \vdash \varphi_i$ we obtain by Proof by Cases Property that $T_i \cup \{\varphi_i \lor (\forall x)\chi_{i+1}(x)\} \vdash \varphi_i$ and so $T_i \vdash \varphi_i$; a contradiction!

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

The induction step

(H1) If $T_i \vdash \varphi_i \lor (\forall x)\chi_{i+1}(x)$: then we define $\varphi_{i+1} = \varphi_i$ and $T_{i+1} = T_i \cup \{(\forall x)\chi_{i+1}(x)\}.$

(H2) If $T_i \not\vdash \varphi_i \lor (\forall x)\chi_{i+1}(x)$, then we define $T_{i+1} = T_i$ and $\varphi_{i+1} = \varphi_i \lor \chi_{i+1}(c)$ for some *c* not occurring in $T_i \cup \{\varphi_j \mid j \leq i\}$.

Assume, for a contradiction, that $T_{i+1} \vdash \varphi_j$ for some $j \leq i+1$. Then also $T_{i+1} \vdash \varphi_{i+1}$.

Thus in case (H2) we have $T_i \vdash \varphi_i \lor \chi_{i+1}(c)$. Using Constants Theorem we obtain $T_i \vdash \varphi_i \lor \chi_{i+1}(x)$ and thus by (gen), (\forall 3), and (MP) we obtain $T_i \vdash \varphi_i \lor (\forall x)\chi_{i+1}(x)$; a contradiction!

Final touches ...

Let T' be a maximal theory extending $\bigcup T_i$ s.t. $T' \nvDash \varphi_i$ for each *i*. Such T' exists thanks to Zorn's Lemma: let \mathcal{T} be a chain of such theories then clearly so is $\bigcup \mathcal{T}$.

T' is *linear*: assume that $T' \not\vdash \psi \rightarrow \chi$ and $T' \not\vdash \chi \rightarrow \psi$. Then there are *i*, *j* such that $T', \psi \rightarrow \chi \vdash \varphi_i$ and $T', \chi \rightarrow \psi \vdash \varphi_j$. Thus also

$$T', \psi \to \chi \vdash \varphi_{\max\{i,j\}} \text{ and } T', \chi \to \psi \vdash \varphi_{\max\{i,j\}}.$$

Thus by Semilinearity Property also $T' \vdash \varphi_{\max\{i,j\}}$; a contradiction!

T' is \forall -*Henkin:* if $T' \nvDash (\forall x)\chi_{i+1}(x)$, then we must have used case (H2); since $T' \nvDash \varphi_{i+1}$ and $\varphi_{i+1} = \varphi_i \lor \chi_{i+1}(c)$) we also have $T' \nvDash \chi_{i+1}(c)$.

Petr Cintula and Carles Noguera (CAS)

It works in Gödel–Dummett logic

Theorem 3.17

The following are equivalent for every set of \mathcal{P} -formulas $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$:

$$\ \ \, \mathbf{0} \ \ \, \Gamma \models_{[0,1]_{\mathbf{G}}} \varphi$$

Recall the proof in the propositional case

Contrapositively: assume that $T \not\vdash_G \varphi$. Let *B* be a countable G-chain and *e* a *B*-evaluation such that $e[T] \subseteq \{\overline{1}^B\}$ and $e(\varphi) \neq \overline{1}^B$.

There has to be (because every countable order can be monotonously embedded into a dense one) a mapping $f: B \to [0, 1]$ such that $f(\overline{0}) = 0, f(\overline{1}) = 1$, and for each $a, b \in B$ we have:

 $a \le b$ iff $f(a) \le f(a)$

We define a mapping $\bar{e} \colon Fm_{\mathcal{L}} \to [0,1]$ as

 $\bar{e}(\psi) = f(e(\psi))$

and prove (by induction) that it is $[0,1]_{G}$ -evaluation.

Then
$$\bar{e}(\psi) = 1$$
 iff $e(\psi) = \overline{1}^{B}$ and so $\bar{e}[T] \subseteq \{1\}$ and $\bar{e}(\varphi) \neq 1$.

Would it work in the first-order level?

Contrapositively: assume that $T \not\vdash_{G\forall} \varphi$. Let *B* be a countable G-chain and $\mathfrak{M} = \langle \boldsymbol{B}, \mathbf{M} \rangle$ a model of *T* such that $\|\varphi\|_{v}^{\mathbf{M}} \neq \overline{1}^{\mathbf{B}}$.

There has to be (because every countable order can be monotonously embedded into a dense one) a mapping $f: B \to [0, 1]$ such that $f(\overline{0}) = 0, f(\overline{1}) = 1$, and for each $a, b \in B$ we have:

 $a \le b$ iff $f(a) \le f(a)$

Would it work in the first-order level?

Contrapositively: assume that $T \not\vdash_{G\forall} \varphi$. Let *B* be a countable G-chain and $\mathfrak{M} = \langle \boldsymbol{B}, \mathbf{M} \rangle$ a model of *T* such that $\|\varphi\|_{v}^{\mathbf{M}} \neq \overline{1}^{\mathbf{B}}$.

There has to be (because every countable order can be monotonously embedded into a dense one) a mapping $f: B \to [0, 1]$ such that $f(\overline{0}) = 0, f(\overline{1}) = 1$, and for each $a, b \in B$ we have:

$$f(a \wedge b) = f(a) \wedge f(b)$$
 and $f^{-1}(a \wedge b) = f^{-1}(a) \wedge f^{-1}(b)$

Would it work in the first-order level?

Contrapositively: assume that $T \not\vdash_{G\forall} \varphi$. Let *B* be a countable G-chain and $\mathfrak{M} = \langle \boldsymbol{B}, \mathbf{M} \rangle$ a model of *T* such that $\|\varphi\|_{v}^{\mathbf{M}} \neq \overline{1}^{\mathbf{B}}$.

There has to be (because every countable order can be monotonously embedded into a dense one) a mapping $f: B \to [0, 1]$ such that $f(\overline{0}) = 0, f(\overline{1}) = 1$, and for each $a, b \in B$ we have:

$$f(\bigwedge_{a \in X} a) = \bigwedge_{a \in X} f(a) \text{ and } f^{-1}(\bigwedge_{a \in X} a) = \bigwedge_{a \in X} f^{-1}(a)$$

We define a $[0,1]_G$ -structure $\bar{\mathbf{M}}$ with the same domain, functions and

$$P_{\bar{\mathbf{M}}}(x_1,\ldots,x_n)=f(P_{\mathbf{M}}(x_1,\ldots,x_n))$$

and prove (by induction) that $\|\psi\|_v^{\bar{\mathbf{M}}} = f(\|\psi\|_v^{\mathbf{M}})$. Then $\|\psi\|_v^{\bar{\mathbf{M}}} = 1$ iff $\|\psi\|_v^{\mathbf{M}} = \overline{1}^{\mathbf{B}}$ and so $\langle [0,1]_G, \bar{\mathbf{M}} \rangle$ is model of T and $\|\varphi\|_v^{\bar{\mathbf{M}}} \neq 1$.

What about the case of Łukasiewicz logic?

Theorem 3.18

There is a formula φ such that $\models_{[0,1]_{L}} \varphi$ and $\not\vdash_{L\forall} \varphi$.

Neither the set of theorems nor the set of satisfiable formulas w.r.t. the models of standard MV-algebra $[0,1]_{\rm L}$ are recursively enumerable. In fact we have:

Theorem 3.19 (Ragaz, Goldstern, Hájek) The set stTAUT($L\forall$) is Π_2 -complete and stSAT($L\forall$) is Π_1 -complete.

Finite model property: The classical case

- Valid sentences of CL∀ (in any predicate language) are recursively enumerable thanks to the completeness theorem.
- Löwenheim (1915): Monadic classical logic (the fragment of CL∀ only with unary predicates and no functional symbols) has the finite model property, and hence it is decidable.
- Church (1936) and Turing (1937): if the predicate language contains at least a binary predicate, then CL∀ is undecidable.
- Surány (1959): The fragment of CL∀ with three variables is undecidable.
- Mortimer (1975): The fragment of CL∀ with two variables has the finite model property, and hence it is decidable.

Finite model property: the fuzzy case

In Gödel–Dummett logic the FMP does not even hold for formulas with one variable (a model is finite if it has a finite domain).

Example in $G \forall = \models_{[0,1]_G}$

 $\varphi = \neg(\forall x)P(x) \land \neg(\exists x)\neg P(x).$

Evidently φ has no finite model and so $\varphi \models_{[0,1]_G}^{\text{fin}} \overline{0}$. But consider $[0,1]_G$ -model \mathfrak{M} with domain N, where $P_{\mathbf{M}}(n) = \frac{1}{n+1}$. Then clearly for each $n \in \mathbb{N}$: ||P(n)|| > 0 and $\inf_{n \in \mathbb{N}} ||P(n)|| = 0$, i.e., $\mathfrak{M} \models \varphi$, and so $\varphi \not\models_{[0,1]_G} \overline{0}$.

The infimum is not the minimum, it is not *witnessed*.

Exercise 18

Show that $\models_{[0,1]_{\mathbb{H}}}$ does not have the FMP (hint: use the formula $(\exists x)(P(x) \leftrightarrow \neg P(x)) \& (\forall x)(\exists y)(P(x) \leftrightarrow P(y) \& P(y))).$

Witnessed models

Definition 3.20

A \mathcal{P} -model \mathfrak{M} is witnessed if for each \mathcal{P} -formula $\varphi(x, \vec{y})$ and for each $\vec{a} \in M$ there are $b_s, b_i \in M$ such that:

 $\|(\forall x)\varphi(x,\vec{a})\|^{\mathfrak{M}} = \|\varphi(b_i,\vec{a})\|^{\mathfrak{M}} \qquad \|(\exists x)\varphi(x,\vec{a})\|^{\mathfrak{M}} = \|\varphi(b_s,\vec{a})\|^{\mathfrak{M}}.$

Exercise 19

Consider formulas

 $(W\exists) \ (\exists x)((\exists y)\psi(y,\vec{z}) \to \psi(x,\vec{z})) \qquad (W\forall) \ (\exists x)(\psi(x,\vec{z}) \to (\forall y)\psi(y,\vec{z}))$

Show that not all models of these formulas are witnessed and these formulas are

- true in all witnessed models of G∀
- not provable in G∀
- provable in (true in all models of) $E \forall$

Witnessed logic and witnessed completeness

Theorem 3.21 (Witnessed completeness theorem for $E \forall$)

Let $T \cup \{\varphi\}$ a theory. Then $T \vdash_{\mathrm{L}\forall} \varphi$ iff for each witnessed $\mathbb{MV}_{\mathrm{lin}}$ -model \mathfrak{M} of T we have $\mathfrak{M} \models \varphi$.

Definition 3.22

The logic $G \forall^w$ is the extension of $G \forall$ by the axioms $(W \exists)$ and $(W \forall)$.

(note that the analogous definition for L would yield $E \forall^w = E \forall$)

Theorem 3.23 (Witnessed completeness theorem for $G\forall^w$)

Let $T \cup \{\varphi\}$ be a theory. Then $T \vdash_{G \forall w} \varphi$ iff for each witnessed \mathbb{G}_{lin} -model \mathfrak{M} of T we have $\mathfrak{M} \models \varphi$.

A proof

A theory *T* is Henkin if it is \forall -Henkin and for each φ such that $T \vdash (\exists x)\varphi(x)$ there is a constant such that $T \vdash \varphi(c)$.

Assume that we can prove:

Lemma 3.24 (Full Extension lemma for $L\forall$)

Let $T \cup \{\varphi\}$ be a \mathcal{P} -theory such that $T \nvDash_{L \forall w} \varphi$. Then there is a predicate language $\mathcal{P}' \supseteq \mathcal{P}$ and a linear Henkin \mathcal{P}' -theory $T' \supseteq T$ such that $T' \nvDash_{L \forall w} \varphi$.

Then the proof of the witnessed completeness is an easy corollary of the following straightforward proposition

Proposition 3.25

Let *T* be a Henkin \mathcal{P} -theory. Then \mathfrak{CM}_T is a witnessed model.

Before we prove the full extension lemma ...

Definition 3.26

Let $\mathcal{P}_1 \subseteq \mathcal{P}_2$. A \mathcal{P}_2 -theory T_2 is a conservative expansion of a \mathcal{P}_1 -theory T_1 if for each \mathcal{P}_1 -formula φ , $T_2 \vdash \varphi$ iff $T_1 \vdash \varphi$.

Proposition 3.27

For each predicate language \mathcal{P} , each \mathcal{P} -theory T, each \mathcal{P} -formula $\varphi(x)$, and any constant $c \notin \mathcal{P}$ holds that $T \cup \{\varphi(c)\}$ is a conservative expansion (in the logic L \forall) of $T \cup \{(\exists x)\varphi(x)\}$.

Proof.

Assume that $T \cup \{\varphi(c)\} \vdash_{L\forall} \psi$. Then, by Deduction Theorem, there is *n* such that $T \vdash_{L\forall} \varphi(c)^n \to \psi$. Thus by the Constants Theorem and ($\exists 2$) we obtain $T \vdash_{L\forall} (\exists x)(\varphi(x)^n) \to \psi$. Using (13) we obtain $T \vdash_{L\forall} ((\exists x)\varphi(x))^n \to \psi$. Deduction Theorem completes the proof.

A proof of full extension lemma

Modify the proof of the extension lemma, s.t. after going through options (H1) and (H2) on the *i*-th step we construct theories T'_{i+1} . Then we distinguish two new options:

(W1) If T'_{i+1} , $(\exists x)\chi_{i+1} \nvDash \varphi_{i+1}$: then we define $T_{i+1} = T'_{i+1} \cup \{\chi_{i+1}(c)\}$. for some *c* not occurring in $T'_i \cup \{\varphi_j \mid j \le i\}$.

(W2) If T'_{i+1} , $(\exists x)\chi_{i+1} \vdash \varphi_{i+1}$: then we define $T_{i+1} = T'_{i+1}$

The induction assumption $T_{i+1} \nvDash \varphi_{i+1}$ holds: in (W2) trivially, in case of (W1) we use the fact that $T'_{i+1} \cup \{\chi_{i+1}(c)\}$ is a conservative expansion of $T'_{i+1} \cup \{(\exists x)\chi_{i+1}(x)\}$.

The rest is the same as the proof of the extension lemma, we only show that T' is Henkin: it $T' \vdash (\exists x)\chi_{i_1}(x)$ then we used case (W1) (from $T', (\exists x)\chi_{i+1}(x) \vdash \varphi_{i+1}$, a contradiction). Thus $T' \vdash \chi_{i+1}(c)$.

Skolemization

Theorem 3.28

For Gödel–Dummett logic we have: $T \cup \{(\forall \vec{y})\varphi(f_{\varphi}(\vec{y}), \vec{y})\}$ is a conservative expansion of $T \cup \{(\forall \vec{y})(\exists x)\varphi(x, \vec{y})\}$ for each \mathcal{P} -theory $T \cup \{\varphi(x, \vec{y})\}$, and a functional symbol $f_{\varphi} \notin \mathcal{P}$ of the proper arity.

A hint of the proof.

Take \mathcal{P} -formula χ s.t. $T \cup \{(\forall y)(\exists x)\varphi(x,y)\} \nvDash \chi$. Let T' be a Henkin \mathcal{P}' -theory $T' \supseteq T \cup \{(\forall y)(\exists x)\varphi(x,y)\}$ s.t. $T' \nvDash \chi$, and hence $\mathfrak{CM}_{T'} \nvDash \chi$. For each closed \mathcal{P}' -term t we have $T' \vdash (\exists x)\varphi(x,t)$ (by $(\forall 1)$) and hence there is a \mathcal{P}' -constant c_t such that $T' \vdash \varphi(c_t, t)$. We define a model \mathfrak{M} by expanding $\mathfrak{CM}_{T'}$ with one functional symbol defined as: $(f_{\varphi})_{\mathfrak{M}}(t) = c_t$ Observe that for each \mathcal{P}' -formula: $\mathfrak{M} \models \psi$ iff $\mathfrak{CM}_T' \models \psi$ Thus $\mathfrak{M} \models T$ and $\mathfrak{M} \nvDash \chi$ and so clearly $\mathfrak{M} \models (\forall y)\varphi(f_{\varphi}(y), y)$ And so we have established $T \cup \{(\forall y)\varphi(f_{\varphi}(y), y)\} \nvDash \chi$.

Important sets of sentences

Definition 3.29

Let L be G or L and $\mathbb K$ a non-empty class of L-chains. We define:

$$\mathrm{TAUT}(\mathbb{K}) = \{ \varphi \mid \text{ for every } \mathbb{K} \text{-model } \mathfrak{M}, \|\varphi\|_{\mathbf{M}}^{A} = \overline{\mathbf{I}}^{A} \}.$$

 $\mathrm{TAUT}_{\mathrm{pos}}(\mathbb{K}) = \{ \varphi \mid \text{ for every } \mathbb{K} \text{-model } \mathfrak{M}, \|\varphi\|_{\mathbf{M}}^{\mathbf{A}} > \overline{0}^{\mathbf{A}} \}.$

SAT(\mathbb{K}) ={ φ | there exist \mathbb{K} -model \mathfrak{M} s.t. $\|\varphi\|_{\mathbf{M}}^{\mathbf{A}} = \overline{\mathbf{1}}^{\mathbf{A}}$.

 $\operatorname{SAT}_{\operatorname{pos}}(\mathbb{K}) = \{ \varphi \mid \text{ there exist } \mathbb{K} \text{-model } \mathfrak{M} \text{ s.t. } \|\varphi\|_{\mathbf{M}}^{A} > \overline{0}^{A}.$

Instead of $TAUT(\mathbb{K})$ we write

- $genTAUT(L\forall)$ if \mathbb{K} is the class of all L-chains (general semantics).
- stTAUT(L∀) if K contains only the standard L-chain on [0, 1] (standard semantics).

And analogously for $TAUT_{pos}(\mathbb{K}),\,SAT(\mathbb{K})$ and $SAT_{pos}(\mathbb{K})\,\ldots$

Relations between sets

Lemma 3.30

- $\varphi \in \text{TAUT}_{\text{pos}}(\mathbb{K}) \text{ iff } \neg \varphi \notin \text{SAT}(\mathbb{K}),$
- **2** $\varphi \in SAT_{pos}(\mathbb{K})$ *iff* $\neg \varphi \notin TAUT(\mathbb{K})$.

Lemma 3.31

If L = L, then for every φ :

- $\ \, \bullet \in \mathsf{SAT}(\mathbb{K}) \text{ iff } \neg \varphi \notin \mathsf{TAUT}_{\mathsf{pos}}(\mathbb{K}),$
- **2** $\varphi \in \text{TAUT}(\mathbb{K})$ *iff* $\neg \varphi \notin \text{SAT}_{\text{pos}}(\mathbb{K})$.

Arithmetical hierarchy

- Let $\Phi(x)$ be an arithmetical formula with one free variable; we say $\Phi(x)$ defines a set $A \subseteq N$ iff for any $n \in N$ we have $n \in A$ iff $N \models \Phi(n)$.
- An arithmetical formula is bounded iff all its quantifiers are bounded (i.e., are of the form ∀*x* ≤ *t* or ∃*x* ≤ *t* for some term *t*).
- An arithmetical formula is a Σ₁-formula (Π₁-formula) iff it has the form ∃xΦ (∀xΦ respectively) where Φ is a bounded formula.
- A formula is Σ_2 (Π_2) iff it has the form $\exists x \Phi$ ($\forall x \Phi$ respectively) where Φ is a Π_1 -formula (Σ_1 -formula respectively).
- Inductively, one defines Σ_n- and Π_n-formulas for any natural number n ≥ 1.

Arithmetical hierarchy

- A set $A \subseteq N$ is in the class Σ_n iff there is a Σ_n -formula that defines A in N; analogously for the class Π_n .
- Any set that is in Σ_n is also in Σ_m and Π_m for m > n.
- If $A \subseteq \mathbb{N}$ is a Σ_n -set, then \overline{A} is a Π_n -set.
- Σ_1 -sets are exactly recursively enumerable sets, while recursive sets are $\Sigma_1 \cap \Pi_1$.
- A problem P_1 is reducible to a problem P_2 ($P_1 \leq P_2$) iff there is a deterministic Turing machine such that, for any pair of input *x* and its output *y*, we have $x \in P_1$ iff $y \in P_2$.
- A problem *P* is Σ_n -hard iff $P' \leq_m P$ for any Σ_n -problem *P'*.
- A problem *P* is Σ_n-complete iff it is Σ_n-hard and at the same time it is a Σ_n-problem. Analogously for Π_n.

Lower bounds

Proposition 3.32

For every class \mathbb{K} of chains, $TAUT(\mathbb{K})$ and $TAUT_{pos}(\mathbb{K})$ are Σ_1 -hard. and the sets $SAT(\mathbb{K})$ and $SAT_{pos}(\mathbb{K})$ are Π_1 -hard.

Proof (for $SAT(\mathbb{K})$, the others are much harder).

Let φ be a sentence with predicate symbols $\{P_i \mid 1 \le i \le n\}$. Observe that

$$\varphi \in \text{SAT}(2) \quad \text{iff} \quad \varphi \land \bigwedge_{1 \le i \le n} (\forall \overrightarrow{x}) (P_i(\overrightarrow{x}) \lor \neg P_i(\overrightarrow{x})) \in \text{SAT}(\mathbb{K})$$

Since the satisfiability problem in classical logic is $\Pi_1\text{-hard}$ so it must be $SAT(\mathbb{K}).$

Upper bounds

Proposition 3.33

If $L\forall$ is complete w.r.t. models over \mathbb{K} , then $TAUT(\mathbb{K})$ and $TAUT_{pos}(\mathbb{K})$ are Σ_1 , while $SAT(\mathbb{K})$ and $SAT_{pos}(\mathbb{K})$ are Π_1 .

Proof.

TAUT(\mathbb{K}) is Σ_1 because it is the set of theorems of a recursively axiomatizable logic. As regards to SAT(\mathbb{K}), notice that for every φ we have: $\varphi \in SAT(\mathbb{K})$ iff $\varphi \not\models_{\mathbb{K}} \overline{0}$ iff $\varphi \not\vdash_{\mathsf{L}\forall} \overline{0}$. Thus SAT(\mathbb{K}) is in Π_1 . The other two claim follows from Lemma 3.30.

Complexity of general semantics and undecidability

Theorem 3.34

genTAUT(L \forall) and genTAUT_{pos}(L \forall) are Σ_1 -complete, genSAT(L \forall) and genSAT_{pos}(L \forall) are Π_1 -complete.

Corollary 3.35

 $G \forall$ and $E \forall$ are undecidable.

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

www.cs.cas.cz/cintula/MFL 60/79

Complexity of standard semantics

Due to the standard completeness of $G\forall$ we know

```
Theorem 3.36
```

stTAUT(L \forall) and stTAUT_{pos}(L \forall) are Σ_1 -complete, stSAT(L \forall) and stSAT_{pos}(L \forall) are Π_1 -complete.

Actually we have:

$$\begin{split} \text{stTAUT}(G\forall) &= \text{genTAUT}(G\forall) \quad \text{stTAUT}_{\text{pos}}(G\forall) = \text{genTAUT}_{\text{pos}}(G\forall) \\ \text{stSAT}(G\forall) &= \text{genSAT}(G\forall) \quad \text{stSAT}_{\text{pos}}(G\forall) = \text{genSAT}_{\text{pos}}(G\forall). \end{split}$$

Due to the failure of standard completeness of $\ensuremath{\mathbb{k}}\xspace\forall$ we know

 $stTAUT(E\forall) \neq genTAUT(E\forall)$ $stSAT_{pos}(E\forall) \neq genSAT_{pos}(E\forall).$

Complexity of standard semantics of Łukasiwicz logic

Proposition 3.37

 $stTAUT_{pos}(\mathbb{E}\forall) = genTAUT(\mathbb{E}\forall) \text{ and } stSAT(\mathbb{E}\forall) = genSAT(\mathbb{E}\forall).$

Petr Cintula and Carles Noguera (CAS)

Complexity of standard semantics of Łukasiwicz logic

Proposition 3.37

 $stTAUT_{pos}(\mathbb{E}\forall) = genTAUT(\mathbb{E}\forall) \text{ and } stSAT(\mathbb{E}\forall) = genSAT(\mathbb{E}\forall).$

Corollary 3.38

The set stTAUT_{pos}($E\forall$) is Σ_1 -complete and stSAT($E\forall$) is Π_1 -complete.

Complexity of standard semantics of Łukasiwicz logic

Proposition 3.37

 $stTAUT_{pos}(\mathbb{E}\forall) = genTAUT(\mathbb{E}\forall) \text{ and } stSAT(\mathbb{E}\forall) = genSAT(\mathbb{E}\forall).$

Corollary 3.38

 $\textit{The set stTAUT}_{pos}(\mathbb{k}\forall) \textit{ is } \Sigma_1 \textit{-complete and stSAT}(\mathbb{k}\forall) \textit{ is } \Pi_1 \textit{-complete.}$

Theorem 3.39 (Ragaz, Goldstern, Hájek)

The set stTAUT($\pounds \forall$) is Π_2 -complete and stSAT_{pos}($\pounds \forall$) is Σ_2 -complete.

Formal fuzzy mathematics

First-order fuzzy logic is strong enough to support non-trivial formal mathematical theories

Mathematical concepts in such theories show gradual rather than bivalent structure

Examples:

- Skolem, Hájek (1960, 2005): naïve set theory over Ł
- Takeuti–Titani (1994): ZF-style fuzzy set theory

in a system close to Gödel logic (\Rightarrow contractive)

• Restall (1995), Hájek–Paris–Shepherdson (2000):

arithmetic with the truth predicate over $\ensuremath{\mathbb{L}}$

- Hájek–Haniková (2003): ZF-style set theory over HL_{Δ}
- Novák (2004): Church-style fuzzy type theory over IMTL_Δ
- Běhounek–Cintula (2005): higher-order fuzzy logic

Hájek-Haniková fuzzy set theory

Logic: First-order $\mathrm{HL}_{\bigtriangleup}$ with identity

Language: \in

Axioms (z not free in φ):

•
$$\triangle(\forall u)(u \in x \leftrightarrow u \in y) \rightarrow x = y$$

•
$$(\exists z) \triangle (\forall y) \neg (y \in z)$$

•
$$(\exists z) \triangle (\forall u) (u \in z \leftrightarrow (u = x \lor u = y))$$

•
$$(\exists z) \triangle (\forall u) (u \in z \leftrightarrow (\exists y) (u \in y \& y \in x))$$

•
$$(\exists z) \triangle (\forall u) (u \in z \leftrightarrow \triangle (\forall x \in u) (x \in y))$$

•
$$(\exists z) \triangle (\emptyset \in z \& (\forall x \in z) (x \cup \{x\} \in z))$$

•
$$(\exists z) \triangle (\forall u) (u \in z \leftrightarrow (u \in x \& \varphi(u, x)))$$

•
$$(\exists z) \triangle [(\forall u \in x) (\exists v) \varphi(u, v) \rightarrow (\forall u \in x) (\exists v \in z) \varphi(u, v)]$$

•
$$\triangle(\forall x)((\forall y \in x)\varphi(y) \to \varphi(x)) \to \triangle(\forall x)\varphi(x)$$

• $(\exists z) \triangle ((\forall u)(u \in z \lor \neg (u \in z)) \& (\forall u \in x)(u \in z))$

(extensionality) (empty set \emptyset) (pair $\{x, y\}$) (union []) (weak power) (infinity) (separation) (collection) (∈-induction) (support)

Properties

Semantics: A cumulative hierarchy of HL-valued fuzzy sets

Features:

• Contains an inner model of classical ZF:

(as the subuniverse of hereditarily crisp sets)

- Conservatively extends classical ZF with fuzzy sets
- Generalizes Takeuti–Titani's construction

in a non-contractive fuzzy logic

Cantor-Łukasiewicz set theory

Logic: First-order Łukasiewicz logic Ł∀

```
Language: \in, set comprehension terms {x \mid \varphi}
```

Axioms:

• $y \in \{x \mid \varphi\} \leftrightarrow \varphi(y)$ (unrestricted comprehension)

Features:

- Non-contractivity of Ł blocks Russell's paradox
- Consistency conjectured by Skolem (1960—still open: in 2010 a gap found by Terui in White's 1979 consistency proof)
- Adding extensionality is inconsistent with CŁ.
- Open problem: define a reasonable arithmetic in CŁ (some negative results by Hájek, 2005)

Fuzzy class theory = (Henkin-style) higher-order fuzzy logic

Language:

- Sorts of variables for atoms, classes, classes of classes, etc.
- Subsorts for k-tuples of objects at each level
- \in between successive sorts
- At all levels: $\{x \mid ...\}$ for classes, $\langle ... \rangle$ for tuples

Axioms (for all sorts):

• $\langle x_1, \dots, x_k \rangle = \langle y_1, \dots, y_k \rangle \rightarrow x_1 = y_1 \& \dots \& x_k = y_k$ (tuple identity) • $(\forall x) \triangle (x \in A \leftrightarrow x \in B) \rightarrow A = B$ (extensionality) • $y \in \{x \mid \varphi(x)\} \leftrightarrow \varphi(y)$ (class comprehension)

Properties

Semantics: Fuzzy sets and relations of all orders over a crisp ground set (Henkin-style ⇒ non-standard models exist, full higher-order fuzzy logic is not axiomatizable)

Features:

- Suitable for the reconstruction and graded generalization of large parts of traditional fuzzy mathematics
- Several mathematical disciplines have been developed within its framework, using it as a foundational theory:

(e.g. fuzzy relations, fuzzy numbers, fuzzy topology)

 The results obtained trivialize initial parts of traditional fuzzy set theory

Counterfactual conditionals

Counterfactuals are conditionals with false antecedents: If it were the case that A, it would be the case that C

Their logical analysis is notoriously problematic:

- If interpreted as material implications, they come out always true due to the false antecedent
- However, some counterfactuals are obviously false
- \Rightarrow a simple logical analysis does not work

Properties of counterfactuals

Counterfactual conditionals do not obey standard inference rules of the material implication:

Weakening: $A \square \rightarrow C$ $A \land B \square \rightarrow C$

If I won the lottery, I would go for a trip around the globe. If I won the lottery and then WW3 started, I would go for a trip around the globe. (!)

Contraposition:
$$\frac{A \square \rightarrow C}{\neg C \square \rightarrow \neg A}$$

If I won the lottery, I would still live in the Prague. If I left Prague, I would not win the lottery (!)
Properties of counterfactuals

Transitivity: $A \square \rightarrow B, B \square \rightarrow C$ $A \square \rightarrow C$

If I quitted teaching in the university, I would try to teach in some high school.

If I became a millionaire, I would quit teaching in the university.

If I became a millionaire, I would try to teach in some high school. (!)

Lewis' semantics is based on a *similarity relation* which orders possible worlds with respect to their similarity to the actual world:

The counterfactual conditional $A \square C$ is true at a world w w.r.t. a similarity ordering if (very roughly) in the closest possible word to w where A holds also C holds.

Why a fuzzy semantics for counterfactuals?

- Lewis' semantics is based on the notion of similarity of possible worlds
- Similarity relations are prominently studied in fuzzy mathematics (formalized as axiomatic theories over fuzzy logic)
- \Rightarrow Let us see if fuzzy logic can provide a viable semantics for counterfactuals

Advantages and disadvantages

Advantages

- Automatic accommodation of gradual counterfactuals "If ants were *large*, they would be *heavy*."
- Standard fuzzy handling of the similarity of worlds

Disadvantages

• Needs non-classical logic for semantic reasoning (but a well-developed one \Rightarrow a low cost for experts)

Similarity relations = fuzzy equivalence relations

Axioms: Sxx, $Sxy \rightarrow Syx$, $Sxy \& Syz \rightarrow Sxz$ (interpreted in fuzzy logic!)

Notice: Similarities are *transitive* (in the sense of fuzzy logic), but avoid Poincaré's paradox:

$$x_1 \approx x_2 \approx x_3 \approx \cdots \approx x_n$$
, though $x_1 \not\approx x_n$,

since the degree of $x_1 \approx x_n$ can decrease with *n*, due to the non-idempotent & of fuzzy logic

Ordering of worlds by similarity

 $\sum xy$... the world *x* is similar to the world *y*

 $x \preccurlyeq_w y \dots x$ is more or roughly as similar to w as y

Define: $x \preccurlyeq_w y \equiv \Sigma w y \lesssim \Sigma w x$

The closest *A*-worlds: $\operatorname{Min}_{\preccurlyeq_w} A = \{x \mid x \in A \land (\forall a \in A)(x \preccurlyeq_w a)\}$ (the properties of minima in fuzzy orderings are well known)

Define: $||A \square \rightarrow B||_{w} \equiv (Min_{\preccurlyeq_{w}}A) \subseteq B$... the closest *A*-worlds are *B*-worlds (fuzzily!)

Properties of fuzzy counterfactuals

Non-triviality: $(A \square B) = 1$ for all *B* only if $A = \emptyset$

Non-desirable properties are invalid: $\not\models (A \square \rightarrow B) \& (B \square \rightarrow C) \rightarrow (A \square \rightarrow C)$ $\not\models (A \square \rightarrow C) \rightarrow (A \& B \square \rightarrow C)$ $\not\models (A \square \rightarrow C) \rightarrow (\neg C \square \rightarrow \neg A)$

 $\begin{array}{l} \text{Desirable properties are valid, eg:} \\ \vDash \square(A \to B) \ \to \ (A \square \to B) \ \to \ (A \to B) \\ + \text{ many more theorems on } \square \to \text{ easily derivable} \\ & \text{ in higher-order fuzzy logic} \end{array}$

However, some of Lewis' tautologies only hold for full degrees