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Predicate language

Predicate language: P = 〈P,F, ar〉: predicate and function symbols
with arity

Object variables: denumerable set OV

P-terms:

if v ∈ OV, then v is a P-term
if f ∈ F, ar(F) = n, and t1, . . . , tn are P-terms, then so is f (t1, . . . , tn)
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Formulas

Atomic P-formulas: propositional constant 0 and expressions of the
form R(t1, . . . , tn), where R ∈ P, ar(R) = n, and t1, . . . , tn are P-terms.

P-formulas:

the atomic P-formulas are P-formulas
if α and β are P-formulas, then so are α ∧ β, α ∨ β, and α→ β

if x ∈ OV and α is a P-formula, then so are (∀x)α and (∃x)α
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Basic syntactical notions

P-theory: a set of P-formulas

A closed P-term is a P-term without variables.

An occurrence of a variable x in a formula ϕ is bound if it is in the scope
of some quantifier over x; otherwise it is called a free occurrence.

A variable is free in a formula ϕ if it has a free occurrence in ϕ.

A P-sentence is a P-formula with no free variables.

A term t is substitutable for the object variable x in a formula ϕ(x,~z ) if
no occurrence of any variable occurring in t is bound in ϕ(t,~z ) unless it
was already bound in ϕ(x,~z ).
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Axiomatic system

A Hilbert-style proof system for CL∀ can be obtained as:

(P) axioms of CL substituting propositional variables by P-formulas

(∀1) (∀x)ϕ(x,~z)→ ϕ(t,~z) t substitutable for x in ϕ

(∀2) (∀x)(χ→ ϕ)→ (χ→ (∀x)ϕ) x not free in χ

(MP) modus ponens for P-formulas

(gen) from ϕ infer (∀x)ϕ.

Let us denote as `CL∀ the provability relation.
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Semantics

Classical P-structure: a tuple M = 〈M, 〈PM〉P∈P , 〈fM〉f∈F〉 where
M 6= ∅
PM ⊆ Mn, for each n-ary P ∈ P
fM : Mn → M for each n-ary f ∈ F.

M-evaluation v: a mapping v : OV→ M

For x ∈ OV,m ∈ M, and M-evaluation v, we define v[x:m] as

v[x:m](y) =

{
m if y = x
v(y) otherwise
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Tarski truth definition

Interpretation of P-terms

‖x‖M
v = v(x) for x ∈ OV

‖f (t1, . . . , tn)‖M
v = fM(‖t1‖M

v , . . . , ‖tn‖
M
v ) for n-ary f ∈ F

Truth-values of P-formulas

‖P(t1, . . . , tn)‖M
v = 1 iff 〈‖t1‖M

v , . . . , ‖tn‖
M
v 〉 ∈ PM for P ∈ P∥∥0

∥∥M
v = 0

‖α ∧ β‖M
v = 1 iff ‖α‖M

v = 1 and ‖β‖M
v = 1

‖α ∨ β‖M
v = 1 iff ‖α‖M

v = 1 or ‖β‖M
v = 1

‖α→ β‖M
v = 1 iff ‖α‖M

v = 0 or ‖β‖M
v = 1

‖(∀x)ϕ‖M
v = 1 iff for each m ∈ M we have ‖ϕ‖M

v[x:m] = 1

‖(∃x)ϕ‖M
v = 1 iff there is m ∈ M such that ‖ϕ‖M

v[x:m] = 1
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Model and semantical consequence

We write M |= ϕ if ‖ϕ‖M
v = 1 for each M-evaluation v.

Model: We say that a P-structure M is a P-model of a P-theory T,
M |= T in symbols, if M |= ϕ for each ϕ ∈ T.

Consequence: A P-formula ϕ is a semantical consequence of a
P-theory T, T |=CL∀ ϕ, if each P-model of T is also a model of ϕ.
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The completeness theorem

Problem of completeness of CL∀: formulated by Hilbert and
Ackermann (1928) and solved by Gödel (1929):

Theorem 3.1 (Gödel’s completeness theorem)
For every predicate language P and for every set T ∪ {ϕ} of
P-formulas :

T `CL∀ ϕ iff T |=CL∀ ϕ
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Some history

1947 Henkin: alternative proof of Gödel’s completeness theorem
1961 Mostowski: interpretation of existential (resp. universal)

quantifiers as suprema (resp. infima)
1963 Rasiowa, Sikorski: first-order intuitionistic logic
1963 Hay: infinitary standard Łukasiewicz first-order logic
1969 Horn: first-order Gödel–Dummett logic
1974 Rasiowa: first-order implicative logics
1990 Novák: first-order Pavelka logics
1992 Takeuti, Titani: first-order Gödel–Dummett logic with

additional connectives
1998 Hájek: first-order axiomatic extensions of HL
2005 Cintula, Hájek: first-order core fuzzy logics
2011 Cintula, Noguera: first-order semilinear logics
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Basic syntax is the again the same

Let L be G or � and L be G or MV correspondingly

Predicate language: P = 〈P,F, ar〉

Object variables: denumerable set OV

P-terms, (atomic) P-formulas, P-theories: as in CL∀

free/bounded variables, substitutable terms, sentences: as in CL∀
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Recall classical semantics

Classical P-structure: a tuple M = 〈M, 〈PM〉P∈P , 〈fM〉f∈F〉 where
M 6= ∅
PM ⊆ Mn, for each n-ary P ∈ P
fM : Mn → M for each n-ary f ∈ F.

M-evaluation v: a mapping v : OV→ M

For x ∈ OV,m ∈ M, and M-evaluation v, we define v[x:m] as

v[x:m](y) =

{
m if y = x
v(y) otherwise
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Reformulating classical semantics

Classical P-structure: a tuple M = 〈M, 〈PM〉P∈P , 〈fM〉f∈F〉 where
M 6= ∅
PM : Mn → {0, 1}, for each n-ary P ∈ P
fM : Mn → M for each n-ary f ∈ F.

M-evaluation v: a mapping v : OV→ M

For x ∈ OV,m ∈ M, and M-evaluation v, we define v[x:m] as

v[x:m](y) =

{
m if y = x
v(y) otherwise
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And now the ‘fuzzy’ semantics for logic L . . .

A-P-structure (A∈L): a tuple M = 〈M, 〈PM〉P∈P , 〈fM〉f∈F〉 where
M 6= ∅
PM : Mn → A, for each n-ary P ∈ P
fM : Mn → M for each n-ary f ∈ F.

M-evaluation v: a mapping v : OV→ M

For x ∈ OV,m ∈ M, and M-evaluation v, we define v[x:m] as

v[x:m](y) =

{
m if y = x
v(y) otherwise
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Recall classical Tarski truth definition

Interpretation of P-terms

‖x‖M
v = v(x) for x ∈ OV

‖f (t1, . . . , tn)‖M
v = fM(‖t1‖M

v , . . . , ‖tn‖
M
v ) for n-ary f ∈ F

Truth-values of P-formulas

‖P(t1, . . . , tn)‖M
v = 1 iff 〈‖t1‖M

v , . . . , ‖tn‖
M
v 〉 ∈ PM for n-ary P ∈ P∥∥0

∥∥M
v = 0

‖α ∧ β‖M
v = 1 iff ‖α‖M

v = 1 and ‖β‖M
v = 1

‖α ∨ β‖M
v = 1 iff ‖α‖M

v = 1 or ‖β‖M
v = 1

‖α→ β‖M
v = 1 iff ‖α‖M

v = 0 or ‖β‖M
v = 1

‖(∀x)ϕ‖M
v = 1 iff for each m ∈ M we have ‖ϕ‖M

v[x:m] = 1

‖(∃x)ϕ‖M
v = 1 iff there is m ∈ M such that ‖ϕ‖M

v[x:m] = 1
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Reformulating classical Tarski truth definition

Interpretation of P-terms

‖x‖M
v = v(x) for x ∈ OV

‖f (t1, . . . , tn)‖M
v = fM(‖t1‖M

v , . . . , ‖tn‖
M
v ) for n-ary f ∈ F

Truth-values of P-formulas

‖P(t1, . . . , tn)‖M
v = PM(‖t1‖M

v , . . . , ‖tn‖
M
v ) for n-ary P ∈ P∥∥0

∥∥M
v = 02

‖α ∧ β‖M
v = min≤2{‖α‖

M
v , ‖β‖M

v }
‖α ∨ β‖M

v = max≤2{‖α‖
M
v , ‖β‖M

v }
‖α→ β‖M

v = ‖α‖M
v →2 ‖β‖M

v

‖(∀x)ϕ‖M
v = inf≤2{‖ϕ‖

M
v[x:m] | m ∈ M}

‖(∃x)ϕ‖M
v = sup≤2

{‖ϕ‖M
v[x:m] | m ∈ M}

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 18 / 79



And now the Tarski truth definition for ‘fuzzy’ semantics

Interpretation of P-terms

‖x‖M
v = v(x) for x ∈ OV

‖f (t1, . . . , tn)‖M
v = fM(‖t1‖M

v , . . . , ‖tn‖
M
v ) for n-ary f ∈ F

Truth-values of P-formulas

‖P(t1, . . . , tn)‖M
v = PM(‖t1‖M

v , . . . , ‖tn‖
M
v ) for n-ary P ∈ P∥∥0

∥∥M
v = 0A

‖α ∧ β‖M
v = min≤A{‖α‖

M
v , ‖β‖M

v }
‖α ∨ β‖M

v = max≤A{‖α‖
M
v , ‖β‖M

v }
‖α→ β‖M

v = ‖α‖M
v →A ‖β‖M

v

‖(∀x)ϕ‖M
v = inf≤A{‖ϕ‖

M
v[x:m] | m ∈ M}

‖(∃x)ϕ‖M
v = sup≤A

{‖ϕ‖M
v[x:m] | m ∈ M}

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 19 / 79



Model and semantical consequence

Problem: the infimum/supremum need not exist! In such case we take
its value (and values of all its superformulas) as undefined

Definition 3.2 (Model)
A tuple M = 〈A,M〉 is a K-P-model of T, M |= T in symbols, if

M is A-P-structure for some A ∈ K ⊆ L
‖ϕ‖Mv is defined M-evaluation v and each formula ϕ

‖ψ‖Mv = 1A for each M-evaluation v and each ψ ∈ T

Definition 3.3 (Semantical consequence)
A P-formula ϕ is a semantical consequence of a P-theory T w.r.t. the
class K of L-algebras, T |=K ϕ in symbols, if for each K-P-model M of
T we have M |= ϕ.
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The semantics of chains

Proposition 3.4 (Assume that x is not free in ψ . . . )

ϕ |=L (∀x)ϕ thus ϕ |=K (∀x)ϕ

ϕ ∨ ψ |=Llin ((∀x)ϕ) ∨ ψ BUT ϕ ∨ ψ 6|=G ((∀x)ϕ) ∨ ψ

Observation
Thus |=L ( |=Llin even though in propositional logic |=L = |=Llin
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Axiomatization: two first-order logics over L

Minimal predicate logic L∀m:

(P) first-order substitutions of axioms and the rule of L

(∀1) (∀x)ϕ(x,~z)→ ϕ(t,~z) t substitutable for x in ϕ

(∃1) ϕ(t,~z)→ (∃x)ϕ(x,~z) t substitutable for x in ϕ

(∀2) (∀x)(χ→ ϕ)→ (χ→ (∀x)ϕ) x not free in χ

(∃2) (∀x)(ϕ→ χ)→ ((∃x)ϕ→ χ) x not free in χ

(gen) from ϕ infer (∀x)ϕ

Predicate logic L∀: an the extension of L∀m by:

(∀3) (∀x)(ϕ ∨ χ)→ ((∀x)ϕ) ∨ χ x not free in χ
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Theorems (for x not free in χ)

The logic L∀m proves:
1. χ↔ (∀x)χ 2. (∃x)χ↔ χ

3. (∀x)(ϕ→ ψ)→ ((∀x)ϕ→ (∀x)ψ) 4. (∀x)(∀y)ϕ↔ (∀y)(∀x)ϕ

5. (∀x)(ϕ→ ψ)→ ((∃x)ϕ→ (∃x)ψ) 6. (∃x)(∃y)ϕ↔ (∃y)(∃x)ϕ

7. (∀x)(χ→ ϕ)↔ (χ→ (∀x)ϕ) 8. (∀x)(ϕ→ χ)↔ ((∃x)ϕ→ χ)

9. (∃x)(χ→ ϕ)→ (χ→ (∃x)ϕ) 10. (∃x)(ϕ→ χ)→ ((∀x)ϕ→ χ)

11. (∃x)(ϕ ∨ ψ)↔ (∃x)ϕ ∨ (∃x)ψ 12. (∃x)(ϕ& χ)↔ (∃x)ϕ& χ

13. (∃x)(ϕn)↔ ((∃x)ϕ)n

The logic L∀ furthermore proves:
14. (∀x)ϕ ∨ χ↔ (∀x)(ϕ ∨ χ) 15. (∃x)(ϕ ∧ χ)↔ (∃x)ϕ ∧ χ

Exercise 13
Prove these theorems.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 23 / 79



�∀ = �∀m

Proposition 3.5
�∀ = �∀m.

Proof.
It is enough to show that �∀m proves (∀3). From
(α ∨ β)↔ ((α→ β)→ β) and (3) we obtain
(∀x)(ϕ ∨ ψ)→ (∀x)((ψ → ϕ)→ ϕ). Now, again by (3), we have
(∀x)((ψ → ϕ)→ ϕ)→ ((∀x)(ψ → ϕ)→ (∀x)ϕ). By (7) and suffixing,
((∀x)(ψ → ϕ)→ (∀x)ϕ)→ ((ψ → (∀x)ϕ)→ (∀x)ϕ), and finally we have
((ψ → (∀x)ϕ)→ (∀x)ϕ)→ (∀x)ϕ ∨ ψ. Transitivity ends the proof.
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Syntactical properties of `L∀m and `L∀

Let ` be either `L∀m or `L∀.

Theorem 3.6 (Congruence Property)
Let ϕ,ψ be sentences, χ a formula, and χ̂ a formula resulting from χ by
replacing some occurrences of ϕ by ψ. Then

` ϕ↔ ϕ ϕ↔ ψ ` ψ ↔ ϕ

ϕ↔ ψ ` χ↔ χ̂ ϕ↔ δ, δ ↔ ψ ` ϕ↔ ψ.

Theorem 3.7 (Constants Theorem)
Let Σ ∪ {ϕ(x,~z)} be a theory and c a constant not occurring there.
Then Σ ` ϕ(c,~z) iff Σ ` ϕ(x,~z).

Exercise 14
Prove the Constants Theorem for `G∀m .
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Deduction theorems

Theorem 3.8
For each P-theory T ∪ {ϕ,ψ}:

T, ϕ `G∀m ψ iff T `G∀m ϕ→ ψ.
T, ϕ `G∀ ψ iff T `G∀ ϕ→ ψ.
T, ϕ `�∀ ψ iff T `�∀ ϕn → ψ for some n ∈ N.
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Syntactical properties of `L∀

Theorem 3.9 (Proof by Cases Property)
For a P-theory T and P-sentences ϕ,ψ, χ:

T, ϕ `L∀ χ T, ψ `L∀ χ

T, ϕ ∨ ψ `L∀ χ
(PCP)

Proof.
We show by induction T ∨ χ ` ϕ ∨ χ whenever T ` ϕ and χ is a
sentence; the rest is the same as in the propositional case.
Let δ be an element of the proof of ϕ from T: the claim is

trivial if δ ∈ T or δ is an axiom;
proved as in the propositional case if δ is obtained using (MP)

easy if δ = (∀x)ψ is obtained using (gen): from the IH we get
T ∨ χ ` ψ ∨ χ and using (gen), (∀3), and (MP) we obtain
T ∨ χ ` ((∀x)ψ) ∨ χ.
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Syntactical properties of `L∀

Theorem 3.9 (Proof by Cases Property)
For a P-theory T and P-sentences ϕ,ψ, χ:

T, ϕ `L∀ χ T, ψ `L∀ χ

T, ϕ ∨ ψ `L∀ χ
(PCP)

Theorem 3.10 (Semilinearity Property)
For a P-theory T and P-sentences ϕ,ψ, χ:

T, ϕ→ ψ `L∀ χ T, ψ → ϕ `L∀ χ

T `L∀ χ
(SLP)

Proof.
Easy using PCP and `L∀ (ϕ→ ψ) ∨ (ψ → ϕ).
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Soundness

Exercise 15
Prove for L be either � of G that
`L∀m ⊆ |=L

`L∀ ⊆ |=Llin

`�∀ ⊆ |=MV

Recall that `G∀ 6⊆ |=G
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Failure of certain classical theorems (for x not free in χ)

Recall:

`L∀ (∀x)ϕ ∨ χ↔ (∀x)(ϕ ∨ χ) `L∀ (∃x)(ϕ ∧ χ)↔ (∃x)ϕ ∧ χ

`L∀m (∀x)(χ→ ϕ)↔ (χ→ (∀x)ϕ) `L∀m (∀x)(ϕ→ χ)↔ ((∃x)ϕ→ χ)

`L∀m (∃x)(χ→ ϕ)→ (χ→ (∃x)ϕ) `L∀m (∃x)(ϕ→ χ)→ ((∀x)ϕ→ χ)

Proposition 3.11
The formulas in the first row are not provable in G∀m and the converse
directions of formulas in the last row are provable �∀m but not in G∀.

Exercise 16
Prove the second part of the previous proposition.
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Towards completeness: Lindenbaum–Tarski algebra

Let L be G or � and ` be either `L∀m or `L∀. Let T be a P-theory.

Lindenbaum–Tarski algebra of T (LindTT ):

domain LT = {[ϕ]T | ϕ a P-sentence} where

[ϕ]T = {ψ | ψ a P-sentence and T ` ϕ↔ ψ}.

operations:

◦LindTT ([ϕ1]T , . . . , [ϕn]T) = [◦(ϕ1, . . . , ϕn)]T

Exercise 17
LindTT ∈ L

[ϕ]T ≤LindTT [ψ]T iff T ` ϕ→ ψ

LindTT ∈ Llin if, and only if, T is linear.
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Towards completeness: Canonical model

Canonical model (CMT ) of a P-theory T (in `): P-structure
〈LindTT ,M〉 such that

domain of M: the set CT of closed P-terms

fM(t1, . . . , tn) = f (t1, . . . , tn) for each n-ary f ∈ F, and

PM(t1, . . . , tn) = [P(t1, . . . , tn)]T for each n-ary P ∈ P.

A P-theory T is ∀-Henkin if for each P-formula ψ such that
T 0 (∀x)ψ(x) there is a constant c in P such that T 0 ψ(c).
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Towards completeness: Canonical model
∀-Henkin: T 0 (∀x)ψ(x) implies T 0 ψ(c) for some constant c

Proposition 3.12
Let T be a ∀-Henkin P-theory. Then for each P-sentence ϕ we have
‖ϕ‖CMT = [ϕ]T and so CMT |= ϕ iff T ` ϕ.

Proof.
Let v be evaluation s.t. v(x) = tx for some tx ∈ CT. We show by
induction that ‖ϕ(x1, . . . , xn)‖CMT

v = [ϕ(tx
1, . . . , t

x
n)]T .
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Towards completeness: Canonical model
∀-Henkin: T 0 (∀x)ψ(x) implies T 0 ψ(c) for some constant c

Proposition 3.12
Let T be a ∀-Henkin P-theory. Then for each P-sentence ϕ we have
‖ϕ‖CMT = [ϕ]T and so CMT |= ϕ iff T ` ϕ.

Proof.
Let v be evaluation s.t. v(x) = tx for some tx ∈ CT. We show by
induction that ‖ϕ(x1, . . . , xn)‖CMT

v = [ϕ(tx
1, . . . , t

x
n)]T .

The base case and the induction step for connectives is just the defini-
tion.
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Towards completeness: Canonical model
∀-Henkin: T 0 (∀x)ψ(x) implies T 0 ψ(c) for some constant c

Proposition 3.12
Let T be a ∀-Henkin P-theory. Then for each P-sentence ϕ we have
‖ϕ‖CMT = [ϕ]T and so CMT |= ϕ iff T ` ϕ.

Proof.
Let v be evaluation s.t. v(x) = tx for some tx ∈ CT. We show by
induction that ‖ϕ(x1, . . . , xn)‖CMT

v = [ϕ(tx
1, . . . , t

x
n)]T .

Quantifiers: [(∀x)ϕ]T
?
= ‖(∀x)ϕ‖CMT = inf≤LindTT

{[ϕ(t)]T | t ∈ CT}

From T ` (∀x)ϕ→ ϕ(t) we get that [(∀x)ϕ]T is a lower bound.
We show it is the largest one: take any χ s.t. [χ]T 6≤LindTT [(∀x)ϕ]T ; thus
T 6` χ → (∀x)ϕ, and so T 6` (∀x)(χ → ϕ). So there is c ∈ CT s.t.
T 6` (χ→ ϕ(c)), i.e., [χ]T 6≤LindTT [ϕ(c)]T .
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Completeness theorem for L∀m

Theorem 3.13 (Completeness theorem for L∀m)
Let L be either � or G and T ∪ {ϕ} a P-theory. Then:
T `L∀m ϕ iff T |=L ϕ.

All we need to prove this theorem is to show that:

Lemma 3.14 (Extension lemma for L∀m)
Let T ∪ {ϕ} be a P-theory such that T 0L∀m ϕ. Then there is P ′ ⊇ P
and a ∀-Henkin P ′-theory T ′ ⊇ T such that T ′ 0L∀m ϕ.

Proof.
P ′ = P + countably many new object constants. Let T ′ be T as
P ′-theory. Take any P ′-formula ψ(x), such that T ′ 0L∀m (∀x)ψ(x). Thus
T ′ 0L∀m ψ(x) and so T ′ 0L∀m ψ(c) for some c ∈ P ′ not occurring in
T ′ ∪ {ψ} (by Constants Theorem).
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Completeness theorem for L∀

Theorem 3.15 (Completeness theorem for L∀)
Let L be either � or G and T ∪ {ϕ} a P-theory. Then

T `L∀ ϕ iff T |=Llin ϕ.

All we need to prove this theorem is to show that:

Lemma 3.16 (Extension lemma for L∀)

Let T ∪ {ϕ} be a P-theory such that T 0L∀ ϕ. Then there is a predicate
language P ′ ⊇ P and a linear ∀-Henkin P ′-theory T ′ ⊇ T such that
T ′ 0L∀ ϕ.
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Initializing the construction

Let P ′ be the expansion of P by countably many new constants.

We enumerate all P ′-formulas with one free variable: {χi(x) | i ∈ N}.

We construct a sequence of P ′-sentences ϕi and an increasing chain
of P ′-theories Ti such that Ti 0 ϕj for each j ≤ i.

Take T0 = T and ϕ0 = ϕ, which fulfils our conditions.

In the induction step we distinguish two possibilities and show that the
required conditions are met:
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The induction step

(H1) If Ti ` ϕi ∨ (∀x)χi+1(x): then we define ϕi+1 = ϕi and
Ti+1 = Ti ∪ {(∀x)χi+1(x)}.

(H2) If Ti 6` ϕi ∨ (∀x)χi+1(x), then we define Ti+1 = Ti and
ϕi+1 = ϕi ∨ χi+1(c) for some c not occurring in Ti ∪ {ϕj | j ≤ i}.

Assume, for a contradiction, that Ti+1 ` ϕj for some j ≤ i + 1. Then
also Ti+1 ` ϕi+1.

Thus in case (H1) we have Ti ∪ {(∀x)χi+1(x)} ` ϕi. Since, trivially,
Ti ∪ {ϕi} ` ϕi we obtain by Proof by Cases Property that
Ti ∪ {ϕi ∨ (∀x)χi+1(x)} ` ϕi and so Ti ` ϕi; a contradiction!
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The induction step

(H1) If Ti ` ϕi ∨ (∀x)χi+1(x): then we define ϕi+1 = ϕi and
Ti+1 = Ti ∪ {(∀x)χi+1(x)}.

(H2) If Ti 6` ϕi ∨ (∀x)χi+1(x), then we define Ti+1 = Ti and
ϕi+1 = ϕi ∨ χi+1(c) for some c not occurring in Ti ∪ {ϕj | j ≤ i}.

Assume, for a contradiction, that Ti+1 ` ϕj for some j ≤ i + 1. Then
also Ti+1 ` ϕi+1.

Thus in case (H2) we have Ti ` ϕi ∨ χi+1(c). Using Constants Theorem
we obtain Ti ` ϕi ∨ χi+1(x) and thus by (gen), (∀3), and (MP) we obtain
Ti ` ϕi ∨ (∀x)χi+1(x); a contradiction!
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Final touches . . .

Let T ′ be a maximal theory extending
⋃

Ti s.t. T ′ 0 ϕi for each i.
Such T ′ exists thanks to Zorn’s Lemma: let T be a chain of such
theories then clearly so is

⋃
T .

T ′ is linear: assume that T ′ 6` ψ → χ and T ′ 6` χ→ ψ. Then there are
i, j such that T ′, ψ → χ ` ϕi and T ′, χ→ ψ ` ϕj. Thus also

T ′, ψ → χ ` ϕmax{i,j} and T ′, χ→ ψ ` ϕmax{i,j}.

Thus by Semilinearity Property also T ′ ` ϕmax{i,j}; a contradiction!

T ′ is ∀-Henkin: if T ′ 0 (∀x)χi+1(x), then we must have used case (H2);
since T ′ 6` ϕi+1 and ϕi+1 = ϕi ∨ χi+1(c)) we also have T ′ 6` χi+1(c).
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It works in Gödel–Dummett logic

Theorem 3.17
The following are equivalent for every set of P-formulas Γ∪{ϕ} ⊆ FmL:

1 Γ `G∀ ϕ

2 Γ |=Glin ϕ

3 Γ |=[0,1]G ϕ
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Recall the proof in the propositional case

Contrapositively: assume that T 6`G ϕ. Let B be a countable G-chain
and e a B-evaluation such that e[T] ⊆ {1B} and e(ϕ) 6= 1B.

There has to be (because every countable order can be monotonously
embedded into a dense one) a mapping f : B→ [0, 1] such that
f (0) = 0, f (1) = 1, and for each a, b ∈ B we have:

a ≤ b iff f (a) ≤ f (a)

We define a mapping ē : FmL → [0, 1] as

ē(ψ) = f (e(ψ))

and prove (by induction) that it is [0, 1]G-evaluation.

Then ē(ψ) = 1 iff e(ψ) = 1B and so ē[T] ⊆ {1} and ē(ϕ) 6= 1.
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Would it work in the first-order level?

Contrapositively: assume that T 6`G∀ ϕ. Let B be a countable G-chain
and M = 〈B,M〉 a model of T such that ‖ϕ‖M

v 6= 1B.

There has to be (because every countable order can be monotonously
embedded into a dense one) a mapping f : B→ [0, 1] such that
f (0) = 0, f (1) = 1, and for each a, b ∈ B we have:

a ≤ b iff f (a) ≤ f (a)

We define a [0, 1]G-structure M̄ with the same domain, functions and

PM̄(x1, . . . , xn) = f (PM(x1, . . . , xn))

and prove (by induction) that ‖ψ‖M̄
v = f (‖ψ‖M

v ). Then ‖ψ‖M̄
v = 1 iff

‖ψ‖M
v = 1B and so 〈[0, 1]G, M̄〉 is model of T and ‖ϕ‖M̄

v 6= 1.
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What about the case of Łukasiewicz logic?

Theorem 3.18
There is a formula ϕ such that |=[0,1]� ϕ and 6`�∀ ϕ.

Neither the set of theorems nor the set of satisfiable formulas w.r.t. the
models of standard MV-algebra [0, 1]� are recursively enumerable. In
fact we have:

Theorem 3.19 (Ragaz, Goldstern, Hájek)
The set stTAUT(�∀) is Π2-complete and stSAT(�∀) is Π1-complete.
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Finite model property: The classical case

Valid sentences of CL∀ (in any predicate language) are recursively
enumerable thanks to the completeness theorem.
Löwenheim (1915): Monadic classical logic (the fragment of CL∀
only with unary predicates and no functional symbols) has the
finite model property, and hence it is decidable.
Church (1936) and Turing (1937): if the predicate language
contains at least a binary predicate, then CL∀ is undecidable.
Surány (1959): The fragment of CL∀ with three variables is
undecidable.
Mortimer (1975): The fragment of CL∀ with two variables has the
finite model property, and hence it is decidable.
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Finite model property: the fuzzy case
In Gödel–Dummett logic the FMP does not even hold for formulas with
one variable (a model is finite if it has a finite domain).

Example in G∀ = |=[0,1]G

ϕ = ¬(∀x)P(x) ∧ ¬(∃x)¬P(x).

Evidently ϕ has no finite model and so ϕ |=fin
[0,1]G

0. But consider
[0, 1]G-model M with domain N, where PM(n) = 1

n+1 . Then clearly for
each n ∈ N: ‖P(n)‖ > 0 and infn∈N ‖P(n)‖ = 0, i.e., M |= ϕ, and so
ϕ 6|=[0,1]G 0.

The infimum is not the minimum, it is not witnessed.

Exercise 18
Show that |=[0,1]� does not have the FMP (hint: use the formula
(∃x)(P(x)↔ ¬P(x)) & (∀x)(∃y)(P(x)↔ P(y) & P(y))).
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Witnessed models

Definition 3.20
A P-model M is witnessed if for each P-formula ϕ(x,~y) and for each
~a ∈ M there are bs, bi ∈ M such that:

‖(∀x)ϕ(x,~a)‖M = ‖ϕ(bi,~a)‖M ‖(∃x)ϕ(x,~a)‖M = ‖ϕ(bs,~a)‖M.

Exercise 19
Consider formulas

(W∃) (∃x)((∃y)ψ(y,~z)→ ψ(x,~z)) (W∀) (∃x)(ψ(x,~z)→ (∀y)ψ(y,~z))

Show that not all models of these formulas are witnessed and these
formulas are

true in all witnessed models of G∀
not provable in G∀
provable in (true in all models of) �∀

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 47 / 79



Witnessed logic and witnessed completeness

Theorem 3.21 (Witnessed completeness theorem for �∀)
Let T ∪ {ϕ} a theory. Then T `�∀ ϕ iff for each witnessed MVlin-model
M of T we have M |= ϕ.

Definition 3.22
The logic G∀w is the extension of G∀ by the axioms (W∃) and (W∀).

(note that the analogous definition for L would yield �∀w = �∀)

Theorem 3.23 (Witnessed completeness theorem for G∀w)
Let T ∪ {ϕ} be a theory. Then T `G∀w ϕ iff for each witnessed
Glin-model M of T we have M |= ϕ.
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A proof

A theory T is Henkin if it is ∀-Henkin and for each ϕ such that
T ` (∃x)ϕ(x) there is a constant such that T ` ϕ(c).

Assume that we can prove:

Lemma 3.24 (Full Extension lemma for L∀)
Let T ∪ {ϕ} be a P-theory such that T 0L∀w ϕ. Then there is a
predicate language P ′ ⊇ P and a linear Henkin P ′-theory T ′ ⊇ T such
that T ′ 0L∀w ϕ.

Then the proof of the witnessed completeness is an easy corollary of
the following straightforward proposition

Proposition 3.25
Let T be a Henkin P-theory. Then CMT is a witnessed model.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 49 / 79



Before we prove the full extension lemma . . .

Definition 3.26
Let P1 ⊆ P2. A P2-theory T2 is a conservative expansion of a P1-theory
T1 if for each P1-formula ϕ, T2 ` ϕ iff T1 ` ϕ.

Proposition 3.27
For each predicate language P, each P-theory T, each P-formula
ϕ(x), and any constant c 6∈ P holds that T ∪ {ϕ(c)} is a conservative
expansion (in the logic L∀) of T ∪ {(∃x)ϕ(x)}.

Proof.
Assume that T ∪ {ϕ(c)} `L∀ ψ. Then, by Deduction Theorem, there is n
such that T `L∀ ϕ(c)n → ψ. Thus by the Constants Theorem and (∃2)
we obtain T `L∀ (∃x)(ϕ(x)n)→ ψ. Using (13) we obtain
T `L∀ ((∃x)ϕ(x))n → ψ. Deduction Theorem completes the proof.
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A proof of full extension lemma

Modify the proof of the extension lemma, s.t. after going through
options (H1) and (H2) on the i-th step we construct theories T ′i+1. Then
we distinguish two new options:

(W1) If T ′i+1, (∃x)χi+1 0 ϕi+1: then we define Ti+1 = T ′i+1 ∪ {χi+1(c)}.
for some c not occurring in T ′

i ∪ {ϕj | j ≤ i}.

(W2) If T ′i+1, (∃x)χi+1 ` ϕi+1: then we define Ti+1 = T ′i+1

The induction assumption Ti+1 0 ϕi+1 holds: in (W2) trivially, in case of
(W1) we use the fact that T ′i+1 ∪ {χi+1(c)} is a conservative expansion
of T ′i+1 ∪ {(∃x)χi+1(x)}.

The rest is the same as the proof of the extension lemma, we only
show that T ′ is Henkin: it T ′ ` (∃x)χi1(x) then we used case (W1) (from
T ′, (∃x)χi+1(x) ` ϕi+1, a contradiction). Thus T ′ ` χi+1(c).
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Skolemization

Theorem 3.28
For Gödel–Dummett logic we have: T ∪ {(∀~y)ϕ(fϕ(~y),~y)} is a
conservative expansion of T ∪ {(∀~y)(∃x)ϕ(x,~y)} for each P-theory
T ∪ {ϕ(x,~y)}, and a functional symbol fϕ 6∈ P of the proper arity.

A hint of the proof.
Take P-formula χ s.t. T ∪ {(∀y)(∃x)ϕ(x, y)} 0 χ. Let T ′ be a Henkin
P ′-theory T ′ ⊇ T ∪ {(∀y)(∃x)ϕ(x, y)} s.t. T ′ 0 χ, and hence CMT′ 6|= χ.
For each closed P ′-term t we have T ′ ` (∃x)ϕ(x, t) (by (∀1)) and hence
there is a P ′-constant ct such that T ′ ` ϕ(ct, t ).
We define a model M by expanding CMT′ with one functional symbol
defined as: (fϕ)M(t ) = ct

Observe that for each P ′-formula: M |= ψ iff CM′T |= ψ
Thus M |= T and M 6|= χ and so clearly M |= (∀y)ϕ(fϕ(y), y)
And so we have established T ∪ {(∀y)ϕ(fϕ(y), y)} 0 χ.
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Important sets of sentences

Definition 3.29
Let L be G or � and K a non-empty class of L-chains. We define:

TAUT(K) ={ϕ | for every K-model M, ‖ϕ‖A
M = 1A}.

TAUTpos(K) ={ϕ | for every K-model M, ‖ϕ‖A
M > 0A}.

SAT(K) ={ϕ | there exist K-model M s.t. ‖ϕ‖A
M = 1A

.

SATpos(K) ={ϕ | there exist K-model M s.t. ‖ϕ‖A
M > 0A

.

Instead of TAUT(K) we write
genTAUT(L∀) if K is the class of all L-chains (general semantics).
stTAUT(L∀) if K contains only the standard L-chain on [0, 1]

(standard semantics).
And analogously for TAUTpos(K), SAT(K) and SATpos(K) . . .

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 54 / 79



Relations between sets

Lemma 3.30

1 ϕ ∈ TAUTpos(K) iff ¬ϕ /∈ SAT(K),
2 ϕ ∈ SATpos(K) iff ¬ϕ /∈ TAUT(K).

Lemma 3.31

If L = �, then for every ϕ:
1 ϕ ∈ SAT(K) iff ¬ϕ /∈ TAUTpos(K),
2 ϕ ∈ TAUT(K) iff ¬ϕ /∈ SATpos(K).
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Arithmetical hierarchy

Let Φ(x) be an arithmetical formula with one free variable; we say
Φ(x) defines a set A ⊆ N iff for any n ∈ N we have n ∈ A iff
N |= Φ(n).
An arithmetical formula is bounded iff all its quantifiers are
bounded (i.e., are of the form ∀x ≤ t or ∃x ≤ t for some term t).
An arithmetical formula is a Σ1-formula (Π1-formula) iff it has the
form ∃xΦ (∀xΦ respectively) where Φ is a bounded formula.
A formula is Σ2 (Π2) iff it has the form ∃xΦ (∀xΦ respectively)
where Φ is a Π1-formula (Σ1-formula respectively).
Inductively, one defines Σn- and Πn-formulas for any natural
number n ≥ 1.
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Arithmetical hierarchy

A set A ⊆ N is in the class Σn iff there is a Σn-formula that defines
A in N; analogously for the class Πn.
Any set that is in Σn is also in Σm and Πm for m > n.
If A ⊆ N is a Σn-set, then A is a Πn-set.
Σ1-sets are exactly recursively enumerable sets, while recursive
sets are Σ1 ∩Π1.
A problem P1 is reducible to a problem P2 (P1 � P2) iff there is a
deterministic Turing machine such that, for any pair of input x and
its output y, we have x ∈ P1 iff y ∈ P2.
A problem P is Σn-hard iff P′ �m P for any Σn-problem P′.
A problem P is Σn-complete iff it is Σn-hard and at the same time it
is a Σn-problem. Analogously for Πn.
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Lower bounds

Proposition 3.32
For every class K of chains, TAUT(K) and TAUTpos(K) are Σ1-hard.
and the sets SAT(K) and SATpos(K) are Π1-hard.

Proof (for SAT(K), the others are much harder).
Let ϕ be a sentence with predicate symbols {Pi | 1≤ i≤ n}. Observe
that

ϕ ∈ SAT(2) iff ϕ ∧
∧

1≤i≤n

(∀−→x )(Pi(
−→x ) ∨ ¬Pi(

−→x )) ∈ SAT(K)

Since the satisfiability problem in classical logic is Π1-hard so it must
be SAT(K).
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Upper bounds

Proposition 3.33
If L∀ is complete w.r.t. models over K, then TAUT(K) and TAUTpos(K)
are Σ1, while SAT(K) and SATpos(K) are Π1.

Proof.
TAUT(K) is Σ1 because it is the set of theorems of a recursively
axiomatizable logic. As regards to SAT(K), notice that for every ϕ we
have: ϕ ∈ SAT(K) iff ϕ 6|=K 0 iff ϕ 0L∀ 0. Thus SAT(K) is in Π1.
The other two claim follows from Lemma 3.30.
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Complexity of general semantics and undecidability

Theorem 3.34
genTAUT(L∀) and genTAUTpos(L∀) are Σ1-complete, genSAT(L∀) and
genSATpos(L∀) are Π1-complete.

Corollary 3.35
G∀ and �∀ are undecidable.
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Complexity of standard semantics
Due to the standard completeness of G∀ we know

Theorem 3.36
stTAUT(L∀) and stTAUTpos(L∀) are Σ1-complete, stSAT(L∀) and
stSATpos(L∀) are Π1-complete.

Actually we have:

stTAUT(G∀) = genTAUT(G∀) stTAUTpos(G∀) = genTAUTpos(G∀)
stSAT(G∀) = genSAT(G∀) stSATpos(G∀) = genSATpos(G∀).

Due to the failure of standard completeness of �∀ we know

stTAUT(�∀) 6= genTAUT(�∀) stSATpos(�∀) 6= genSATpos(�∀).
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Complexity of standard semantics of Łukasiwicz logic

Proposition 3.37
stTAUTpos(�∀) = genTAUT(�∀) and stSAT(�∀) = genSAT(�∀).
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Complexity of standard semantics of Łukasiwicz logic

Proposition 3.37
stTAUTpos(�∀) = genTAUT(�∀) and stSAT(�∀) = genSAT(�∀).

Corollary 3.38
The set stTAUTpos(�∀) is Σ1-complete and stSAT(�∀) is Π1-complete.
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Complexity of standard semantics of Łukasiwicz logic

Proposition 3.37
stTAUTpos(�∀) = genTAUT(�∀) and stSAT(�∀) = genSAT(�∀).

Corollary 3.38
The set stTAUTpos(�∀) is Σ1-complete and stSAT(�∀) is Π1-complete.

Theorem 3.39 (Ragaz, Goldstern, Hájek)
The set stTAUT(�∀) is Π2-complete and stSATpos(�∀) is Σ2-complete.
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Formal fuzzy mathematics

First-order fuzzy logic is strong enough to support non-trivial formal
mathematical theories

Mathematical concepts in such theories show gradual rather than
bivalent structure

Examples:
Skolem, Hájek (1960, 2005): naïve set theory over Ł
Takeuti–Titani (1994): ZF-style fuzzy set theory

in a system close to Gödel logic (⇒ contractive)
Restall (1995), Hájek–Paris–Shepherdson (2000):

arithmetic with the truth predicate over �
Hájek–Haniková (2003): ZF-style set theory over HL∆

Novák (2004): Church-style fuzzy type theory over IMTL∆

Běhounek–Cintula (2005): higher-order fuzzy logic
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Hájek–Haniková fuzzy set theory
Logic: First-order HL4 with identity

Language: ∈

Axioms (z not free in ϕ):
4(∀u)(u ∈ x↔ u ∈ y)→ x = y (extensionality)
(∃z)4(∀y)¬(y ∈ z) (empty set ∅)
(∃z)4(∀u)(u ∈ z↔ (u = x ∨ u = y) (pair {x, y})
(∃z)4(∀u)(u ∈ z↔ (∃y)(u ∈ y & y ∈ x)) (union

⋃
)

(∃z)4(∀u)(u ∈ z↔4(∀x ∈ u)(x ∈ y)) (weak power)
(∃z)4(∅ ∈ z & (∀x ∈ z)(x ∪ {x} ∈ z)) (infinity)
(∃z)4(∀u)(u ∈ z↔ (u ∈ x & ϕ(u, x)) (separation)
(∃z)4[(∀u ∈ x)(∃v)ϕ(u, v)→ (∀u ∈ x)(∃v ∈ z)ϕ(u, v)] (collection)
4(∀x)((∀y ∈ x)ϕ(y)→ ϕ(x))→4(∀x)ϕ(x) (∈-induction)
(∃z)4((∀u)(u ∈ z ∨ ¬(u ∈ z)) & (∀u ∈ x)(u ∈ z)) (support)
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Properties

Semantics: A cumulative hierarchy of HL-valued fuzzy sets

Features:
Contains an inner model of classical ZF:

(as the subuniverse of hereditarily crisp sets)
Conservatively extends classical ZF with fuzzy sets
Generalizes Takeuti–Titani’s construction

in a non-contractive fuzzy logic
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Cantor–Łukasiewicz set theory

Logic: First-order Łukasiewicz logic Ł∀

Language: ∈, set comprehension terms {x | ϕ}

Axioms:
y ∈ {x | ϕ} ↔ ϕ(y) (unrestricted comprehension)

Features:
Non-contractivity of Ł blocks Russell’s paradox
Consistency conjectured by Skolem (1960—still open: in 2010 a
gap found by Terui in White’s 1979 consistency proof)
Adding extensionality is inconsistent with CŁ
Open problem: define a reasonable arithmetic in CŁ

(some negative results by Hájek, 2005)
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Fuzzy class theory = (Henkin-style) higher-order fuzzy
logic

Logic: Any first-order deductive fuzzy logic with ∆ and =
Originally: ŁΠ for its expressive power

Language:
Sorts of variables for atoms, classes, classes of classes, etc.
Subsorts for k-tuples of objects at each level
∈ between successive sorts
At all levels: {x | . . . } for classes, 〈. . .〉 for tuples

Axioms (for all sorts):
〈x1, . . . , xk〉 = 〈y1, . . . , yk〉 → x1 = y1 & . . .& xk = yk (tuple identity)
(∀x)4(x ∈ A↔ x ∈ B)→ A = B (extensionality)
y ∈ {x | ϕ(x)} ↔ ϕ(y) (class comprehension)
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Properties

Semantics:
Fuzzy sets and relations of all orders over a crisp ground set

(Henkin-style⇒ non-standard models exist,
full higher-order fuzzy logic is not axiomatizable)

Features:
Suitable for the reconstruction and graded generalization

of large parts of traditional fuzzy mathematics
Several mathematical disciplines have been developed within its
framework, using it as a foundational theory:

(e.g. fuzzy relations, fuzzy numbers, fuzzy topology)
The results obtained trivialize initial parts of traditional fuzzy set
theory
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Counterfactual conditionals

Counterfactuals are conditionals with false antecedents:
If it were the case that A, it would be the case that C

Their logical analysis is notoriously problematic:

If interpreted as material implications, they come out always true
due to the false antecedent

However, some counterfactuals are obviously false

⇒ a simple logical analysis does not work
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Properties of counterfactuals

Counterfactual conditionals do not obey standard inference rules of the
material implication:

Weakening:
A� C

A ∧ B� C
If I won the lottery, I would go for a trip around the globe.
If I won the lottery and then WW3 started, I would go for a trip around
the globe. (!)

Contraposition:
A� C
¬C� ¬A

If I won the lottery, I would still live in the Prague.
If I left Prague, I would not win the lottery (!)
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Properties of counterfactuals

Transitivity:
A� B,B� C

A� C

If I quitted teaching in the university, I would try to teach in some high
school.
If I became a millionaire, I would quit teaching in the university.
If I became a millionaire, I would try to teach in some high school. (!)
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Lewis’ semantics of counterfactuals

Lewis’ semantics is based on a similarity relation which orders possible
worlds with respect to their similarity to the actual world:

The counterfactual conditional A� C is true at a world w w.r.t. a
similarity ordering if (very roughly) in the closest possible word to w
where A holds also C holds.
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Why a fuzzy semantics for counterfactuals?

Lewis’ semantics is based on the notion of similarity of possible worlds

Similarity relations are prominently studied in fuzzy mathematics
(formalized as axiomatic theories over fuzzy logic)

⇒ Let us see if fuzzy logic can provide a viable semantics for
counterfactuals
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Advantages and disadvantages

Advantages

Automatic accommodation of gradual counterfactuals
“If ants were large, they would be heavy.”

Accommodation of graduality of counterfactuals
(some counterfactual conditionals seem to hold

to larger degrees than others)
“If ants were large, they would be heavy” vs.

“If ants were large, they would rule the earth”

Standard fuzzy handling of the similarity of worlds

Disadvantages
Needs non-classical logic for semantic reasoning

(but a well-developed one⇒ a low cost for experts)
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Similarity relations = fuzzy equivalence relations

Axioms: Sxx, Sxy→ Syx, Sxy & Syz→ Sxz
(interpreted in fuzzy logic!)

Notice: Similarities are transitive (in the sense of fuzzy logic),
but avoid Poincaré’s paradox:

x1 ≈ x2 ≈ x3 ≈ · · · ≈ xn, though x1 6≈ xn,

since the degree of x1 ≈ xn can decrease with n,
due to the non-idempotent & of fuzzy logic
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Ordering of worlds by similarity

Σxy . . . the world x is similar to the world y

x 4w y . . . x is more or roughly as similar to w as y

Define: x4wy ≡ Σwy . Σwx

The closest A-worlds: Min4w A = {x | x ∈ A ∧ (∀a ∈ A)(x 4w a)}

(the properties of minima in fuzzy orderings are well known)

Define: ‖A� B‖w ≡ (Min4w A) ⊆ B

. . . the closest A-worlds are B-worlds (fuzzily!)
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Properties of fuzzy counterfactuals

Non-triviality: (A� B) = 1 for all B only if A = ∅

Non-desirable properties are invalid:
2 (A� B) & (B� C)→ (A� C)
2 (A� C)→ (A & B� C)
2 (A� C)→ (¬C� ¬A)

Desirable properties are valid, eg:
� 2(A→ B) → (A� B) → (A→ B)

+ many more theorems on� easily derivable
in higher-order fuzzy logic

However, some of Lewis’ tautologies only hold for full degrees
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