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Predicate language

Predicate language: P = 〈P,F, ar〉: predicate and function symbols
with arity

Object variables: denumerable set OV

P-terms:

if v ∈ OV, then v is a P-term
if f ∈ F, ar(F) = n, and t1, . . . , tn are P-terms, then so is f (t1, . . . , tn)
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Formulas

Atomic P-formulas: propositional constant 0 and expressions of the
form R(t1, . . . , tn), where R ∈ P, ar(R) = n, and t1, . . . , tn are P-terms.

P-formulas:

the atomic P-formulas are P-formulas
if α and β are P-formulas, then so are α ∧ β, α ∨ β, and α→ β

if x ∈ OV and α is a P-formula, then so are ∀xα and ∃xα
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Basic syntactical notions

P-theory: a set of P-formulas

A closed P-term is a P-term without variables.

An occurrence of a variable x in a formula ϕ is bound if it is in the scope
of some quantifier over x; otherwise it is called a free occurrence.

A variable is free in a formula ϕ if it has a free occurrence in ϕ.
we write ϕ(x1, . . . , xn) if free variables in ϕ are among x1, . . . , xn

A P-sentence is a P-formula with no free variables.

A term t is substitutable for the object variable x in a formula ϕ if no
occurrence of any variable occurring in t is bound in ϕ(x/t ) unless it
was already bound in ϕ.
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Axiomatic system

A Hilbert-style proof system for CL∀ can be obtained as:

(P) axioms of CL substituting propositional variables by P-formulas

(∀1) ∀xϕ→ ϕ(x/t) t substitutable for x in ϕ

(∀2) ∀x (χ→ ϕ)→ (χ→ ∀xϕ) x not free in χ

(MP) modus ponens for P-formulas

(gen) from ϕ infer ∀xϕ.

Let us denote as `CL∀ the provability relation.
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Semantics

Classical P-structure: a tuple M = 〈M, 〈PM〉P∈P , 〈fM〉f∈F〉 where
M 6= ∅
PM ⊆ Mn, for each n-ary P ∈ P
fM : Mn → M for each n-ary f ∈ F.

M-evaluation v: a mapping v : OV→ M

For x ∈ OV,m ∈ M, and M-evaluation v, we define vx=m as

vx=m(y) =

{
m if y = x
v(y) otherwise
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Tarski truth definition

Interpretation of P-terms

‖x‖M
v = v(x) for x ∈ OV

‖f (t1, . . . , tn)‖M
v = fM(‖t1‖M

v , . . . , ‖tn‖M
v ) for n-ary f ∈ F

Truth-values of P-formulas
‖P(t1, . . . , tn)‖M

v = 1 iff 〈‖t1‖M
v , . . . , ‖tn‖M

v 〉 ∈ PM for P ∈ P
‖0‖M

v = 0
‖α ∧ β‖M

v = 1 iff ‖α‖M
v = 1 and ‖β‖M

v = 1
‖α ∨ β‖M

v = 1 iff ‖α‖M
v = 1 or ‖β‖M

v = 1
‖α→ β‖M

v = 1 iff ‖α‖M
v = 0 or ‖β‖M

v = 1
‖∀xϕ‖M

v = 1 iff for each m ∈ M we have ‖ϕ‖M
vx=m

= 1
‖∃xϕ‖M

v = 1 iff there is m ∈ M such that ‖ϕ‖M
vx=m

= 1
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Model and semantical consequence

We write M |= ϕ if ‖ϕ‖M
v = 1 for each M-evaluation v.

Model: We say that a P-structure M is a P-model of a P-theory T,
M |= T in symbols, if M |= ϕ for each ϕ ∈ T.

Consequence: A P-formula ϕ is a semantical consequence of a
P-theory T, T |=CL∀ ϕ, if each P-model of T is also a model of ϕ.
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The completeness theorem

Problem of completeness of CL∀: formulated by Hilbert and
Ackermann (1928) and solved by Gödel (1929):

Theorem 4.1 (Gödel’s completeness theorem)
For every predicate language P and for every set T ∪ {ϕ} of
P-formulas :

T `CL∀ ϕ iff T |=CL∀ ϕ
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Some history

1947 Henkin: alternative proof of Gödel’s completeness theorem
1961 Mostowski: interpretation of existential (resp. universal)

quantifiers as suprema (resp. infima)
1963 Rasiowa, Sikorski: first-order intuitionistic logic
1963 Hay: infinitary standard Łukasiewicz first-order logic
1969 Horn: first-order Gödel–Dummett logic
1974 Rasiowa: first-order implicative logics
1990 Novák: first-order Pavelka logics
1992 Takeuti, Titani: first-order Gödel–Dummett logic with

additional connectives
1998 Hájek: first-order axiomatic extensions of HL
2005 Cintula, Hájek: first-order core fuzzy logics
2011 Cintula, Noguera: first-order semilinear logics
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Basic syntax is the again the same

Let L be G or Ł and L be G or MV correspondingly

Predicate language: P = 〈P,F, ar〉

Object variables: denumerable set OV

P-terms, (atomic) P-formulas, P-theories: as in CL∀

free/bounded variables, substitutable terms, sentences: as in CL∀
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Recall classical semantics

Classical P-structure: a tuple M = 〈M, 〈PM〉P∈P , 〈fM〉f∈F〉 where
M 6= ∅
PM ⊆ Mn, for each n-ary P ∈ P
fM : Mn → M for each n-ary f ∈ F.

M-evaluation v: a mapping v : OV→ M

For x ∈ OV,m ∈ M, and M-evaluation v, we define vx=m as

vx=m(y) =

{
m if y = x
v(y) otherwise
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Reformulating classical semantics

Classical P-structure: a tuple M = 〈M, 〈PM〉P∈P , 〈fM〉f∈F〉 where
M 6= ∅
PM : Mn → {0, 1}, for each n-ary P ∈ P
fM : Mn → M for each n-ary f ∈ F.

M-evaluation v: a mapping v : OV→ M

For x ∈ OV,m ∈ M, and M-evaluation v, we define vx=m as

vx=m(y) =

{
m if y = x
v(y) otherwise
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And now the ‘fuzzy’ semantics for logic L . . .

A-P-structure (A∈L): a tuple M = 〈M, 〈PM〉P∈P , 〈fM〉f∈F〉 where
M 6= ∅
PM : Mn → A, for each n-ary P ∈ P
fM : Mn → M for each n-ary f ∈ F.

M-evaluation v: a mapping v : OV→ M

For x ∈ OV,m ∈ M, and M-evaluation v, we define vx=m as

vx=m(y) =

{
m if y = x
v(y) otherwise
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Recall classical Tarski truth definition

Interpretation of P-terms

‖x‖M
v = v(x) for x ∈ OV

‖f (t1, . . . , tn)‖M
v = fM(‖t1‖M

v , . . . , ‖tn‖M
v ) for n-ary f ∈ F

Truth-values of P-formulas
‖P(t1, . . . , tn)‖M

v = 1 iff 〈‖t1‖M
v , . . . , ‖tn‖M

v 〉 ∈ PM for n-ary P ∈ P
‖0‖M

v = 0
‖α ∧ β‖M

v = 1 iff ‖α‖M
v = 1 and ‖β‖M

v = 1
‖α ∨ β‖M

v = 1 iff ‖α‖M
v = 1 or ‖β‖M

v = 1
‖α→ β‖M

v = 1 iff ‖α‖M
v = 0 or ‖β‖M

v = 1
‖∀xϕ‖M

v = 1 iff for each m ∈ M we have ‖ϕ‖M
vx=m

= 1
‖∃xϕ‖M

v = 1 iff there is m ∈ M such that ‖ϕ‖M
vx=m

= 1

Petr Cintula (CAS) Fuzzy Logic 4 www.cs.cas.cz/cintula/mfl-tuw 17 / 90



Reformulating classical Tarski truth definition

Interpretation of P-terms

‖x‖M
v = v(x) for x ∈ OV

‖f (t1, . . . , tn)‖M
v = fM(‖t1‖M

v , . . . , ‖tn‖M
v ) for n-ary f ∈ F

Truth-values of P-formulas
‖P(t1, . . . , tn)‖M

v = PM(‖t1‖M
v , . . . , ‖tn‖M

v ) for n-ary P ∈ P

‖0‖M
v = 02

‖α ∧ β‖M
v = min≤2{‖α‖M

v , ‖β‖M
v }

‖α ∨ β‖M
v = max≤2{‖α‖M

v , ‖β‖M
v }

‖α→ β‖M
v = ‖α‖M

v →2 ‖β‖M
v

‖∀xϕ‖M
v = inf≤2{‖ϕ‖M

vx=m
| m ∈ M}

‖∃xϕ‖M
v = sup≤2

{‖ϕ‖M
vx=m
| m ∈ M}
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And now the Tarski truth definition for ‘fuzzy’ semantics

Interpretation of P-terms

‖x‖M
v = v(x) for x ∈ OV

‖f (t1, . . . , tn)‖M
v = fM(‖t1‖M

v , . . . , ‖tn‖M
v ) for n-ary f ∈ F

Truth-values of P-formulas
‖P(t1, . . . , tn)‖M

v = PM(‖t1‖M
v , . . . , ‖tn‖M

v ) for n-ary P ∈ P

‖0‖M
v = 0A

‖α ∧ β‖M
v = min≤A{‖α‖M

v , ‖β‖M
v }

‖α ∨ β‖M
v = max≤A{‖α‖M

v , ‖β‖M
v }

‖α→ β‖M
v = ‖α‖M

v →A ‖β‖M
v

‖∀xϕ‖M
v = inf≤A{‖ϕ‖M

vx=m
| m ∈ M}

‖∃xϕ‖M
v = sup≤A

{‖ϕ‖M
vx=m
| m ∈ M}
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Model and semantical consequence

Problem: the infimum/supremum need not exist! In such case we take
its value (and values of all its superformulas) as undefined

Definition 4.2 (Model)
A tuple M = 〈A,M〉 is a K-P-model of T, M |= T in symbols, if

M is A-P-structure for some A ∈ K ⊆ L
‖ϕ‖M

v is defined M-evaluation v and each formula ϕ

‖ψ‖M
v = 1A for each M-evaluation v and each ψ ∈ T

Definition 4.3 (Semantical consequence)
A P-formula ϕ is a semantical consequence of a P-theory T w.r.t. the
class K of L-algebras, T |=K ϕ in symbols, if for each K-P-model M of
T we have M |= ϕ.
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The semantics of chains

Proposition 4.4 (Assume that x is not free in ψ . . . )

ϕ |=L ∀xϕ thus ϕ |=K ∀xϕ

ϕ ∨ ψ |=Llin (∀xϕ) ∨ ψ BUT ϕ ∨ ψ 6|=G (∀xϕ) ∨ ψ

Observation
Thus |=L ( |=Llin even though in propositional logic |=L = |=Llin
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Axiomatization: two first-order logics over L

Minimal predicate logic L∀m:

(P) first-order substitutions of axioms and the rule of L

(∀1) ∀xϕ→ ϕ(x/t) t substitutable for x in ϕ

(∃1) ϕ(x/t)→ ∃xϕ t substitutable for x in ϕ

(∀2) ∀x (χ→ ϕ)→ (χ→ ∀xϕ) x not free in χ

(∃2) ∀x (ϕ→ χ)→ (∃xϕ→ χ) x not free in χ

(gen) from ϕ infer ∀xϕ

Predicate logic L∀: an the extension of L∀m by:

(∀3) ∀x (ϕ ∨ χ)→ (∀xϕ) ∨ χ x not free in χ
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Theorems (for x not free in χ)

The logic L∀m proves:
1. χ↔ ∀xχ 2. ∃xχ↔ χ

3. ∀x (ϕ→ ψ)→ (∀xϕ→ ∀xψ) 4. ∀x ∀yϕ↔ ∀y ∀xϕ
5. ∀x (ϕ→ ψ)→ (∃xϕ→ ∃xψ) 6. ∃x ∃yϕ↔ ∃y ∃xϕ
7. ∀x (χ→ ϕ)↔ (χ→ ∀xϕ) 8. ∀x (ϕ→ χ)↔ (∃xϕ→ χ)

9. ∃x (χ→ ϕ)→ (χ→ ∃xϕ) 10. ∃x (ϕ→ χ)→ (∀xϕ→ χ)

11. ∃x (ϕ ∨ ψ)↔ ∃xϕ ∨ ∃xψ 12. ∃x (ϕ& χ)↔ ∃xϕ& χ

13. ∃x (ϕn)↔ (∃xϕ)n

The logic L∀ furthermore proves:
14. (∀xϕ) ∨ χ↔ ∀x (ϕ ∨ χ) 15. ∃x (ϕ ∧ χ)↔ (∃xϕ) ∧ χ

Exercise 12
Prove at least 7 of these theorems.
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Ł∀ = Ł∀m

Proposition 4.5
Ł∀ = Ł∀m.

Proof.
It is enough to show that Ł∀m proves (∀3). From
(α ∨ β)↔ ((α→ β)→ β) and (3) we obtain
∀x (ϕ ∨ ψ)→ ∀x ((ψ → ϕ)→ ϕ). Now, again by (3), we have
∀x ((ψ → ϕ)→ ϕ)→ (∀x (ψ → ϕ)→ ∀xϕ). By (7) and suffixing,
(∀x (ψ → ϕ)→ ∀xϕ)→ ((ψ → ∀xϕ)→ ∀xϕ), and finally we have
((ψ → ∀xϕ)→ ∀xϕ)→ ∀xϕ ∨ ψ. Transitivity ends the proof.
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Syntactical properties of `L∀m and `L∀

Let ` be either `L∀m or `L∀.

Theorem 4.6 (Congruence Property)
Let ϕ,ψ be sentences, χ a formula, and χ̂ a formula resulting from χ by
replacing some occurrences of ϕ by ψ. Then

` ϕ↔ ϕ ϕ↔ ψ ` ψ ↔ ϕ

ϕ↔ ψ ` χ↔ χ̂ ϕ↔ δ, δ ↔ ψ ` ϕ↔ ψ.

Theorem 4.7 (Constants Theorem)
Let Σ ∪ {ϕ} be a theory and c a constant not occurring there. Then
Σ ` ϕ(x/c) iff Σ ` ϕ.

Exercise 13
Prove the Constants Theorem for `G∀m .
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Deduction theorems

Theorem 4.8
For each P-theory T ∪ {ϕ,ψ}:

T, ϕ `G∀m ψ iff T `G∀m ϕ→ ψ.
T, ϕ `G∀ ψ iff T `G∀ ϕ→ ψ.
T, ϕ `Ł∀ ψ iff T `Ł∀ ϕ

n → ψ for some n ∈ N.

Exercise 14
Prove the Deduction theorems.
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Syntactical properties of `L∀

Theorem 4.9 (Proof by Cases Property)
For a P-theory T and P-sentences ϕ,ψ, χ:

T, ϕ `L∀ χ T, ψ `L∀ χ

T, ϕ ∨ ψ `L∀ χ
(PCP)

Proof.
We show by induction T ∨ χ ` ϕ ∨ χ whenever T ` ϕ and χ is a
sentence; the rest is the same as in the propositional case.
Let δ be an element of the proof of ϕ from T: the claim is

trivial if δ ∈ T or δ is an axiom;
proved as in the propositional case if δ is obtained using (MP)

easy if δ = ∀xψ is obtained using (gen): from the IH we get
T ∨ χ ` ψ ∨ χ and using (gen), (∀3), and (MP) we obtain
T ∨ χ ` (∀xψ) ∨ χ.
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Syntactical properties of `L∀

Theorem 4.9 (Proof by Cases Property)
For a P-theory T and P-sentences ϕ,ψ, χ:

T, ϕ `L∀ χ T, ψ `L∀ χ

T, ϕ ∨ ψ `L∀ χ
(PCP)

Theorem 4.10 (Semilinearity Property)
For a P-theory T and P-sentences ϕ,ψ, χ:

T, ϕ→ ψ `L∀ χ T, ψ → ϕ `L∀ χ

T `L∀ χ
(SLP)

Proof.
Easy using PCP and `L∀ (ϕ→ ψ) ∨ (ψ → ϕ).
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Soundness

Exercise 15
Prove for L be either Ł of G that
`L∀m ⊆ |=L

`L∀ ⊆ |=Llin

`Ł∀ ⊆ |=MV

Recall that `G∀ 6⊆ |=G
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Failure of certain classical theorems (for x not free in χ)

Recall:

`L∀ (∀xϕ) ∨ χ↔ ∀x (ϕ ∨ χ) `L∀ ∃x (ϕ ∧ χ)↔ (∃xϕ) ∧ χ

`L∀m ∀x (χ→ ϕ)↔ (χ→ ∀xϕ) `L∀m ∀x (ϕ→ χ)↔ (∃xϕ→ χ)

`L∀m ∃x (χ→ ϕ)→ (χ→ ∃xϕ) `L∀m ∃x (ϕ→ χ)→ (∀xϕ→ χ)

Proposition 4.11
The formulas in the first row are not provable in G∀m and the converse
directions of formulas in the last row are provable Ł∀m but not in G∀.

Exercise 16
Prove the second part of the previous proposition.
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Towards completeness: Lindenbaum–Tarski algebra

Let L be G or Ł and ` be either `L∀m or `L∀. Let T be a P-theory.

Lindenbaum–Tarski algebra of T (LindTT ):

domain LT = {[ϕ]T | ϕ a P-sentence} where

[ϕ]T = {ψ | ψ a P-sentence and T ` ϕ↔ ψ}.

operations:

◦LindTT ([ϕ1]T , . . . , [ϕn]T) = [◦(ϕ1, . . . , ϕn)]T

Exercise 17
LindTT ∈ L

[ϕ]T ≤LindTT [ψ]T iff T ` ϕ→ ψ

LindTT ∈ Llin if, and only if, T is linear.
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Towards completeness: Canonical model

Canonical model (CMT ) of a P-theory T (in `): P-structure
〈LindTT ,M〉 such that

domain of M: the set CT of closed P-terms

fM(t1, . . . , tn) = f (t1, . . . , tn) for each n-ary f ∈ F, and

PM(t1, . . . , tn) = [P(t1, . . . , tn)]T for each n-ary P ∈ P.

A P-theory T is ∀-Henkin if for each P-formula ψ(x) such that T 0 ∀xψ
there is a constant c in P such that T 0 ψ(x/c).
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Towards completeness: Canonical model
∀-Henkin: T 0 ∀xψ implies T 0 ψ(x/c) for some constant c

Proposition 4.12
Let T be a ∀-Henkin P-theory. Then for each P-sentence ϕ we have
‖ϕ‖CMT = [ϕ]T and so CMT |= ϕ iff T ` ϕ.

Proof.
Let v be evaluation s.t. v(xi) = ti for some ti ∈ CT. We show by
induction that ‖ϕ‖CMT

v = [ϕ(x1/t1, . . . , xn/tn)]T for each ϕ(x1, . . . , xn)
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Towards completeness: Canonical model
∀-Henkin: T 0 ∀xψ implies T 0 ψ(x/c) for some constant c

Proposition 4.12
Let T be a ∀-Henkin P-theory. Then for each P-sentence ϕ we have
‖ϕ‖CMT = [ϕ]T and so CMT |= ϕ iff T ` ϕ.

Proof.
Let v be evaluation s.t. v(xi) = ti for some ti ∈ CT. We show by
induction that ‖ϕ‖CMT

v = [ϕ(x1/t1, . . . , xn/tn)]T for each ϕ(x1, . . . , xn)

The base case and the induction step for connectives is just the defini-
tion.
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Towards completeness: Canonical model
∀-Henkin: T 0 ∀xψ implies T 0 ψ(x/c) for some constant c

Proposition 4.12
Let T be a ∀-Henkin P-theory. Then for each P-sentence ϕ we have
‖ϕ‖CMT = [ϕ]T and so CMT |= ϕ iff T ` ϕ.

Proof.
Let v be evaluation s.t. v(xi) = ti for some ti ∈ CT. We show by
induction that ‖ϕ‖CMT

v = [ϕ(x1/t1, . . . , xn/tn)]T for each ϕ(x1, . . . , xn)

Quantifiers: [∀xϕ]T
?
= ‖∀xϕ‖CMT = inf≤LindTT

{[ϕ(x/t)]T | t ∈ CT}

From T ` ∀xϕ→ ϕ(x/t) we get that [∀xϕ]T is a lower bound.
We show it is the largest one: take any χ s.t. [χ]T 6≤LindTT [∀xϕ]T ; thus
T 6` χ → ∀xϕ, and so T 6` ∀x (χ → ϕ). As T is ∀-Henkin there is
c ∈ CT s.t. T 6` (χ → ϕ)(x/c), thus T 6` χ → ϕ(x/c), i.e., [χ]T 6≤LindTT

[ϕ(x/c)]T .
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Completeness theorem for L∀m

Theorem 4.13 (Completeness theorem for L∀m)
Let L be either Ł or G and T ∪ {ϕ} a P-theory. Then:
T `L∀m ϕ iff T |=L ϕ.

All we need to prove this theorem is to show that:

Lemma 4.14 (Extension lemma for L∀m)
Let T ∪ {ϕ} be a P-theory such that T 0L∀m ϕ. Then there is P ′ ⊇ P
and a ∀-Henkin P ′-theory T ′ ⊇ T such that T ′ 0L∀m ϕ.

Proof.
P ′ = P + countably many new object constants. Let T ′ be T as
P ′-theory. Take any P ′-formula ψ(x), such that T ′ 0L∀m ∀xψ. Thus
T ′ 0L∀m ψ and so T ′ 0L∀m ψ(x/c) for some c ∈ P ′ not occurring in
T ′ ∪ {ψ} (by Constants Theorem).
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Completeness theorem for L∀

Theorem 4.15 (Completeness theorem for L∀)
Let L be either Ł or G and T ∪ {ϕ} a P-theory. Then

T `L∀ ϕ iff T |=Llin ϕ.

All we need to prove this theorem is to show that:

Lemma 4.16 (Extension lemma for L∀)

Let T ∪ {ϕ} be a P-theory such that T 0L∀ ϕ. Then there is a predicate
language P ′ ⊇ P and a linear ∀-Henkin P ′-theory T ′ ⊇ T such that
T ′ 0L∀ ϕ.
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Initializing the construction

Let P ′ be the expansion of P by countably many new constants.

We enumerate all P ′-formulas with one free variable: {χi(x) | i ∈ N}.

We construct a sequence of P ′-sentences ϕi and an increasing chain
of P ′-theories Ti such that Ti 0 ϕj for each j ≤ i.

Take T0 = T and ϕ0 = ϕ, which fulfils our conditions.

In the induction step we distinguish two possibilities and show that the
required conditions are met:
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The induction step

(H1) If Ti ` ϕi ∨ ∀xχi+1: then we define ϕi+1 = ϕi and
Ti+1 = Ti ∪ {∀xχi+1}.

(H2) If Ti 6` ϕi ∨ ∀xχi+1, then we define Ti+1 = Ti and
ϕi+1 = ϕi ∨ χi+1(x/c) for some c not occurring in Ti ∪ {ϕj | j ≤ i}.

Assume, for a contradiction, that Ti+1 ` ϕj for some j ≤ i + 1. Then
also Ti+1 ` ϕi+1.

Thus in case (H1) we have Ti∪{∀xχi+1} ` ϕi. Since, trivially, Ti∪{ϕi} `
ϕi we obtain by Proof by Cases Property that
Ti ∪ {ϕi ∨ ∀xχi+1} ` ϕi and so Ti ` ϕi; a contradiction!
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(H1) If Ti ` ϕi ∨ ∀xχi+1: then we define ϕi+1 = ϕi and
Ti+1 = Ti ∪ {∀xχi+1}.

(H2) If Ti 6` ϕi ∨ ∀xχi+1, then we define Ti+1 = Ti and
ϕi+1 = ϕi ∨ χi+1(x/c) for some c not occurring in Ti ∪ {ϕj | j ≤ i}.

Assume, for a contradiction, that Ti+1 ` ϕj for some j ≤ i + 1. Then
also Ti+1 ` ϕi+1.

Thus in case (H2) we have Ti ` ϕi ∨ χi+1(x/c). Using Constants Theo-
rem we obtain Ti ` ϕi∨χi+1 and thus by (gen), (∀3), and (MP) we obtain
Ti ` ϕi ∨ ∀xχi+1; a contradiction!
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Final touches . . .

Let T ′ be a maximal theory extending
⋃

Ti s.t. T ′ 0 ϕi for each i.
Such T ′ exists thanks to Zorn’s Lemma: let T be a chain of such
theories then clearly so is

⋃
T .

T ′ is linear: assume that T ′ 6` ψ → χ and T ′ 6` χ→ ψ. Then there are
i, j such that T ′, ψ → χ ` ϕi and T ′, χ→ ψ ` ϕj. Thus also

T ′, ψ → χ ` ϕmax{i,j} and T ′, χ→ ψ ` ϕmax{i,j}.

Thus by Semilinearity Property also T ′ ` ϕmax{i,j}; a contradiction!

T ′ is ∀-Henkin: if T ′ 0 ∀xχi+1, then we must have used case (H2); since
T ′ 6` ϕi+1 and ϕi+1 = ϕi ∨ χi+1(x/c)) we also have T ′ 6` χi+1(x/c).
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It works in Gödel–Dummett logic

Theorem 4.17
The following are equivalent for every set of P-formulas Γ∪{ϕ} ⊆ FmL:

1 Γ `G∀ ϕ

2 Γ |=Glin ϕ

3 Γ |=[0,1]G ϕ
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Recall the proof in the propositional case

Contrapositively: assume that T 6`G ϕ. Let B be a countable G-chain
and e a B-evaluation such that e[T] ⊆ {1B} and e(ϕ) 6= 1B.

There has to be (because every countable order can be monotonously
embedded into a dense one) a mapping f : B→ [0, 1] such that
f (0) = 0, f (1) = 1, and for each a, b ∈ B we have:

a ≤ b iff f (a) ≤ f (a)

We define a mapping ē : FmL → [0, 1] as

ē(ψ) = f (e(ψ))

and prove (by induction) that it is [0, 1]G-evaluation.

Then ē(ψ) = 1 iff e(ψ) = 1B and so ē[T] ⊆ {1} and ē(ϕ) 6= 1.
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Would it work in the first-order level?

Contrapositively: assume that T 6`G∀ ϕ. Let B be a countable G-chain
and M = 〈B,M〉 a model of T such that ‖ϕ‖M

v 6= 1B.

There has to be (because every countable order can be monotonously
embedded into a dense one) a mapping f : B→ [0, 1] such that
f (0) = 0, f (1) = 1, and for each a, b ∈ B we have:

a ≤ b iff f (a) ≤ f (a)

We define a [0, 1]G-structure M̄ with the same domain, functions and

PM̄(x1, . . . , xn) = f (PM(x1, . . . , xn))

and prove (by induction) that ‖ψ‖M̄
v = f (‖ψ‖M

v ). Then ‖ψ‖M̄
v = 1 iff

‖ψ‖M
v = 1B and so 〈[0, 1]G, M̄〉 is model of T and ‖ϕ‖M̄

v 6= 1.
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What about the case of Łukasiewicz logic?

Theorem 4.18
There is a formula ϕ such that |=[0,1]Ł ϕ and 6`Ł∀ ϕ.

Neither the set of theorems nor the set of satisfiable formulas w.r.t. the
models of standard MV-algebra [0, 1]Ł are recursively enumerable. In
fact we have:

Theorem 4.19 (Ragaz, Goldstern, Hájek)
The set stTAUT(Ł∀) is Π2-complete and stSAT(Ł∀) is Π1-complete.
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Finite model property: The classical case

Valid sentences of CL∀ (in any predicate language) are recursively
enumerable thanks to the completeness theorem.
Löwenheim (1915): Monadic classical logic (the fragment of CL∀
only with unary predicates and no functional symbols) has the
finite model property, and hence it is decidable.
Church (1936) and Turing (1937): if the predicate language
contains at least a binary predicate, then CL∀ is undecidable.
Surány (1959): The fragment of CL∀ with three variables is
undecidable.
Mortimer (1975): The fragment of CL∀ with two variables has the
finite model property, and hence it is decidable.
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Finite model property: the fuzzy case
In Gödel–Dummett logic the FMP does not even hold for formulas with
one variable (a model is finite if it has a finite domain).

Example in G∀ = |=[0,1]G

ϕ = ¬∀x P(x) ∧ ¬∃x¬P(x).

Evidently ϕ has no finite model and so ϕ |=fin
[0,1]G

0. But consider
[0, 1]G-model M with domain N, where PM(n) = 1

n+1 . Then clearly for
each n ∈ N: ‖P(n)‖ > 0 and infn∈N ‖P(n)‖ = 0, i.e., M |= ϕ, and so
ϕ 6|=[0,1]G 0.

The infimum is not the minimum, it is not witnessed.

Exercise 18
Show that |=[0,1]Ł does not have the FMP (hint: use the formula
∃x (P(x)↔ ¬P(x)) & ∀x ∃y (P(x)↔ P(y) & P(y))).
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Witnessed models
Definition 4.20
A P-model M is witnessed if for each P-formula ϕ(x,~y) and for each
M-evaluation v, there are s, i ∈ M such that:

‖∀xϕ‖M
v = ‖ϕ‖M

vx=i
‖∃xϕ‖M

v = ‖ϕ‖M
vx=s

.

Exercise 19
Consider formulas

(W∃) ∃x (∃yψ(x/y)→ ψ) (W∀) ∃x (ψ → ∀yψ(x/y))

Show that not all models of these formulas are witnessed and these
formulas are

true in all witnessed models of G∀
not provable in G∀
provable in (true in all models of) Ł∀
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Witnessed logic and witnessed completeness

Theorem 4.21 (Witnessed completeness theorem for Ł∀)
Let T ∪ {ϕ} a theory. Then T `Ł∀ ϕ iff for each witnessed MVlin-model
M of T we have M |= ϕ.

Definition 4.22
The logic G∀w is the extension of G∀ by the axioms (W∃) and (W∀).

(note that the analogous definition for L would yield Ł∀w = Ł∀)

Theorem 4.23 (Witnessed completeness theorem for G∀w)
Let T ∪ {ϕ} be a theory. Then T `G∀w ϕ iff for each witnessed
Glin-model M of T we have M |= ϕ.
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A proof

A theory T is Henkin if it is ∀-Henkin and for each ϕ(x) such that
T ` (∃x)ϕ there is a constant such that T ` ϕ(x/c).

Assume that we can prove:

Lemma 4.24 (Full Extension lemma for L∀)
Let T ∪ {ϕ} be a P-theory such that T 0L∀w ϕ. Then there is a
predicate language P ′ ⊇ P and a linear Henkin P ′-theory T ′ ⊇ T such
that T ′ 0L∀w ϕ.

Then the proof of the witnessed completeness is an easy corollary of
the following straightforward proposition

Proposition 4.25
Let T be a Henkin P-theory. Then CMT is a witnessed model.
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Before we prove the full extension lemma . . .

Definition 4.26
Let P1 ⊆ P2. A P2-theory T2 is a conservative expansion of a P1-theory
T1 if for each P1-formula ϕ, T2 ` ϕ iff T1 ` ϕ.

Proposition 4.27
For each predicate language P, each P-theory T, each P-formula
ϕ(x), and any constant c 6∈ P holds that T ∪ {ϕ(x/c)} is a conservative
expansion (in the logic L∀) of T ∪ {∃xϕ}.

Proof.
Assume that T ∪ {ϕ(x/c)} `L∀ ψ. Then, by Deduction Theorem, there
is n such that T `L∀ ϕ(x/c)n → ψ. Thus by the Constants Theorem and
(∃2) we obtain T `L∀ ∃x (ϕn)→ ψ. Using (13) we obtain
T `L∀ (∃xϕ)n → ψ. Deduction Theorem completes the proof.
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A proof of full extension lemma

Modify the proof of the extension lemma, s.t. after going through
options (H1) and (H2) on the i-th step we construct theories T ′i+1. Then
we distinguish two new options:

(W1) If T ′i+1, (∃x)χi+1 0 ϕi+1: then we define Ti+1 = T ′i+1 ∪ {χi+1(x/c)}.
for some c not occurring in T ′

i ∪ {ϕj | j ≤ i}.

(W2) If T ′i+1, (∃x)χi+1 ` ϕi+1: then we define Ti+1 = T ′i+1

The induction assumption Ti+1 0 ϕi+1 holds: in (W2) trivially, in case of
(W1) we use the fact that T ′i+1 ∪ {χi+1(x/c)} is a conservative
expansion of T ′i+1 ∪ {(∃x)χi+1}.

The rest is the same as the proof of the extension lemma, we only
show that T ′ is Henkin: it T ′ ` (∃x)χi1 then we used case (W1) (from
T ′, (∃x)χi+1 ` ϕi+1, a contradiction). Thus T ′ ` χi+1(x/c).
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Skolemization

Theorem 4.28
For Gödel–Dummett logic we have: T ∪ {∀~yϕ(x/fϕ(~y))} is a
conservative expansion of T ∪ {∀~y ∃xϕ} for each P-theory
T ∪ {ϕ(x,~y)}, and a functional symbol fϕ 6∈ P of the proper arity.

A hint of the proof.
Take P-formula χ s.t. T ∪ {∀y ∃xϕ} 0 χ. Let T ′ be a Henkin P ′-theory
T ′ ⊇ T ∪ {∀y ∃xϕ} s.t. T ′ 0 χ, and hence CMT′ 6|= χ.
For each closed P ′-term t we have T ′ ` ∃xϕ(x, y/t) (by (∀1)) and hence
there is a P ′-constant ct such that T ′ ` ϕ(x/ct, y/t ).
We define a model M by expanding CMT′ with one functional symbol
defined as: (fϕ)M(t ) = ct

Observe that for each P ′-formula: M |= ψ iff CM′T |= ψ
Thus M |= T and M 6|= χ and so clearly M |= ∀yϕ(x/fϕ(y))
And so we have established T ∪ {∀yϕ(x/fϕ(y))} 0 χ.
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Traditional fuzzy mathematics/logic

Fuzzy set: a mapping D→ [0, 1]

Fuzzy mathematics: a collection of classical mathematical results with
sets replaced by fuzzy sets there are exceptions

Fuzzy logic (1st meaning): a classical mathematical logic with
two-valued evaluation is replaced by [0,1]-evaluation
‘truth functions’ of ∧,∨,¬ computed as: min, max, 1− x

Fuzzy logic (2nd meaning): a label to anything involving fuzzy sets

A success of Fuzzy Logic: a useful way to describe (some aspects of)
‘graded’ behavior of real-word predicates
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Traditional fuzzy mathematics/logic
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Mathematical fuzzy logic

MFL is a bunch of non-classical logics with syntax, semantics, . . .

MFL aims at describing the laws of truth preservation in reasoning
under (a certain form of) vagueness/gradedness

MFL has an interpretation in terms of truth degrees, which is to be
seen as just a model (a classical rendering of vague phenomena)

Such models have originally been employed for ‘suggesting’ the laws
of reasoning under gradedness, BUT they must be regarded as
secondary (essentially classical, not genuinely ‘fuzzy’)
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A logic-based approach towards fuzzy mathematics?

“It is the opinion of the author that from a mathematical viewpoint
the important feature of fuzzy set theory is the replacement of the
two-valued logic by a multiple-valued logic. [. . . I]t is now clear how
we can find for every mathematical notion its ‘fuzzy counterpart’.
Since every mathematical notion can be written as a formula in a
formal language, we have only to internalize, i.e. to interpret these
expressions by the given multiple-valued logic.”

Höhle, Fuzzy real numbers as Dedekind cuts w.r.t.
a multiple-valued logic, FSS 1987

He suggests a use of multiple-valued logic to obtain ‘fuzzy
counterparts’ of classical mathematical notions

We go further: we also would like to reason about these concepts
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Formal fuzzy mathematics
Architecture of classical mathematics:

Logic: (first-order) Boolean logic
governs reasoning in mathematical theories

Foundations: set theory (type theory, . . . )
a formal theory giving a general framework

Particular disciplines: graph theory, topology, . . .
formalized within the foundational theory

Proposed architecture of fuzzy mathematics:
Logic: (first-order) mathematical fuzzy logic

developed enough for building formal theories
Foundations: a kind of formal fuzzy set theory

that’s what this talk is all about
Particular disciplines: fuzzy graph theory, fuzzy topology, . . .

formalized within the foundational theory
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Formal fuzzy mathematics

First-order fuzzy logic is strong enough to support non-trivial formal
mathematical foundational theories

Mathematical concepts in such theories show gradual rather than
bivalent structure

Examples:
Skolem, Hájek (1960, 2005): naïve set theory over Ł
Takeuti–Titani (1994): ZF-style fuzzy set theory

in a system close to Gödel logic (⇒ contractive)
Hájek–Haniková (2003): ZF-style set theory over HL∆

Novák (2004): Church-style fuzzy type theory over IMTL∆

Běhounek–Cintula (2005): Fuzzy Class Theory
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Hájek–Haniková fuzzy set theory
Logic: First-order HL4 with identity

Language: ∈

Axioms (z not free in ϕ):
4∀u (u ∈ x↔ u ∈ y)→ x = y (extensionality)
∃z4∀y¬(y ∈ z) (empty set ∅)
∃z4∀u (u ∈ z↔ (u = x ∨ u = y) (pair {x, y})
∃z4∀u (u ∈ z↔ ∃y (u ∈ y & y ∈ x)) (union

⋃
)

∃z4∀u (u ∈ z↔4(∀x ∈ u )(x ∈ y)) (weak power)
∃z4(∅ ∈ z & (∀x ∈ z )(x ∪ {x} ∈ z)) (infinity)
∃z4∀u (u ∈ z↔ (u ∈ x & ϕ(u, x)) (separation)
∃z4[(∀u ∈ x )∃vϕ(u, v)→ (∀u ∈ x )(∃v ∈ z )ϕ(u, v)] (collection)
4∀x ((∀y ∈ x )ϕ(y)→ ϕ(x))→4∀xϕ(x) (∈-induction)
∃z4(∀u (u ∈ z ∨ ¬(u ∈ z)) & (∀u ∈ x )(u ∈ z)) (support)
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Properties

Semantics: A cumulative hierarchy of HL-valued fuzzy sets

Features:
Contains an inner model of classical ZF:

(as the subuniverse of hereditarily crisp sets)
Conservatively extends classical ZF with fuzzy sets
Generalizes Takeuti–Titani’s construction

in a non-contractive fuzzy logic
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Cantor–Łukasiewicz set theory

Logic: First-order Łukasiewicz logic Ł∀

Language: ∈, set comprehension terms {x | ϕ}

Axioms:
y ∈ {x | ϕ} ↔ ϕ(y) (unrestricted comprehension)

Features:
Non-contractivity of Ł blocks Russell’s paradox
Consistency conjectured by Skolem (1960—still open: in 2010 a
gap found by Terui in White’s 1979 consistency proof)
Adding extensionality is inconsistent with CŁ
Open problem: define a reasonable arithmetic in CŁ

(some negative results by Hájek, 2005)
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Proposed foundations: Fuzzy Class Theory

Great flexibility and generality ⇒ “arbitrary” fuzzy logic L
Analogy with classical foundations ⇒ higher-order
Axiomatizability ⇒ Henkin-style

Henkin-style higher-order fuzzy logic L = FCT over L

Intended models = Zadeh’s fuzzy sets of any order over a fixed domain

Soundness⇒ results are valid of real fuzzy sets

Běhounek–C: Fuzzy class theory. FSS 2005
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Fuzzy Class Theory—FCT

Fuzzy Class Theory is:

Henkin-style higher-order fuzzy logic, which is proposed for the
foundational theory of:
an open project with the aim to develop formal fuzzy mathematics
within a unified axiomatic framework provided by a suitable
mathematical fuzzy logic by the ‘deductive means’ provided by
that logic.

Formal fuzzy mathematics is NOT:

‘incompatible’ with classical mathematics ⇒ 1) it contains CM
⇒ 2) CM can be viewed as its ‘limit’ case

an alternative mathematics
⇒ we keep classical metamathematics
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Setting the stage (for a simplified account)—algebra

Recall the standard MV-algebra [0, 1]Ł = 〈[0, 1],&,→,∧,∨, 0, 1〉 where

x & y = max{x + y− 1, 0} x→ y = min{1− x + y, 1}

x ∧ y = min{x, y} x ∨ y = max{x, y}

Add a unary connective 4 interpreted as 41 = 1 and 4x = 0 for x < 1
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Setting the stage—language
Consider three-sorted predicate language with sorts for

O objects
C classes of objects
C classes of classes of objects

binary predicates
∈ ⊆ O× C and ∈ ⊆ C × C
= ⊆ O× O and = ⊆ C × C and = ⊆ C × C

and terms:
〈·, ·〉 : O2 → O, we write Rxy for ‘〈x, y〉 ∈ X’
{x | ϕ} gives a class and {X | ϕ} ∈ C a class of classes

We shall also use defined binary predicates:
A ⊆ B = ∀x (x ∈ A→ x ∈ B)

A ≈ B = (A ⊆ B) ∧ (B ⊆ A)
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Setting the stage—models

Intended models:

Object variables range over a set (universe) U

Class variables range over [0, 1]U

Class-class variables range over [0, 1][0,1]U

‘General’ models for an MV-chain A:
Object variables range over a set (universe) U

Class variables range over a subset of AU

Class-class variables range over a subset of AAU
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Setting the stage—axiomatization?

W.r.t. intended models: not a nice one (it contains second-order logic)

W.r.t. general models: yes (due to the completeness theorem)

But even soundness w.r.t. intended models is very usefull
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Setting the stage—axiomatization

First-order axioms: those of first order Łukasiewicz logic with 4

Equality axioms: as usual plus ∃x, y (4(x = y)↔ x = y)

Additional axioms:
Comprehension axioms:

∀y (y ∈ {x | ϕ(x)} ↔ ϕ(y)) and ∀Y (Y ∈ {X | ϕ(X)} ↔ ϕ(Y))

Extensionality:
∃x4(x ∈ A↔ x ∈ B)→ A = B

∃X4(X ∈ A ↔ X ∈ B)→ A = B

Axioms for tuples: tuples equal iff all components equal, etc.
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Properties of fuzzy relations

Refl(R) = ∀x Rxx
Sym(R) = ∀xy (Rxy→ Ryx)

Trans(R) = ∀xyz (Rxy & Ryz→ Rxz)

Consider the domain U = {1, . . . , 6}:

P1 =



1.0 1.0 0.5 0.4 0.3 0.0
0.8 1.0 0.4 0.4 0.3 0.0
0.7 0.9 1.0 0.8 0.7 0.4
0.9 1.0 0.7 1.0 0.9 0.6
0.6 0.8 0.8 0.7 1.0 0.7
0.3 0.5 0.6 0.4 0.7 1.0


We compute: Refl(P1) = 1, Trans(P1) = 1, Sym(P1) = 0.4
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Properties of fuzzy relations

Refl(R) = ∀x Rxx
Sym(R) = ∀xy (Rxy→ Ryx)

Trans(R) = ∀xyz (Rxy & Ryz→ Rxz)

Add some disturbances to P1 and get

P2 =



1.00 1.00 0.56 0.40 0.30 0.00
0.87 1.00 0.33 0.44 0.26 0.02
0.67 0.92 0.93 0.87 0.70 0.39
0.93 1.00 0.64 1.00 0.97 0.67
0.52 0.79 0.82 0.71 1.00 0.59
0.27 0.50 0.61 0.41 0.72 1.00


We compute: Refl(P2) = 0.93, Sym(P2) = 0.41, Trans(P2) = 0.85
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Graded theories

Consequence of the methodology and apparatus:

Not only ∈, but all notions are naturally graded

In FCT we have:

Graded inclusion ⊆ . . . inclusion to a degree
Graded reflexivity Refl . . . reflexivity to a degree
Graded property “being a fuzzy topological space”
. . .

Graded properties of fuzzy relations pursued to a certain extent
already by Gottwald (1993, 2001), Bělohlávek (2002), . . .
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Reading of graded theorems

Consider theorem:

Trans R & Trans S→ Trans(R ∩ S)

It says: “The more both R and S are transitive,
the more their intersection is transitive”

Compare it to the theorem of traditional fuzzy mathematics:

Assume Trans R and Trans S (to degree 1). Then Trans(R ∩ S).

⇒ Theorems should be formulated as implications,
proved by chains of provable implications in fuzzy logic
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The fully graded approach

Graded notions generalize the traditional (non-graded) ones
traditional = 4(graded)

Graded notions allow to infer relevant information when the
traditional conditions are almost fulfilled cf. 0.999-reflexivity

Graded notions are easily be handled by FCT
inferring by the rules of fuzzy logic

Graded notions are more fuzzy properties of fuzzy sets crisp?
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Exponents

Classical theorems: ϕ1 & . . .& ϕn → ψ

FFL theorems: ϕk1
1 & . . .& ϕkn

n → ψ

If we can prove

ϕ2
1 & ϕ1

2 → ψ1 and ϕ1
1 & ϕ2

2 → ψ2

then the best we can get

ϕ3
1 & ϕ3

2 → ψ1 & ψ2

ϕ2
1 & ϕ2

2 → ψ1 ∧ ψ2
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Preconditions and Compound Notions

Traditional fuzzy mathematics

Preord R = Refl R & Trans R

Sim R = Refl R & Sym R & Trans R

We should define

Preordr,t R = Reflr R & Transt R

Simr,s,t R = Reflr R & Syms R & Transt R

In fact we define (r, t)-preorders and (r, s, t)-similarities.

(2, 5)-preorders are more sensitive to imperfections in transitivity
than in reflexivity

(10, 1)-preorders are much more sensitive to flaws in reflexivity
than in transitivity.
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Fuzzy relations and fuzzy partitions

Similarity
Refl(R) = ∀x Rxx
Sym(R) = ∀xy (Rxy→ Ryx)

Trans(R) = ∀xyz (Rxy & Ryz→ Rxz)
Sim(R) = Refl(R) & Sym(R) & Trans(R)

Partitions
Crisp(A) = ∀A4(A ∈ A ∨ ¬(A ∈ A))

NormM(A) = ∀A ∈ A∃x4(x ∈ A)
Cover(A) = ∀x ∃A ∈ A4(x ∈ A)

Disj(A) = ∀A,B ∈ A∃x ((x ∈ A & x ∈ B)→ A ≈ B)
Part(A) = Crisp(A) & NormM(A) & Cover(A) & Disj(A)

This part of the talk is based on: Běhounek–Bodenhofer–C: Relations in
Fuzzy Class Theory: Initial steps. FSS 2008.

Note: 4Part(A) iff A is T-partition De Baets, Mesiar: T-partitions. FSS 1998

Petr Cintula (CAS) Fuzzy Logic 4 www.cs.cas.cz/cintula/mfl-tuw 76 / 90



From similarities to partitions
Definitions

[x]R = {y | Ryx}.

V/R = {A | ∃x (A = [x]R)}

Results
Crisp(V/R)

4Refl(R)→ Cover(V/R) & NormM(V/R) Refl(R)→ ∃x (x ∈ [x]R)

Trans2(R) & Sym(R)→ Disj(V/R) Trans(R)→∃xy (Rxy→ [x]R ⊆ [y]R)

1. Rzx & Rxy→ Rzy Trans(R)

2. (Rzx & Rxy→ Rzy)→ (Rxy→ (Rzx→ Rzy)) propositional axiom
3. Rxy→ (Rzx→ Rzy) 1., 2., MP
4. Rxy→ (z ∈ [x]R → z ∈ [y]R) 3., comprehension axioms
5. ∃xy (Rxy→ [x]R ⊆ [y]R) generalization
5. Trans(R)→ ∃xy (Rxy→ [x]R ⊆ [y]R) deduction theorem
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From similarities to partitions
Definitions

[x]R = {y | Ryx}.

V/R = {A | ∃x (A = [x]R)}

Results
Crisp(V/R)

4Refl(R)→ Cover(V/R) & NormM(V/R) Refl(R)→ ∃x (x ∈ [x]R)

Trans2(R) & Sym(R)→ Disj(V/R) Trans(R)→∃xy (Rxy→ [x]R ⊆ [y]R)

1. Rxy & Rxz→ Ryz Trans(R),Sym(R)

2. x ∈ [y]R & x ∈ [z]R → Ryz 1., comprehension axioms
3. x ∈ [y]R & x ∈ [z]R → [y]R ⊆ [z]R 2., Trans(R)

4. x ∈ [y]R & x ∈ [z]R → [z]R ⊆ [y]R analogously, Trans2(R),Sym(R)

5. x ∈ [y]R & x ∈ [z]R → [z]R ≈ [y]R 3., 4.
6. ∃x (x ∈ [y]R & x ∈ [z]R)→ [y]R ≈ [z]R 5.
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From similarities to partitions
Definitions

[x]R = {y | Ryx}.

V/R = {A | ∃x (A = [x]R)}

Results
Crisp(V/R)

4Refl(R)→ Cover(V/R) & NormM(V/R) Refl(R)→ ∃x (x ∈ [x]R)

Trans2(R) & Sym(R)→ Disj(V/R) Trans(R)→∃xy (Rxy→ [x]R ⊆ [y]R)

So together we proved:

Trans2(R) & Sym(R) &4Refl(R)→ Part(V/R)

4Sim(R)→4Part(V/R)
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Semantical content

Trans2(R) & Sym(R)→ Disj(V/R)

This says that for any fuzzy relation R : U2 → [0, 1] we have:

( inf
x,y,z∈U

(Rxy & Ryz→ Rxz))2 & inf
x,y∈U

(Rxy→ Ryx) ≤

inf
A,B∈V/R

(sup
z∈U

(z ∈ A & z ∈ B)→ inf
z∈U

(z ∈ A↔ z ∈ B))

where
x & y = max{x + y− 1, 0} x→ y = min{1− x + y, 1}

Consider relation such that ‖Trans(R)‖ = ‖Sym(R)‖ = 0.9. Then we
know that

0.7 ≤ ‖Disj(V/R)‖
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From partitions to similarities
Definition

RA = {〈x, y〉 | (∃A ∈ A )(x ∈ A & y ∈ A)}

Results

Sym(RA)

Crisp(A) & Cover(A)→4Refl(RA)

Disj(A)→ Trans(RA)

1. (y ∈ X & y ∈ Y)→ X ≈ Y Disj (X )

2. (∃X ∈ X )(x ∈ X & y ∈ X) RX xy

3. (∃Y ∈ X )(y ∈ Y & z ∈ Y) RX yz

4. (∃X,Y ∈ X )(x ∈ X & y ∈ X & y ∈ Y & z ∈ Y) 2.,3.
5. (∃X,Y ∈ X )(x ∈ X & X ≈ Y & z ∈ Y) 1., 4.
6. (∃X,Y ∈ X )(x ∈ Y & z ∈ Y) 5.
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From partitions to similarities
Definition

RA = {〈x, y〉 | (∃A ∈ A )(x ∈ A & y ∈ A)}

Results

Sym(RA)

Crisp(A) & Cover(A)→4Refl(RA)

Disj(A)→ Trans(RA)

So together we proved:

Part(A)→4Sym(RA) &4Refl(RA) & Trans(RA)

Part(A)→ Sim(RA)

4Part(A)→4Sim(RA)
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There and back again . . .

Results
Sim(R)→ (RV/R ≈ R)

4Part(A)→ V/RA = A

Proof of R ⊆ RV/R:

1. Rxy

2. [y]R = [y]R & x ∈ [y]R & y ∈ [y]R Refl(R)

3. ∃z ([z]R = [z]R & x ∈ [z]R & y ∈ [z]R)

4. ∃Z ∃z ([z]R = Z & x ∈ Z & y ∈ Z)

5. ∃Z (∃z ([z]R = Z) & x ∈ Z & y ∈ Z)

6. (∃Z ∈ V/R )(x ∈ Z & y ∈ Z)

7. RV/R xy
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Counterfactual conditionals

Counterfactuals are conditionals with false antecedents:
If it were the case that A, it would be the case that C

Their logical analysis is notoriously problematic:

If interpreted as material implications, they come out always true
due to the false antecedent

However, some counterfactuals are obviously false

⇒ a simple logical analysis does not work
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Properties of counterfactuals

Counterfactual conditionals do not obey standard inference rules of the
material implication:

Weakening:
A� C

A ∧ B� C
If I won the lottery, I would go for a trip around the globe.
If I won the lottery and then WW3 started, I would go for a trip around
the globe. (!)

Contraposition:
A� C
¬C� ¬A

If I won the lottery, I would still live in the Prague.
If I left Prague, I would not win the lottery (!)
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Properties of counterfactuals

Transitivity:
A� B,B� C

A� C

If I quitted teaching in the university, I would try to teach in some high
school.
If I became a millionaire, I would quit teaching in the university.
If I became a millionaire, I would try to teach in some high school. (!)
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Lewis’ semantics of counterfactuals

Lewis’ semantics is based on a similarity relation which orders possible
worlds with respect to their similarity to the actual world:

The counterfactual conditional A� C is true at a world w w.r.t. a
similarity ordering if (very roughly) in the closest possible word to w
where A holds also C holds.
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Why a fuzzy semantics for counterfactuals?

Lewis’ semantics is based on the notion of similarity of possible worlds

Similarity relations are prominently studied in fuzzy mathematics
(formalized as axiomatic theories over fuzzy logic)

⇒ Let us see if fuzzy logic can provide a viable semantics for
counterfactuals
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Advantages and disadvantages

Advantages

Automatic accommodation of gradual counterfactuals
“If ants were large, they would be heavy.”

Accommodation of graduality of counterfactuals (some counter-
factual conditionals seem to hold

“more” than others)
“If ants were large, they would be heavy” vs.

“If ants were large, they would rule the earth”

Standard fuzzy handling of the similarity of worlds

Disadvantages
Needs non-classical logic for semantic reasoning

(but a well-developed one⇒ a low cost for experts)
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Similarity relations = fuzzy equivalence relations

Axioms: Sxx, Sxy→ Syx, Sxy & Syz→ Sxz
(interpreted in fuzzy logic!)

Notice: Similarities are transitive (in the sense of fuzzy logic),
but avoid Poincaré’s paradox:

x1 ≈ x2 ≈ x3 ≈ · · · ≈ xn, though x1 6≈ xn,

since the degree of x1 ≈ xn can decrease with n,
due to the non-idempotent & of fuzzy logic
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Ordering of worlds by similarity

Σxy . . . the world x is similar to the world y

x 4w y . . . x is more or roughly as similar to w as y

Define: x4wy ≡ Σwy→ Σwx

A trick: we identify a formula A with the set {w | ‖A‖w}

The closest A-worlds: Min4w A = {x | x ∈ A ∧ ∀a ∈ A (x 4w a)}

(the properties of minima in fuzzy orderings are well known)

Define: ‖A� B‖w ≡ (Min4w A) ⊆ B

. . . the closest A-worlds are B-worlds (fuzzily!)
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Properties of fuzzy counterfactuals

Non-triviality: (A� B) = 1 for all B only if A = ∅

Non-desirable properties are invalid:
2 (A� B) & (B� C)→ (A� C) 2 (A� C)→ (A & B� C)
2 (A� C)→ (¬C� ¬A)

Desirable properties are valid, eg: A� B � A→ B + many more
theorems on� easily derivable

in higher-order fuzzy logic

However, some of Lewis’ tautologies only hold for full degrees

Petr Cintula (CAS) Fuzzy Logic 4 www.cs.cas.cz/cintula/mfl-tuw 90 / 90


	Classical first-order logic
	First-order Gödel–Dummett and Łukasiewicz logics
	The proof of the Extension lemma for L
	Standard completeness and finite model property
	Witnessed semantics, Henkin theories, and Skolemization 
	Application: Formal Fuzzy Mathematics

