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Syntax

We consider primitive connectives L = {→,∧,∨, 0} and defined
connectives ¬, 1, and↔:

¬ϕ = ϕ→ 0 1 = ¬0 ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

Formulas are built from a fixed countable set of atoms using the
connectives.

Let us by FmL denote the set of all formulas.
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The semantics — classical logic

Definition 4.1
A 2-evaluation is a mapping e from FmL to {0, 1} such that:

e(0) = 02
= 0

e(ϕ ∧ ψ) = e(ϕ) ∧2 e(ψ) = min{e(ϕ), e(ψ)}
e(ϕ ∨ ψ) = e(ϕ) ∨2 e(ψ) = max{e(ϕ), e(ψ)}

e(ϕ→ ψ) = e(ϕ)→2 e(ψ) =

{
1 if e(ϕ) ≤ e(ψ),
0 otherwise.

Definition 4.2
A formula ϕ is a logical consequence of set of formulas Γ
(in classical logic), Γ |=2 ϕ, if for every 2-evaluation e:

if e(γ) = 1 for every γ ∈ Γ, then e(ϕ) = 1.
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The semantics — Gödel–Dummett logic

Definition 4.3
A [0, 1]G-evaluation is a mapping e from FmL to [0, 1] such that:

e(0) = 0[0,1]G = 0

e(ϕ ∧ ψ) = e(ϕ) ∧[0,1]G e(ψ) = min{e(ϕ), e(ψ)}
e(ϕ ∨ ψ) = e(ϕ) ∨[0,1]G e(ψ) = max{e(ϕ), e(ψ)}

e(ϕ→ ψ) = e(ϕ)→[0,1]G e(ψ) =

{
1 if e(ϕ) ≤ e(ψ),
e(ψ) otherwise.

Definition 4.4
A formula ϕ is a logical consequence of set of formulas Γ
(in Gödel–Dummett logic), Γ |=[0,1]G ϕ, if for every [0, 1]G-evaluation e:

if e(γ) = 1 for every γ ∈ Γ, then e(ϕ) = 1.
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The semantics — Łukasiewicz logic

Definition 4.5
A [0, 1]�-evaluation is a mapping e from FmL to [0, 1]; s.t.:

e(0) = 0[0,1]� = 0

e(ϕ ∧ ψ) = e(ϕ) ∧[0,1]� e(ψ) = min{e(ϕ), e(ψ)}
e(ϕ ∨ ψ) = e(ϕ) ∨[0,1]� e(ψ) = max{e(ϕ), e(ψ)}

e(ϕ→ ψ) = e(ϕ)→[0,1]� e(ψ) =

{
1 if e(ϕ) ≤ e(ψ),
1−e(ϕ)+e(ψ) otherwise

Definition 4.6
A formula ϕ is a logical consequence of set of formulas Γ
(in Łukasiewicz logic), Γ |=[0,1]� ϕ, if for every [0, 1]�-evaluation e:

if e(γ) = 1 for every γ ∈ Γ, then e(ϕ) = 1.
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Changing the perspective

x→G y =

{
1 if x ≤ y,
y otherwise.

x→� y = min{1, 1− x + y}

x &G y = min{x, y} x &� y = max{0, x + y− 1}

Exercise 20
Let T be either G or �. Prove that

x &T y ≤ z IFF x ≤ y→T z

x→T y = max{z | x &T z ≤ y}
min{x, y} = x &T (x→T y)

max{x, y} = min{(x→T y)→T y, (y→T x)→T x}
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Changing the language

We consider a new set of primitive connectives LHL = {0,&,→} and
defined now are connectives ∧, ∨, ¬, 1, and↔:

ϕ ∧ ψ = ϕ& (ϕ→ ψ) ϕ ∨ ψ = ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)

¬ϕ = ϕ→ 0 1 = ¬0 ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

We keep the symbol FmL for the set of all formulass.
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Changing the axioms – the original way

(Tr) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) transitivity
(We) ϕ→ (ψ → ϕ) weakening
(Ex) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)) exchange
(∧a) ϕ ∧ ψ → ϕ
(∧b) ϕ ∧ ψ → ψ
(∧c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(∨a) ϕ→ ϕ ∨ ψ
(∨b) ψ → ϕ ∨ ψ
(∨c) (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))
(Prl) (ϕ→ ψ) ∨ (ψ → ϕ) prelinearity
(EFQ) 0→ ϕ Ex falso quodlibet
(Con) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) contraction
(Waj) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ) Wajsberg axiom
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Changing the axioms – an equivalent way
(Tr) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) transitivity
(We) ϕ→ (ψ → ϕ) weakening
(Ex) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)) exchange
(Div) ϕ& (ϕ→ ψ)→ ψ & (ψ → ϕ) divisibility
(Resa) (ϕ& ψ → χ)→ (ϕ→ (ψ → χ)) residuation
(Resb) (ϕ→ (ψ → χ))→ (ϕ& ψ → χ) residuation
(Prl) (ϕ→ ψ) ∨ (ψ → ϕ) prelinearity
(EFQ) 0→ ϕ Ex falso quodlibet
(Con) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) contraction
(Waj) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ) Wajsberg axiom

Exercise 21
(a) Prove that this new system without (Waj) is an axiomatic system

of Gödel–Dummett logic (taking ϕ& ψ = ϕ ∧ ψ).
(b) Prove that this new system without (Con) is an axiomatic system

of Łukasiewicz logic (taking ϕ& ψ = ¬(ϕ→ ¬ψ)).
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Changing the axioms – an equivalent way
(Tr) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) transitivity
(We)′ ϕ& ψ → ϕ weakening
(Ex)′ ϕ& ψ → ψ & ϕ exchange
(Div) ϕ& (ϕ→ ψ)→ ψ & (ψ → ϕ) divisibility
(Resa) (ϕ& ψ → χ)→ (ϕ→ (ψ → χ)) residuation
(Resb) (ϕ→ (ψ → χ))→ (ϕ& ψ → χ) residuation
(Prl)′ ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ) prelinearity
(EFQ) 0→ ϕ Ex falso quodlibet
(Con)′ ϕ→ ϕ& ϕ contraction
(Waj)′ ¬¬ϕ→ ϕ double negation law

Exercise 21
(c) Prove using only (Tr), (Resa), (Resb) and (MP) that axioms (We),

(Ex), and (Con) prove their prime versions and vice versa.
(d) Prove that this new system without (Con)′ is an axiomatic system

of Łukasiewicz logic (taking ϕ& ψ = ¬(ϕ→ ¬ψ)).
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Changing the axioms – an equivalent way
(HL1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(HL2) ϕ& ψ → ϕ
(HL3) ϕ& ψ → ψ & ϕ
(HL4) ϕ& (ϕ→ ψ)→ ψ & (ψ → ϕ)
(HL5a) (ϕ& ψ → χ)→ (ϕ→ (ψ → χ))
(HL5b) (ϕ→ (ψ → χ))→ (ϕ& ψ → χ)
(HL6) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)

(HL7) 0→ ϕ
(G) ϕ→ ϕ& ϕ
(Ł) ¬¬ϕ→ ϕ

Petr Hájek’s way
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The logic HL

Axioms:
(HL1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(HL2) ϕ& ψ → ϕ
(HL3) ϕ& ψ → ψ & ϕ
(HL4) ϕ& (ϕ→ ψ)→ ψ & (ψ → ϕ)
(HL5a) (ϕ& ψ → χ)→ (ϕ→ (ψ → χ))
(HL5b) (ϕ→ (ψ → χ))→ (ϕ& ψ → χ)
(HL6) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)

(HL7) 0→ ψ

Inference rule: modus ponens.

We write Γ `HL ϕ if there is a proof of ϕ from Γ.

Note: Axioms HL2 and HL3 are redundant, the others are independent
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Algebraic semantics — recall G-algebras

A Gödel algebra (or just G-algebra) is a structure
B = 〈B,∧B,∨B,→B, 0B

, 1B〉 such that:

(1) 〈B,∧B,∨B, 0B
, 1B〉 is a bounded lattice

(2) z ≤ x→B y iff x ∧B z ≤ y (residuation)

(3) (x→ y) ∨ (y→ x) = 1 (prelinearity)

where x ≤ y is defined as x ∧ y = x or (equivalently) as x→ y = 1.

We say that a G-algebra B is linearly ordered (or G-chain) if ≤ is a total order.

By ALG∗(G) (or ALG`(G) resp.) we denote the class of all G-algebras
(G-chains resp.)
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Changing the semantics — HL-algebras
An HL-algebra is a structure B = 〈B,∧,∨,&,→, 0, 1〉 such that:

(1) 〈B,∧,∨, 0, 1〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a commutative monoid,
(3) z ≤ x→ y iff x & z ≤ y, (residuation)

(4) x & (x→ y) = x ∧ y (divisibility)

(5) (x→ y) ∨ (y→ x) = 1 (prelinearity)

We say that B is

linearly ordered (or HL-chain) if ≤ is a total order HLlin

standard B = [0, 1] and ≤ is the usual order on reals HLstd

G-algebra if x & x = x and MV-algebra if ¬¬x = x

Exercise 22
Prove that the newly defined G- and MV- algebras are termwise equivalent
with those defined earlier in this course.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 15 / 55



Semantical consequence

Definition 4.7
A B-evaluation is a mapping e from FmL to B such that:

e(0) = 0B

e(ϕ→ ψ) = e(ϕ)→B e(ψ)

e(ϕ& ψ) = e(ϕ) &B e(ψ)

Definition 4.8
A formula ϕ is a logical consequence of a set of formulas Γ
w.r.t. a class K of HL-algebras, Γ |=K ϕ, if for every B ∈ K and
every B-evaluation e:

if e(γ) = 1 for every γ ∈ Γ, then e(ϕ) = 1.
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General/linear/standard completeness theorem

Theorem 4.9
The following are equivalent for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ `HL ϕ

2 Γ |=HL ϕ

3 Γ |=HLlin ϕ

If Γ is finite we can add:
4 Γ |=HLstd ϕ

Exercise 23
Prove the equivalence of the first three claims.
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Hájek’s (1998) approach

Goal: Generalize bivalent classical logic to [0, 1]

Strategy: Impose some reasonable constraints on the truth
functions of propositional connectives to get a well-behaved logic

Implementation:
As a design choice, we assume the truth-functionality

of all connectives w.r.t. [0, 1]

We require some natural conditions of &

A truth function of & satisfying these constraints
will determine the rest of propositional calculus
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The requirements of the truth function of conjunction

Let us consider an operation ∗ : [0, 1]2 → [0, 1]

Commutativity: x ∗ y = y ∗ x

When asserting two propositions, it does not matter in which order
we put them down
The commutativity of classical conjunction, which holds for crisp
propositions, seems to be unharmed by taking into account also
fuzzy propositions
Thus, by using a non-commutative conjunction we would
generalize to fuzzy-tolerance, not the Boolean logic, but rather
some other logic that models order-dependent assertions of
propositions (e.g., some kind of temporal logic)
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The requirements of the truth function of conjunction

Associativity: (x ∗ y) ∗ z = x ∗ (y ∗ z)

When asserting three propositions, it is irrelevant which two of
them we put down first (be they fuzzy or not)

Monotony: if x ≤ x′, then x ∗ y ≤ x′ ∗ y

Increasing the truth value of the conjuncts should not decrease
the truth value of their conjunction

Classicality: x ∗ 1 = x (thus also x ∗ 0 = 0)
0, 1 represent the classical truth values for crisp propositions
Conjunction with full truth should not change the truth value

Continuity: ∗ is continuous
An infinitesimal change of the truth value of a conjunct should not
radically change the truth value of the conjunction
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The requirements of the truth function of conjunction
We could add further conditions on & (e.g., idempotence), but it has
proved suitable to stop here, as it already yields a rich and interesting
theory and further conditions would be too limiting.

Such functions have previously been studied in the theory of
probabilistic metric spaces and called triangular norms or shortly
t-norms (continuous, as we require continuity):

Definition 4.10
A binary function ∗ : [0, 1]2 → [0, 1] is a t-norm iff it is commutative,
associative, monotone, and 1 is a neutral element.

Lemma 4.11
A t-norm ∗ is continuous iff it is continuous in one variable, i.e., iff
fx(y) = x ∗ y is continuous for all x ∈ [0, 1] (analogously for left- and
right-continuity).
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Prominent examples of continuous t-norms (1)

The minimum t-norm: x ∗G y = min{x, y}
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Prominent examples of continuous t-norms (2)

The Łukasiewicz t-norm: x ∗� y = max{0, x + y− 1}
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Prominent examples of continuous t-norms (3)

The product t-norm: x ∗Π y = x · y
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Mostert–Shield’s characterization

The idempotent elements (i.e., such x that x ∗ x = x)
of any continuous t-norm form a closed subset of [0, 1].

Its complement is an (at most countable) union of open intervals.

The restriction of ∗ to each of these intervals is isomorphic to ∗� (if it
has nilpotent elements) or ∗Π (otherwise).

On the rest of [0, 1] it coincides with ∗G = min.

All continuous t-norms are ordinal sums of isomorphic copies of
∗�, ∗Π, ∗G.
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Example
Ordinal sum of ∗� on [0.05, 0.45], ∗Π on [0.55, 0.95],

and the default ∗G elsewhere
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Residua of left-continuous t-norms

Theorem 4.12

The following are equivalent for any t-norm ∗:
∗ is left-continuous
For each x, y there exist max{z | z ∗ x ≤ y}
There is a unique operation⇒∗ s.t. z ∗ x ≤ y iff z ≤ x⇒∗ y

Proof.
1.→ 2 via picture; 2.→ 3 existence is easy x⇒ y = max{z | z ∗ x ≤ y},
uniqueness:

x⇒′ y ≤ x⇒′ y IFF x ∗ (x⇒ y) ≤ y IFF x⇒′ y ≤ x⇒ y
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Residua of left-continuous t-norms

Theorem 4.12

The following are equivalent for any t-norm ∗:
∗ is left-continuous
For each x, y there exist max{z | z ∗ x ≤ y}
There is a unique operation⇒∗ s.t. z ∗ x ≤ y iff z ≤ x⇒∗ y

Proof.
To prove 3.→ 1. it suffices to show

x ∗ sup Z = sup
z∈Z

(x ∗ z) for each x, y and a set Z

Clearly x ∗ sup Z ≥ x ∗ z (for z ∈ Z) ergo x ∗ sup Z ≥ supz∈Z(x ∗ z)
From z ∗ x ≤ supz∈Z(x ∗ z) (for z ∈ Z) get z ≤ x⇒ supz∈Z(x ∗ z).
Thus sup Z ≤ x⇒ supz∈Z(x ∗ z) and so x ∗ sup Z ≤ supz∈Z(x ∗ z).
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Residua of left-continuous t-norms

Theorem 4.12

The following are equivalent for any t-norm ∗:
∗ is left-continuous
For each x, y there exist max{z | z ∗ x ≤ y}
There is a unique operation⇒∗ s.t. z ∗ x ≤ y iff z ≤ x⇒∗ y

Definition 4.13
The operation⇒∗ is called the residuum of a t-norm ∗.
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Residua of prominent continuous t-norms (1)

The residuum of ∗G: Gödel implication x⇒G y =

{
y if x > y
1 otherwise
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Residua of prominent continuous t-norms (2)

The residuum of ∗�: Łukasiewicz implication x⇒� y = min{1, 1− x + y}
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Residua of prominent continuous t-norms (3)

The residuum of ∗Π: Goguen implication x⇒Π y =

{
y
x if x > y

1 if x ≤ y
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Basic properties of the residua of t-norms

Exercise 24
Prove that for each left-continuous t-norm ∗ the following holds:

(x⇒ y) = 1 iff x ≤ y

(1⇒ y) = y

max{x, y} = min{(x⇒ y)⇒ y, (y⇒ x)⇒ x}
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Basic properties of the residua of t-norms

Theorem 4.14

Let ∗ be a left-continuous t-norm and⇒ its residuum. Then ∗ is
right-continuous iff min{x, y} = x ∗ (x⇒ y).

Proof.
Recall that ∗ is right-continuous iff x ∗ inf Z = infz∈Z(x ∗ z) for each x, y
and a set Z. Left-to-right direction: using a picture; the converse one:
clearly x ∗ inf Z ≤ infz∈Z(x ∗ z). Assume that x ∗ inf Z < y < infz∈Z(x ∗ z).

Note that y < x and so y = x ∗ (x⇒ y).

Assume that x⇒ y ≤ inf Z so y = x ∗ (x⇒ y) ≤ x ∗ inf Z a contradiction.

Thus inf Z < x⇒ y, i.e., there is z ∈ Z such that z ≤ x⇒ y.

Thus infz∈Z(x ∗ z) ≤ z ∗ x ≤ y a contradiction.
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Recall the HL-algebras

A HL-algebra is a structure B = 〈B,∧,∨,&,→, 0, 1〉 such that:

(1) 〈B,∧,∨, 0, 1〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a commutative monoid
(3) z ≤ x→ y iff x & z ≤ y, (residuation)

(4) x & (x→ y) = x ∧ y (divisibility)

(5) (x→ y) ∨ (y→ x) = 1 (prelinearity)

We say that B is

linearly ordered (or HL-chain) if ≤ is a total order. HLlin

standard B = [0, 1] and ≤ is the usual order on reals. HLstd

G-algebra if x & x = x

MV-algebra if ¬¬x = x
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Some properties of HL-algebras

Lemma 4.15
Let B be an HL-algebra.

1 x ≤ y IFF x→ y = 1
2 x ≤ y implies x & z ≤ y & z ergo x & z ≤ z
3 x & (y ∨ z) = (x & y) ∨ (x & z)

Proof.
1 Trivial.
2 Clearly y ≤ z→ y & z, thus x ≤ z→ y & z and so x & z ≤ y & z
3 ≤: x & y ≤ (x & y) ∨ (x & z) thus y ≤ x→ (x & y) ∨ (x & z)

x & z ≤ (x & y) ∨ (x & z) thus z ≤ x→ (x & y) ∨ (x & z)
Thus y∨ z ≤ x→ (x & y)∨ (x & z) and so x & (y∨ z) ≤ (x & y)∨ (x & z)
≥: y ≤ y ∨ z thus x & y ≤ x & (y ∨ z); analogously x & z ≤ x & (y ∨ z)
Thus (x & y) ∨ (x & z) ≤ x & (y ∨ z).
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HL-algebras and continuous t-norms

Theorem 4.16
A structure B = ([0, 1],min,max,&,→, 0, 1) is a HL-algebra IFF & is a
continuous t-norm and→ its residuum.

Exercise 25
(a) Prove the theorem above.
(b) Prove that B is G-algebra iff & is Gödel t-norm.
(c) Prove that B is MV-algebra iff & is isomorphic to Łukasiewicz

t-norm.

For a cont. t-norm ∗ we denote its corresponding HL-algebra as [0, 1]∗.
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General/linear/standard completeness theorem

Recall:

Theorem 4.17
The following are equivalent for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ `HL ϕ

2 Γ |=HL ϕ

3 Γ |=HLlin ϕ

If Γ is finite we can add:
4 Γ |=HLstd ϕ

Hájek’s basic fuzzy logic HL is the logic of all continuous t-norms
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Propositional calculi of continuous t-norms ∗
Definition 4.18
Let K be a class of continuous t-norms. By L(K) we denote the logic
axiomatized by adding to HL the set of K-tautologies, i.e., formulas ϕ
such that |=[0,1]∗ ϕ for each ∗ ∈ K. The L(K)-algebras are the
HL-algebras satisfying the additional axioms, i.e., equations ϕ = 1.

Theorem 4.19
For each class of continuous t-norms K, the following are equivalent
for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ `L(K) ϕ

2 Γ |=L(K) ϕ

3 Γ |=L(K)lin
ϕ

If Γ is finite we can add:
4 Γ |=K ϕ
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Properties of L(K)

Theorem 4.20
Let K be a class of continuous t-norms. Then

1 T, ϕ `L(K) ψ iff T `L(K) ϕ
n → ψ for some n; where ϕn = ϕ& . . .& ϕ︸ ︷︷ ︸

n×
2 The logic L(K) is finitely axiomatizable.
3 There is a finite K′ such that L(K) = L(K′).
4 The set of K-tautologies (theorems of L(K)) is coNP-complete.

The following two properties of L(K) are valid iff K = {∗G}:
5 T, ϕ `L(K) ψ iff T `L(K) ϕ→ ψ.
6 Γ `L(K) ϕ iff Γ |=K ϕ.

Theorem 4.21
There is a t-norm ∗ such that HL = L({∗}).
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Notable L(K)s

Ł = L(∗�), axiomatized by HL+ ¬¬ϕ→ ϕ

Gödel–Dummett logic G = L(∗G), axiomatized by HL+ ϕ→ ϕ& ϕ

SHL = L(K), where K are t-norms with ¬x = 0 for each x > 0,
axiomatized by HL+ ϕ ∧ ¬ϕ→ 0

Product logic Π = L(∗Π), axiomatized by HL+
¬¬ϕ→ ((ϕ→ ϕ& ψ)→ ψ & ¬¬ψ) or equivalently as

SHL + ¬¬χ→ ((ϕ& χ→ ψ & χ)→ (ϕ→ ψ)); it cannot be
axiomatized using one variable only.
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Main t-norm fuzzy logics (as of 1998)
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Standard epistemic logic

Modality KA = “the agent knows that A”

The principle of logical rationality of the agent
= the assumption that the agent can make inference steps
⇒ the axiom (K) of propositional epistemic logic:

KA & K(A→ B)→ KB

The axiom is adopted in standard accounts of epistemic logic
Standard epistemic logic = the logic of logically rational agents
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The logical omniscience paradox

An unwanted consequence of the logical rationality principle:
the agent’s knowledge is closed under modus ponens

⇒ under the propositional consequence relation

⇒ the agent knows all propositional tautologies, once
he/she/it knows the axioms of CL

= an extremely implausible assumption on real-world agents
(consider, eg, a non-trivial tautology with 109 variables)
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Three kinds of knowledge

Actual knowledge . . . the modality “is known”
= knowledge immediately available to the agent

(eg, the contents of its memory)

Potential knowledge . . . the modality “is knowable”
= knowledge in principle derivable from the actual knowledge

(by logical inference)

Feasible knowledge . . . the modality “is realistically knowable”
= knowledge effectively derivable from the actual knowledge

(taking the agent’s physical restrictions into account)
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The scope of the logical omniscience paradox

The logical omniscience paradox only affects feasible knowledge:

Actual knowledge is not closed under inference steps
⇒ the axiom (K) is not plausible for actual knowledge

Potential knowledge is indeed closed under logical consequence
⇒ no paradox there

Feasible knowledge, however, seems to be:
closed under single inference steps (the agent can make them)
yet not closed under the consequence relation as a whole

(the agent cannot feasibly know all logical truths)
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Logical omniscience as an instance of the Sorites

The problem with feasible knowledge is that the agent
can always make a next step of inference, but
cannot make an arbitrarily large number of inference steps

Ie, if the agent can make n steps, so it can make n + 1 steps,
and the agent can make 0 steps.

Yet it is not the case that for each N,
the agent can make N steps of inference

= An instance of the sorites paradox for the predicate
P(n) ≡ “the agent can make at least n inference steps”

⇒ Every solution to the sorites paradox generates
a solution to the logical omniscience paradox
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Why a degree-theoretical solution?

There have been many objections against degree-theoretical
solutions to the sorites

However, a degree-theoretical solution is particularly suitable to the
logical omniscience instances of the sorites, since

the degrees have a clear interpretation
(in terms of costs of the feasible task)

and can be manipulated by suitable many-valued logics

the (implausible) existence of a sharp breaking point in the
number of steps the agent can perform is not presupposed
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Resource-aware reasoning about knowledge

What limits the agent’s ability to infer knowledge is
the agent’s limited resources (time, memory, . . . )

⇒ Resource-aware reasoning about the agent’s knowledge needed

Several models of resource-aware reasoning are available
(eg, in dynamic or linear logics)

Fuzzy logics are applicable to resource-aware reasoning, too,
capturing moreover the gradual nature of feasibility

(some tasks are more feasible than others)
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Resource-based interpretation of Łukasiewicz logic

Cost assignment: c : FmL → [0, 1] s.t. 1− c(x) is an evaluation

Intuitively: instead ‘p is true’ we read ‘p is cheap’.

The connectives then represent natural operations with costs:

> = any ‘costless task’ c(>) = 0

⊥ = any ‘unaffordable task’ c(⊥) = 1

Conjunction = bounded sum of the costs
c(ϕ& ψ) = min{1, c(ϕ) + c(ψ)}

Implication = the ‘surcharge’ for ψ, given the cost of ϕ
c(ϕ→ ψ) = max{0, c(ψ)− c(ϕ)}

Tautologies of the form A1 & . . .& An → B represent
cost-preserving rules of inference

(the cost of B is at most the sum of the costs of Ai)
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Combination of costs in basic t-norm logics

Łukasiewicz logic:
& = bounded addition of costs (via a linear function)
0 = the maximal (or unaffordable) cost

Gödel logic:
& = the maximum of costs
natural, eg, in space complexity (erase temporary memory)

Product logic:
& = addition of costs (via the logarithm)
0 = the infinite cost

Other t-norm logics:
& = certain other ways of cost combination

(eg, additive up to some bound, then maxitive)
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Feasibility in t-norm logics

Atomic formulas of t-norm logics can thus be understood as
standing under the implicit graded modality is affordable, or is feasible

The degree of feasibility is inversely proportional (via a suitable
normalization function) to the cost of realization (eg, the number of
processor cycles)

Logical connectives then express natural operations with costs

Tautologies express degree/cost-preserving rules of inference
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Feasible knowledge in fuzzy logic

Given the degrees of (the feasibility of) KA and K(A→ B), the degree
of KB (inferred by the agent) needs to make allowance for the (small)
cost of performing the inference step of modus ponens by the agent
(denote it by the atom (MP))

The plausible axiom of logical rationality for feasible knowledge in
fuzzy logics thus becomes:

KA & K(A→ B) & (MP)→ KB
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Logical omniscience in fuzzy logics

Since the degree of (MP) is slightly less than 1
(as the cost of performing modus ponens is small, but non-zero),
it decreases slightly the degree of the inferred knowledge KB

For longer derivations (of B from A1, . . . ,Ak) that require n inference
steps, the axiom only yields (where An ≡ A & n. . .& A)

KA1 & . . .& KAk & (MP)n → KB

Since & is non-idempotent, the degree of (MP)n

(and so the guaranteed degree of KB) decreases, reaching eventually 0
(the resources are limited)
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Elimination of the paradox in fuzzy logics

Thus in models over fuzzy logics,
The feasibility of knowledge decreases with long derivations

(as it intuitively should)

The closure of feasible knowledge under logical consequence is
only gradual (fading with the increasing difficulty of derivation),

Yet the agents are still perfectly logically rational
(able to perform each inference step, at appropriate costs)

⇒ No paradox under suitable fuzzy logics
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