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Syntax

We consider primitive connectives L = {→,∧,∨, 0} and defined
connectives ¬, 1, and↔:

¬ϕ = ϕ→ 0 1 = ¬0 ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

Formulas are built from a fixed countable set of atoms using the
connectives.

Let us by FmL denote the set of all formulas.
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The semantics — classical logic

Definition 5.1
A 2-evaluation is a mapping e from FmL to {0, 1} such that:

e(0) = 02
= 0

e(ϕ ∧ ψ) = e(ϕ) ∧2 e(ψ) = min{e(ϕ), e(ψ)}
e(ϕ ∨ ψ) = e(ϕ) ∨2 e(ψ) = max{e(ϕ), e(ψ)}

e(ϕ→ ψ) = e(ϕ)→2 e(ψ) =

{
1 if e(ϕ) ≤ e(ψ),
0 otherwise.

Definition 5.2
A formula ϕ is a logical consequence of set of formulas Γ
(in classical logic), Γ |=2 ϕ, if for every 2-evaluation e:

if e(γ) = 1 for every γ ∈ Γ, then e(ϕ) = 1.
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The semantics — Gödel–Dummett logic

Definition 5.3
A [0, 1]G-evaluation is a mapping e from FmL to [0, 1] such that:

e(0) = 0[0,1]G = 0

e(ϕ ∧ ψ) = e(ϕ) ∧[0,1]G e(ψ) = min{e(ϕ), e(ψ)}
e(ϕ ∨ ψ) = e(ϕ) ∨[0,1]G e(ψ) = max{e(ϕ), e(ψ)}

e(ϕ→ ψ) = e(ϕ)→[0,1]G e(ψ) =

{
1 if e(ϕ) ≤ e(ψ),
e(ψ) otherwise.

Definition 5.4
A formula ϕ is a logical consequence of set of formulas Γ
(in Gödel–Dummett logic), Γ |=[0,1]G ϕ, if for every [0, 1]G-evaluation e:

if e(γ) = 1 for every γ ∈ Γ, then e(ϕ) = 1.
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The semantics — Łukasiewicz logic

Definition 5.5
A [0, 1]Ł-evaluation is a mapping e from FmL to [0, 1]; s.t.:

e(0) = 0[0,1]Ł = 0

e(ϕ ∧ ψ) = e(ϕ) ∧[0,1]Ł e(ψ) = min{e(ϕ), e(ψ)}
e(ϕ ∨ ψ) = e(ϕ) ∨[0,1]Ł e(ψ) = max{e(ϕ), e(ψ)}

e(ϕ→ ψ) = e(ϕ)→[0,1]Ł e(ψ) =

{
1 if e(ϕ) ≤ e(ψ),
1−e(ϕ)+e(ψ) otherwise

Definition 5.6
A formula ϕ is a logical consequence of set of formulas Γ
(in Łukasiewicz logic), Γ |=[0,1]Ł ϕ, if for every [0, 1]Ł-evaluation e:

if e(γ) = 1 for every γ ∈ Γ, then e(ϕ) = 1.
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Changing the perspective

x→G y =

{
1 if x ≤ y,
y otherwise.

x→Ł y = min{1, 1− x + y}

x &G y = min{x, y} x &Ł y = max{0, x + y− 1}

Exercise 20
Let T be either G or Ł. Prove that

x &T y ≤ z IFF x ≤ y→T z

x→T y = max{z | x &T z ≤ y}
min{x, y} = x &T (x→T y)

max{x, y} = min{(x→T y)→T y, (y→T x)→T x}
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Changing the language

We consider a new set of primitive connectives LMTL = {0,&,∧,→}
and defined now are connectives ∨, ¬, 1, and↔:

ϕ ∨ ψ = ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)

¬ϕ = ϕ→ 0 1 = ¬0 ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

We keep the symbol FmL for the set of all formulas.
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Changing the axioms – the original way

(Tr) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) transitivity
(We) ϕ→ (ψ → ϕ) weakening
(Ex) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)) exchange
(∧a) ϕ ∧ ψ → ϕ
(∧b) ϕ ∧ ψ → ψ
(∧c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(∨a) ϕ→ ϕ ∨ ψ
(∨b) ψ → ϕ ∨ ψ
(∨c) (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))
(Prl) (ϕ→ ψ) ∨ (ψ → ϕ) prelinearity
(EFQ) 0→ ϕ Ex falso quodlibet
(Con) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) contraction
(Waj) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ) Wajsberg axiom
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Changing the axioms – an equivalent way 1
(Tr) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) transitivity
(We) ϕ→ (ψ → ϕ) weakening
(Ex) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)) exchange
(∧a) ϕ ∧ ψ → ϕ
(∧b) ϕ ∧ ψ → ψ
(∧c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(Resa) (ϕ& ψ → χ)→ (ϕ→ (ψ → χ)) residuation
(Resb) (ϕ→ (ψ → χ))→ (ϕ& ψ → χ) residuation
(Prl) (ϕ→ ψ) ∨ (ψ → ϕ) prelinearity
(EFQ) 0→ ϕ Ex falso quodlibet
(Con) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) contraction
(Waj) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ) Wajsberg axiom

Exercise 21
(a) Prove that this new system without (Waj) is an axiomatic system

of Gödel–Dummett logic (taking ϕ& ψ = ϕ ∧ ψ).
(b) Prove that this new system without (Con) is an axiomatic system

of Łukasiewicz logic (taking ϕ& ψ = ¬(ϕ→ ¬ψ)).
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Changing the axioms – an equivalent way 2

(Tr) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(We)′ ϕ& ψ → ϕ
(Ex)′ ϕ& ψ → ψ & ϕ
(∧a) ϕ ∧ ψ → ϕ
(∧b) ϕ ∧ ψ → ψ
(∧c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(Resa) (ϕ& ψ → χ)→ (ϕ→ (ψ → χ))
(Resb) (ϕ→ (ψ → χ))→ (ϕ& ψ → χ)
(Prl)′ ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(EFQ) 0→ ϕ

Exercise 22
Prove that axioms (We), (Ex), and (Prl) prove their prime versions and
vice-versa. (Hint: the first two can be done using (Tr), (Resa), (Resb)
and (MP) only.)
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The logic MTL
Axioms:
(Tr) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ)) (MTL1)
(We)′ ϕ& ψ → ϕ (MTL2)
(Ex)′ ϕ& ψ → ψ & ϕ (MTL3)
(∧a) ϕ ∧ ψ → ϕ (MTL4a)
(∧b) ϕ ∧ ψ → ψ (MTL4b)
(∧c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ)) (MTL4c)
(Resa) (ϕ& ψ → χ)→ (ϕ→ (ψ → χ)) (MTL5a)
(Resb) (ϕ→ (ψ → χ))→ (ϕ& ψ → χ) (MTL5b)
(Prl)′ ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ) (MTL6)
(EFQ) 0→ ϕ (MTL7)

Inference rule: modus ponens.

We write Γ `MTL ϕ if there is a proof of ϕ from Γ.

Note: axioms (We)′ and (Ex)′ are redundant, the others are
independent.
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Notable axiomatic extensions of MTL

Hájek’s Basic fuzzy Logic HL axiomatized as MTL +
ϕ& (ϕ→ ψ)→ ψ & (ψ → ϕ)

Łukasiewicz logic Ł axiomatized as MTL + (Waj) or HL +¬¬ϕ→ ϕ

Gödel–Dummett logic G axiomatized by MTL + (Con)

Product logic Π, axiomatized by HL +
¬¬ϕ→ ((ϕ→ ϕ& ψ)→ ψ & ¬¬ψ)
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Syntactical properties

Theorem 5.7
Let L be an axiomatic extension of MTL. Prove that:

T, ϕ `L ψ iff there is n such that T `L ϕ
n → ψ
(Local Deduction Theorem)

If Γ, ϕ `L χ and Γ, ψ `L χ, then Γ, ϕ ∨ ψ `L χ.
(Proof by Cases Property)

If Γ, ϕ→ ψ `L χ and Γ, ψ → ϕ `L χ, then Γ `L χ.
(Semilinearity Property)

If Γ 0L ϕ, then there is a linear Γ′ ⊇ Γ such that Γ′ 0L ϕ.
(Linear Extension Property)

Exercise 23
Prove it!
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Algebraic semantics — recall G-algebras

A Gödel algebra (or just G-algebra) is a structure
B = 〈B,∧B,∨B,→B, 0B

, 1B〉 such that:

(1) 〈B,∧B,∨B, 0B
, 1B〉 is a bounded lattice

(2) z ≤ x→B y iff x ∧B z ≤ y (residuation)

(3) (x→ y) ∨ (y→ x) = 1 (prelinearity)

where x ≤ y is defined as x ∧ y = x or (equivalently) as x→ y = 1.

We say that a G-algebra B is linearly ordered (or G-chain) if ≤ is a total order.

By G (or Glin resp.) we denote the class of all G-algebras (G-chains resp.)
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Changing the semantics — MTL-algebras

An MTL-algebra is a structure B = 〈B,∧,∨,&,→, 0, 1〉 such that:

(1) 〈B,∧,∨, 0, 1〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a commutative monoid,
(3) z ≤ x→ y iff x & z ≤ y, (residuation)

(4) (x→ y) ∨ (y→ x) = 1 (prelinearity)

We say that B is

linearly ordered (or MTL-chain) if ≤ is a total order. MTLlin

standard B = [0, 1] and ≤ is the usual order on reals. MTLstd

HL-algebra if x & (x→ y) = x ∧ y (divisibility)

G-algebra if x & x = x

MV-algebra if it is both HL and ¬¬x = x.

Petr Cintula (CAS) Fuzzy Logic www.cs.cas.cz/cintula/mfl-tuw 16 / 103



Some properties of MTL-algebras

Lemma 5.8
Let B be an MTL-algebra.

1 x ≤ y iff x→ y = 1
2 x ≤ y implies x & z ≤ y & z ergo x & z ≤ z
3 x & (y ∨ z) = (x & y) ∨ (x & z)

Proof.
1 trivial
2 Clearly y ≤ z→ y & z, thus x ≤ z→ y & z and so x & z ≤ y & z
3 ≤: x & y ≤ (x & y) ∨ (x & z) thus y ≤ x→ (x & y) ∨ (x & z)

x & z ≤ (x & y) ∨ (x & z) thus z ≤ x→ (x & y) ∨ (x & z)
Thus y∨ z ≤ x→ (x & y)∨ (x & z) and so x & (y∨ z) ≤ (x & y)∨ (x & z)
≥: y ≤ y ∨ z thus x & y ≤ x & (y ∨ z); analogously x & z ≤ x & (y ∨ z)
Thus (x & y) ∨ (x & z) ≤ x & (y ∨ z).
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Some properties of MTL-algebras

Lemma 5.8
Let B be an MTL-algebra.

1 x ≤ y iff x→ y = 1
2 x ≤ y implies x & z ≤ y & z ergo x & z ≤ z
3 x & (y ∨ z) = (x & y) ∨ (x & z)

Exercise 25
Prove that the newly defined G- and MV- algebras are termwise
equivalent with those defined earlier in this course.
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Semantical consequence

Definition 5.9
A B-evaluation is a mapping e from FmL to B such that:

e(0) = 0B

e(ϕ→ ψ) = e(ϕ)→B e(ψ)

e(ϕ& ψ) = e(ϕ) &B e(ψ)

Definition 5.10
A formula ϕ is a logical consequence of a set of formulas Γ
w.r.t. a class K of MTL-algebras, Γ |=K ϕ, if for every B ∈ K and
every B-evaluation e:

if e(γ) = 1 for every γ ∈ Γ, then e(ϕ) = 1.
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L-algebras

Definition 5.11
Let A be an MTL-algebra and L and axiomatic extension of MTL. We
say that A is and L-algebra if e(ϕ) = 1A for each A-evaluation e and
each additional axiom ϕ of L.

Exercise 26
Prove that just defined HL-, G-, and MV-algebras coincide with those
defined above.

Let us by L denote the class of all L-algebras and use subscripts lin
and std to denote the linear and standard ones.
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General/linear completeness theorem

Theorem 5.12
Let L be an axiomatic extension of MTL. Then the following are
equivalent for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ `L ϕ

2 Γ |=L ϕ

3 Γ |=Llin ϕ

Exercise 27
Prove it!

Petr Cintula (CAS) Fuzzy Logic www.cs.cas.cz/cintula/mfl-tuw 20 / 103



Outline

1 Changing the perspective

2 Logic(s) of continuous t-norms

3 15 years of development of MFL: A montage

4 Core semilinear logics

5 Logics in expanded languages

6 Application: Fuzzy Epistemic Logic

Petr Cintula (CAS) Fuzzy Logic www.cs.cas.cz/cintula/mfl-tuw 21 / 103



Hájek’s (1998) approach

Goal: Generalize bivalent classical logic to [0, 1]

Strategy: Impose some reasonable constraints on the truth
functions of propositional connectives to get a well-behaved logic

Implementation:
As a design choice, we assume the truth-functionality

of all connectives w.r.t. [0, 1]

We require some natural conditions of &

A truth function of & satisfying these constraints
will determine the rest of propositional calculus
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The requirements of the truth function of conjunction

Let us consider an operation ∗ : [0, 1]2 → [0, 1]

Commutativity: x ∗ y = y ∗ x

When asserting two propositions, it does not matter in which order
we put them down
The commutativity of classical conjunction, which holds for crisp
propositions, seems to be unharmed by taking into account also
fuzzy propositions
Thus, by using a non-commutative conjunction we would
generalize to fuzzy-tolerance, not the Boolean logic, but rather
some other logic that models order-dependent assertions of
propositions (e.g., some kind of temporal logic)
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The requirements of the truth function of conjunction

Associativity: (x ∗ y) ∗ z = x ∗ (y ∗ z)

When asserting three propositions, it is irrelevant which two of
them we put down first (be they fuzzy or not)

Monotony: if x ≤ x′, then x ∗ y ≤ x′ ∗ y

Increasing the truth value of the conjuncts should not decrease
the truth value of their conjunction

Classicality: x ∗ 1 = x (thus also x ∗ 0 = 0)
0, 1 represent the classical truth values for crisp propositions
Conjunction with full truth should not change the truth value

Continuity: ∗ is continuous
An infinitesimal change of the truth value of a conjunct should not
radically change the truth value of the conjunction
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The requirements of the truth function of conjunction
We could add further conditions on & (e.g., idempotence), but it has
proved suitable to stop here, as it already yields a rich and interesting
theory and further conditions would be too limiting.

Such functions have previously been studied in the theory of
probabilistic metric spaces and called triangular norms or shortly
t-norms (continuous, as we require continuity):

Definition 5.13
A binary function ∗ : [0, 1]2 → [0, 1] is a t-norm iff it is commutative,
associative, monotone, and 1 is a neutral element.

Lemma 5.14
A t-norm ∗ is continuous iff it is continuous in one variable, i.e., iff
fx(y) = x ∗ y is continuous for all x ∈ [0, 1] (analogously for left- and
right-continuity).
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Prominent examples of continuous t-norms (1)

The minimum t-norm: x ∗G y = min{x, y}
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Prominent examples of continuous t-norms (2)

The Łukasiewicz t-norm: x ∗Ł y = max{0, x + y− 1}
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Prominent examples of continuous t-norms (3)

The product t-norm: x ∗Π y = x · y
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Prominent example of only left-continuous t-norms

The nilpotent minimum: x ∗NM y =

{
min{x, y} x + y > 1,
0 otherwise
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Mostert–Shield’s characterization

The idempotent elements (i.e., such x that x ∗ x = x)
of any continuous t-norm form a closed subset of [0, 1].

Its complement is an (at most countable) union of open intervals.

The restriction of ∗ to each of these intervals is isomorphic to ∗Ł (if it
has nilpotent elements) or ∗Π (otherwise).

On the rest of [0, 1] it coincides with ∗G = min.

All continuous t-norms are ordinal sums of isomorphic copies of
∗Ł, ∗Π, ∗G.
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Example
Ordinal sum of ∗Ł on [0.05, 0.45], ∗Π on [0.55, 0.95],

and the default ∗G elsewhere
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Residua of left-continuous t-norms

Theorem 5.15

The following are equivalent for any t-norm ∗:
∗ is left-continuous
For each x, y there exist max{z | z ∗ x ≤ y}
There is a unique operation⇒∗ s.t. z ∗ x ≤ y iff z ≤ x⇒∗ y

Proof.
1.→ 2 via picture; 2.→ 3 existence is easy x⇒ y = max{z | z ∗ x ≤ y},
uniqueness:

x⇒′ y ≤ x⇒′ y iff x ∗ (x⇒ y) ≤ y iff x⇒′ y ≤ x⇒ y
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Residua of left-continuous t-norms

Theorem 5.15

The following are equivalent for any t-norm ∗:
∗ is left-continuous
For each x, y there exist max{z | z ∗ x ≤ y}
There is a unique operation⇒∗ s.t. z ∗ x ≤ y iff z ≤ x⇒∗ y

Proof.
To prove 3.→ 1. it suffices to show

x ∗ sup Z = sup
z∈Z

(x ∗ z) for each x, y and a set Z

Clearly x ∗ sup Z ≥ x ∗ z (for z ∈ Z) ergo x ∗ sup Z ≥ supz∈Z(x ∗ z)
From z ∗ x ≤ supz∈Z(x ∗ z) (for z ∈ Z) get z ≤ x⇒ supz∈Z(x ∗ z).
Thus sup Z ≤ x⇒ supz∈Z(x ∗ z) and so x ∗ sup Z ≤ supz∈Z(x ∗ z).
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Residua of left-continuous t-norms

Theorem 5.15

The following are equivalent for any t-norm ∗:
∗ is left-continuous
For each x, y there exist max{z | z ∗ x ≤ y}
There is a unique operation⇒∗ s.t. z ∗ x ≤ y iff z ≤ x⇒∗ y

Definition 5.16
The operation⇒∗ is called the residuum of a t-norm ∗.

Petr Cintula (CAS) Fuzzy Logic www.cs.cas.cz/cintula/mfl-tuw 32 / 103



Residua of prominent continuous t-norms (1)

The residuum of ∗G: Gödel implication x⇒G y =

{
y if x > y
1 otherwise
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Residua of prominent continuous t-norms (2)

The residuum of ∗Ł: Łukasiewicz implication x⇒Ł y = min{1, 1− x + y}
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Residua of prominent continuous t-norms (3)

The residuum of ∗Π: Goguen implication x⇒Π y =

{
y
x if x > y

1 if x ≤ y
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Basic properties of the residua of t-norms

Exercise 28
Prove that for each left-continuous t-norm ∗ the following holds:

(x⇒ y) = 1 iff x ≤ y

(1⇒ y) = y

max{x, y} = min{(x⇒ y)⇒ y, (y⇒ x)⇒ x}
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Basic properties of the residua of t-norms

Theorem 5.17

Let ∗ be a left-continuous t-norm and⇒ its residuum. Then ∗ is
right-continuous iff min{x, y} = x ∗ (x⇒ y).

Proof.
Recall that ∗ is right-continuous iff x ∗ inf Z = infz∈Z(x ∗ z) for each x, y
and a set Z. Left-to-right direction: using a picture; the converse one:
clearly x ∗ inf Z ≤ infz∈Z(x ∗ z). Assume that x ∗ inf Z < y < infz∈Z(x ∗ z).

Note that y < x and so y = x ∗ (x⇒ y).

Assume that x⇒ y ≤ inf Z so y = x ∗ (x⇒ y) ≤ x ∗ inf Z a contradiction.

Thus inf Z < x⇒ y, i.e., there is z ∈ Z such that z ≤ x⇒ y.

Thus infz∈Z(x ∗ z) ≤ z ∗ x ≤ y a contradiction.
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MTL-algebras and (left-)continuous t-norms

Theorem 5.18
A structure B = ([0, 1],min,max,&,→, 0, 1) is a MTL-algebra IFF
& is a left-continuous t-norm and→ its residuum.
A structure B = ([0, 1],min,max,&,→, 0, 1) is a HL-algebra IFF &
is a continuous t-norm and→ its residuum.

Exercise 29
(a) Prove the theorem above.
(b) Prove that B is G-algebra iff & is Gödel t-norm.
(c) Prove that B is MV-algebra iff & is isomorphic to Łukasiewicz

t-norm.
(d) Prove that B is Π-algebra iff & is isomorphic to product t-norm.
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Standard completeness theorem for MTL

Theorem 5.19
The following are equivalent for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ `MTL ϕ

2 Γ |=MTL ϕ

3 Γ |=MTLlin ϕ

4 Γ |=MTLstd ϕ

The logic MTL is the logic of all left-continuous t-norms.
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Standard completeness theorem for HL

Theorem 5.20
The following are equivalent for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ `HL ϕ

2 Γ |=HL ϕ

3 Γ |=HLlin ϕ

If Γ is finite we can add:
4 Γ |=HLstd ϕ

Hájek’s basic fuzzy logic HL is the logic of all continuous t-norms
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Three stages of development of an area of logic

Chagrov (K voprosu ob obratnoi matematike modal’noi logiki,
Online Journal Logical Studies, 2001)

distinguishes three stages in the development of a field in logic.
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Three stages of development of MFL

First stage: Emerging of the area (since 1965)
1965: Zadeh’s fuzzy sets, 1968: ‘fuzzy logic’ (Goguen)
1970s: systems of fuzzy ‘logic’ lacking a good metatheory
1970s–1980s: first ‘real’ logics (Pavelka, Takeuti–Titani, . . . ),

discussion of many-valued logics in the fuzzy context

‘Culminated’ in Hájek’s monograph (1998): G, Ł, HL, Π
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Three stages of development of MFL

Second stage: development of particular logics and introduction of
many new ones (since the 1990s)

New logics: MTL, SHL, UL, Π∼, ŁΠ, . . .
Algebraic semantics, proof theory, complexity

Kripke-style and game-theoretic semantics, . . .
First-order, higher-order, and modal fuzzy logics

Systematic treatment of particular fuzzy logics
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Basic fuzzy logic?

Hájek called the logic HL the Basic fuzzy Logic BL

HL was basic in the following two senses:
1 it could not be made weaker without losing essential properties
2 it provided a base for the study of all fuzzy logics.

Because:

HL is complete w.r.t. the semantics given by all continuous t-norms
All then known fuzzy logics were expansions of HL. The methods
to introduce, algebraize, and study HL could be modified for all
expansions of HL.

fuzzy logics = expansions of HL
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“Removing legs from the flea”
In the 3rd EUSFLAT (Zittau, Germany, September 2003) Petr Hájek
started his lecture Fleas and fuzzy logic: a survey with a joke.

A group of scientists decide to investigate the ability of a flea can jump in
relationship to how many legs it has.

They put the flea on a desk and said ’jump!’ The flea jumped and they noted:
“the flea with 6 legs can jump.”

They remove a leg, repeated the command, the flea jumped and they noted:
“the flea with 5 legs can jump.”

...

Finally, they removed the last legs repeated the command but
the flea didn’t move.

So they concluded:

“Upon removing all its legs the flea loses sense of hearing.”
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7 Gödel logic

A G-algebra is a structure B = 〈B,∧,∨,&,→, 0, 1〉 such that:

(1) 〈B,∧,∨, 0, 1〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a commutative monoid
(3) z ≤ x→ y iff x & z ≤ y, (residuation)

(4) (x→ y) ∨ (y→ x) = 1 (prelinearity)

(5) x & (x→ y) = x ∧ y (divisibility)

(6) x & y = x ∧ y
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6 Hájek’s logic

An HL-algebra is a structure B = 〈B,∧,∨,&,→, 0, 1〉 such that:

(1) 〈B,∧,∨, 0, 1〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a commutative monoid
(3) z ≤ x→ y iff x & z ≤ y, (residuation)

(4) (x→ y) ∨ (y→ x) = 1 (prelinearity)

(5) x & (x→ y) = x ∧ y (divisibility)

Hájek logic HL is the logic of continuous t-norms
(well designed to jump)
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5 Monoidal t-norm logic MTL

An MTL-algebra is a structure B = 〈B,∧,∨,&,→, 0, 1〉 such that:

(1) 〈B,∧,∨, 0, 1〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a commutative monoid
(3) z ≤ x→ y iff x & z ≤ y, (residuation)

(4) (x→ y) ∨ (y→ x) = 1 (prelinearity)

MTL is the logic of left-continuous of t-norms
(designed to jump even further)
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4 Uninorm logic: the non-integral case

A UL-algebra is a structure B = 〈B,∧,∨,&,→, 0, 1,⊥,>〉 such that:

(1) 〈B,∧,∨,⊥,>〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a commutative monoid
(3) z ≤ x→ y iff x & z ≤ y, (residuation)

(4) ((x→ y) ∧ 1) ∨ ((y→ x) ∧ 1) = 1 (prelinearity)

UL is the logic of residuated uninorms
(designed to jump even further in one direction)
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3 psMTLr: the non commutative case

A psMTLr-algebra is a structure B = 〈B,∧,∨,&,→, , 0, 1〉 such that:

(1) 〈B,∧,∨, 0, 1〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a monoid,
(3) z ≤ x→ y iff x & z ≤ y iff x ≤ z y, (residuation)

(4) something ugly (prelinearity)

psMTLr is the logic of residuated pseudo t-norms
(designed to jump even further in other direction)

Petr Cintula (CAS) Fuzzy Logic www.cs.cas.cz/cintula/mfl-tuw 53 / 103



2 psUL: the non commutative and non integral case

A psUL-algebra is a structure B = 〈B,∧,∨,&,→, , 0, 1,⊥,>〉 s.t.:

(1) 〈B,∧,∨,⊥,>〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a monoid,
(3) z ≤ x→ y iff x & z ≤ y iff x ≤ z y, (residuation)

(4) something even uglier (prelinearity)

psUL is NOT the logic of residuated pseudo uninorms
(lost all sense of hearing?)
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1 SL`: the non associative case

An SL`-algebra is a structure B = 〈B,∧,∨,&,→, , 0, 1,⊥,>〉 s.t.:

(1) 〈B,∧,∨,⊥,>〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a unital groupoid,
(3) z ≤ x→ y iff x & z ≤ y iff x ≤ z y, (residuation)

(4) the ugliest thing possible (prelinearity)

SL` is the logic of residuated unital grupoids on [0,1]
it jumps again!
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Three stages of development of MFL
The second stage is still ongoing; the state of the art is summarized in:

P. Cintula, C. Fermüller, P. Hájek, C. Noguera (editors). Vol. 37, 38,
and 58 of Studies in Logic: Math. Logic and Foundations. College
Publications, 2011, 2015.

Petr Cintula (CAS) Fuzzy Logic www.cs.cas.cz/cintula/mfl-tuw 58 / 103



Three stages of development of MFL

Third stage: universal methods (since ∼2006)
General methods to prove metamathematical properties
Classification of existing fuzzy logics
Systematic treatment of classes of fuzzy logics
Determining the position of fuzzy logics in the logical landscape
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Changing the language

We consider a new set of primitive connectives
LSL = {0, 1,⊥,>,&,→, ,∨,∧}, and a defined connective↔:

ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

We keep the symbol FmL for the set of formulas.
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The ‘minimal’ algebraic semantics

Definition 5.21
An SL-algebra is a structure B = 〈B,∧,∨,&,→, , 0, 1,⊥,>〉 such that:

(1) 〈B,∧,∨,⊥,>〉 is a bounded lattice,
(2) 〈B,&, 1〉 is a unital groupoid,
(3) z ≤ x→ y iff x & z ≤ y iff x ≤ z y, (residuation)
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Hilbert-system for SL – axioms
(Adj&) ϕ→ (ψ → ψ & ϕ)

(Adj& ) ϕ→ (ψ  ϕ& ψ)

(&∧) (ϕ ∧ 1) & (ψ ∧ 1)→ ϕ ∧ ψ
(∧1) ϕ ∧ ψ → ϕ

(∧2) ϕ ∧ ψ → ψ

(∧3) (χ→ ϕ) ∧ (χ→ ψ)→ (χ→ ϕ ∧ ψ)

(∨1) ϕ→ ϕ ∨ ψ
(∨2) ψ → ϕ ∨ ψ
(∨3) (ϕ→ χ) ∧ (ψ → χ)→ (ϕ ∨ ψ → χ)

(Push) ϕ→ (1→ ϕ)

(Pop) (1→ ϕ)→ ϕ

(Res′) ψ & (ϕ& (ϕ→ (ψ → χ)))→ χ

(Res′ ) (ϕ& (ϕ→ (ψ  χ))) & ψ → χ

(T′) (ϕ→ (ϕ& (ϕ→ ψ)) & (ψ → χ))→ (ϕ→ χ)

(T′
 ) (ϕ ((ϕ ψ) & ϕ) & (ψ → χ))→ (ϕ χ)
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Hilbert-system for SL – rules

(MP) ϕ,ϕ→ ψ ` ψ

(Adju) ϕ ` ϕ ∧ 1

(α) ϕ ` δ & ε→ δ & (ε& ϕ)

(α′) ϕ ` δ & ε→ (δ & ϕ) & ε

(β) ϕ ` δ → (ε→ (ε& δ) & ϕ)

(β′) ϕ ` δ → (ε (δ & ε) & ϕ)
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Convention

Convention
A logic is a provability relation on formulas in a language L ⊇ LSL s.t.

it is axiomatized by adding axioms Ax and finitary rules (R) to the
logic SL

for each n-ary connective c ∈ L \ LSL, L-formulas ϕ,ψ, χ1, . . . , χn,
and each i ≤ n the following holds:

ϕ↔ ψ `L c(χ1, . . . , χi−1, ϕ, . . . , χn)↔ c(χ1, . . . , χi−1, ψ, . . . , χn)

Let us fix a logic L in language L which is the expansion of SL by
axioms Ax and rules R.
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Algebraic semantics for arbitrary logic L

Definition 5.22
Let B be an L-algebra. A B-evaluation is a mapping e : FmL → B s.t.

e(∗) = ∗B for truth constant ∗
e(◦(ϕ1, . . . , ϕn)) = ◦B(e(ϕ1), . . . , e(ϕn)) for each n−ary ◦ ∈ L

Definition 5.23
An L-algebra A is an L-algebra, A ∈ L, if

its reduct ASL = 〈A,∧,∨,&,→, , 0, 1,⊥,>〉 is an SL-algebra,
for each ϕ ∈ Ax, A satisfies the identity ϕ ∧ 1 = 1,
for each 〈{ψ1, . . . , ψn}, ϕ〉 ∈ R, A satisfies the quasi-identity

If ψ1 ∧ 1 = 1 and · · · and ψn ∧ 1 = 1 then ϕ ∧ 1 = 1

A is a linearly ordered (or L-chain), A ∈ Llin, if its lattice order is total.
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Logical consequence w.r.t. a class of algebras

Definition 5.24
A formula ϕ is a logical consequence of set of formulas Γ
w.r.t. a class K of L-algebras, Γ |=K ϕ, if for every B ∈ K and every
B-evaluation e:

if e(γ) ≥ 1 for every γ ∈ Γ, then e(ϕ) ≥ 1.

Observation
1 An L-algebra A is an L-algebra iff

I its reduct ASL = 〈A,∧,∨,&,→, , 0, 1,⊥,>〉 is an SL-algebra,
I if Γ `L ϕ, then Γ |=A ϕ.

2 L is the largest class K of L-algebras such that `L ⊆ |=K

Petr Cintula (CAS) Fuzzy Logic www.cs.cas.cz/cintula/mfl-tuw 67 / 103



General completeness theorem

Theorem 5.25 (Completeness theorem)
For every set of formulas Γ and every formula ϕ we have:

Γ `L ϕ if, and only if, Γ |=L ϕ.

Each L is an algebraizable logic and L is its equivalent algebraic
semantics with translations:

E(p, q) = {p↔ q} and E(p) = {p ∧ 1 ≈ 1}.

Indeed, all we have to do is to prove:

p ` p ∧ 1↔ 1 and p ∧ 1↔ 1 ` p
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Core semilinear logics

Definition 5.26
A logic L is core semilinear logic whenever it is complete w.r.t. linearly
ordered L-algebras, i.e.,

T `L ϕ iff T |=Llin ϕ
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Core semilinear logics — syntactic characterization

Theorem 5.27 (Syntactic characterization)
Let L be axiomatized by axioms Ax and rules R. TFAE:

1 L is a core semilinear logic
2 `L (ϕ→ ψ) ∨ (ψ → ϕ) and if 〈Γ, ϕ〉 ∈ R, then Γ ∨ χ `L ϕ ∨ χ

for every χ
3 `L (ϕ→ ψ) ∨ (ψ → ϕ) and if Γ `L ϕ, then Γ ∨ χ `L ϕ ∨ χ

for every χ
4 `L (ϕ→ ψ) ∨ (ψ → ϕ) and for every set of formulas Γ ∪ {ϕ,ψ, χ}:

Γ, ϕ `L χ and Γ, ψ `L χ imply Γ, ϕ ∨ ψ `L χ.

5 For every set of formulas Γ ∪ {ϕ,ψ, χ}:

Γ, ϕ→ ψ `L χ and Γ, ψ → ϕ `L χ imply Γ `L χ.

6 If Γ 6`L ϕ then there is a linear theory Γ′ ⊇ Γ s.t. Γ 6`L ϕ
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Core semilinear logics — semantic characterization

Theorem 5.28 (Semantic characterization)
Let L be a logic. TFAE:

1 L is a core semilinear logic
2 finitely relatively subdirectly irreducible L-algebras are exactly the

L-chains
3 relatively subdirectly irreducible L-algebras are linearly ordered

Petr Cintula (CAS) Fuzzy Logic www.cs.cas.cz/cintula/mfl-tuw 71 / 103



Weakest semilinear extension

Definition 5.29
By L` we denote the least core semilinear logic extending L.

Lemma 5.30
(a) The previous definition is sound because that the class of core

semilinear logics is closed under arbitrary intersections.
(b) L`

lin = Llin.

Theorem 5.31
If L is axiomatized by rules R, then L` is axiomatized by adding axiom
(ϕ→ ψ) ∨ (ψ → ϕ) and rules: 〈Γ ∨ χ, ϕ ∨ χ〉 for each 〈Γ, ϕ〉 ∈ R.

In many cases we can prove that L` is an axiomatic extension of L.
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Hilbert-system for SL` – axioms

To the axioms of SL we add

(PRLα) [(ϕ→ ψ) ∧ 1] ∨ (δ & ε→ δ & (ε& [(ψ → ϕ) ∧ 1])

(PRLα′) [(ϕ→ ψ) ∧ 1] ∨ (δ & ε→ (δ & [(ψ → ϕ) ∧ 1]) & ε)

(PRLβ) [(ϕ→ ψ) ∧ 1] ∨ (δ → (ε→ (ε& δ) & [(ψ → ϕ) ∧ 1]))

(PRLβ′) [(ϕ→ ψ) ∧ 1] ∨ (δ → (ε (δ & ε) & [(ψ → ϕ) ∧ 1]))
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A linear/standard completeness theorem of SL`

Let us by SL`
std denote the class of SL-algebras with the domain [0, 1]

and the usual order.

Theorem 5.32 (Standard completeness theorem of SL`)
The following are equivalent for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ ``SL ϕ

2 Γ |=SL` ϕ

3 Γ |=SL`
lin
ϕ

4 Γ |=SL`
std
ϕ
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Is SL` the new basic fuzzy logic?

We need to show that it is basic in the following two senses:
1 it cannot be made weaker without losing essential properties and
2 it provides a base for the study of all fuzzy logics.

And indeed we have seen that

1 SL` is complete w.r.t. a hardly-to-be-made-weaker semantics over
real numbers.

2 Almost all reasonable fuzzy logics expands SL`. The methods to
introduce, algebraize, and study SL` could be utilized for any such
logic. We can develope a uniform mathematical theory for MFL
based on SL`.

fuzzy logics = core semilinear logics
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Adding Baaz delta

Let L be an axiomatic extension of MTL.

We add a unary connective 4 known as Baaz delta or 0–1 projector.

The logic L4 is the extension of L by the axioms:

4ϕ ∨ ¬4ϕ,
4(ϕ ∨ ψ)→ (4ϕ ∨4ψ),
4ϕ→ ϕ,
4ϕ→44ϕ,
4(ϕ→ ψ)→ (4ϕ→4ψ).

and the rule of 4-necessitation: from ϕ infer 4ϕ.
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Adding Baaz delta: syntactic properties

Lemma 5.33
ϕ↔ ψ `L4 4ϕ↔4ψ ϕ ∨ χ `L4 4ϕ ∨ χ

Theorem 5.34
T, ϕ `L4 ψ iff T `L4 4ϕ→ ψ (Delta Deduction Theorem)
If Γ, ϕ `L4 χ and Γ, ψ `L4 χ, then Γ, ϕ ∨ ψ `L4 χ.

(Proof by Cases Property)
If Γ, ϕ→ ψ `L4 χ and Γ, ψ → ϕ `L4 χ, then Γ `L4 χ.

(Semilinearity Property)
If Γ 0L4 ϕ, then there is a linear Γ′ ⊇ Γ such that Γ′ 0L4 ϕ.

(Linear Extension Property)

Exercise 30
Prove this lemma and theorem.
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Adding Baaz delta: semantics and completeness

An algebra A = 〈A,∧,∨,&,→, 0, 1,4〉 is an L4-algebra if:

(0) 〈A,∧,∨,&,→, 0, 1〉 is an L-algebra,
(1) 4x ∨ (4x→ 0) = 1, (4) 4x ≤ 44x
(2) 4(x ∨ y) ≤ (4x ∨4y) (5) 4(x→ y) ≤ 4x→4y
(3) 4x ≤ x (6) 41 = 1.

Let A be an L4-chain. Then for every x ∈ A, 4x =

{
1 if x = 1
0 otherwise.

Theorem 5.35
The following are equivalent for every set of formulas Γ ∪ {ϕ} ⊆ FmL:

1 Γ `L4 ϕ

2 Γ |=(L4)lin ϕ
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Adding an involutive negation

Let L∼ be L4 plus a new unary connective ∼ and the following axioms:

(∼1) ∼∼ϕ↔ ϕ,
(∼2) 4(ϕ→ ψ)→ (∼ψ → ∼ϕ).

An algebra A = 〈A,∧,∨,&,→, 0, 1,4,∼〉 is a L∼-algebra if:
(0) A = 〈A,∧,∨,&,→, 0, 1,4〉 is an L4-algebra,
(1) x = ∼∼x,
(2) 4(x→ y) ≤ ∼y→ ∼x,

Theorem 5.36
L∼ is complete w.r.t. L∼-chains and w.r.t. standard L chains expanded
with 4 and some involutive negation.
Furthermore G∼ is complete w.r.t. G∼-chains and w.r.t. [0, 1]G4

expanded with the involutive negation 1− x.
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Adding multiplication
We add a binary connective � and define the Product Lukasiewicz
logic PŁ by adding the following axioms to Ł:
(P1) (χ� ϕ)	 (χ� ψ)↔ χ� (ϕ	 ψ) (distributivity)
(P2) ϕ� (ψ � χ)↔ (ϕ� ψ)� χ (associativity)
(P3) ϕ→ ϕ� 1 (neutral element)
(P4) ϕ� ψ → ϕ (monotonicity)
(P5) ϕ� ψ → ψ � ϕ (commutativity)

PŁ′ is the extension of PŁ with a new rule: (ZD) from ¬(ϕ� ϕ) infer ¬ϕ.

Lemma 5.37
ϕ↔ ψ `PŁ ϕ� χ↔ ψ � χ ¬(ϕ� ϕ) ∨ χ `PŁ ¬ϕ ∨ χ
ϕ↔ ψ `PŁ′ ϕ� χ↔ ψ � χ

Theorem 5.38 (Deduction theorem)
Γ, ϕ `PŁ ψ iff there is n such that Γ `PŁ ϕ

n → ψ. does not hold for PŁ′.
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PŁ-algebras and PŁ′-algebras:

A PŁ-algebra is a structure A = 〈A,⊕,¬,�, 0, 1〉 such that 〈A,⊕,¬, 0〉 is
an MV-algebra and the following equations hold:
(1) (x� y)	 (x� z) ≈ x� (y	 z) (distributivity)
(2) x� (y� z) ≈ (x� y)� z (associativity)
(3) x� 1 ≈ x (neutral element)
(4) x� y ≈ y� x (commutativity)

A PŁ′-algebra is a PŁ-algebra where the following quasiequation holds:
(5) x� x ≈ 0⇒ x ≈ 0 (domain of integrity)

[0, 1]PŁ = 〈[0, 1],⊕,¬,�, 0, 1〉 (where � is the usual algebraic product)
is both the standard PŁ and PŁ′-algebra

Both logics enjoy the completeness w.r.t. their chains but only PŁ′

enjoys the standard completeness.
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Adding truth constants: Rational Pavelka Logic

RPL is the expansion of Ł with a constant r for each r ∈ [0, 1] ∩Q and
axioms: r ⊕ s↔ min{1, r + s} and ¬r ↔ 1− r.

We define:
The truth degree of ϕ over T is ||ϕ||T = inf{e(ϕ) | e[T] ⊆ {1}}
The provability degree of ϕ over T is |ϕ|T = sup{r | T `RPL r → ϕ}.

Theorem 5.39 (Pavelka style completeness)
||ϕ||T = |ϕ|T , for each set of formulas T ∪ {ϕ}.

Petr Cintula (CAS) Fuzzy Logic www.cs.cas.cz/cintula/mfl-tuw 83 / 103



Petr Cintula (CAS) Fuzzy Logic www.cs.cas.cz/cintula/mfl-tuw 84 / 103



ŁΠ and ŁΠ1
2 logics: connectives

Logic ŁΠ has the following basic connectives:
0 0 truth constant falsum

ϕ→Ł ψ x→Ł y = min(1, 1− x + y) Łukasiewicz implication
ϕ→Π ψ x→Π y = min(1, x

y) product implication
ϕ� ψ x� y = x · y product conjunction

Logic ŁΠ1
2 has an additional truth constant 1

2 with std. semantics 1
2 .

We define the following derived connectives:
¬Łϕ is ϕ→Ł 0 ¬Łx = 1− x
¬Πϕ is ϕ→Π 0 ¬Łx = 0

x
4ϕ is ¬Π¬Łϕ 41 = 1; 4x = 0 otherwise
ϕ& ψ is ¬Ł(ϕ→Ł ¬Łψ) x & y = max(0, x + y− 1)
ϕ⊕ ψ is ¬Łϕ→Ł ψ x⊕ y = min(1, x + y)
ϕ	 ψ is ϕ& ¬Łψ x	 y = max(0, x− y)
ϕ ∧ ψ is ϕ& (ϕ→Ł ψ) x ∧ y = min(x, y)
ϕ ∨ ψ is (ϕ→Ł ψ)→Ł ψ x ∨ y = max(x, y)
ϕ→G ψ is 4(ϕ→Ł ψ) ∨ ψ x→G y = 1 if x ≤ y, otherwise y
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ŁΠ and ŁΠ1
2 logics: axiomatic system

Logic ŁΠ is given by the following axioms:

(Ł) Axioms of Łukasiewicz logic,
(Π) Axioms of product logic,
(Ł4) 4(ϕ→Ł ψ)→Ł (ϕ→Π ψ),
(Π4) 4(ϕ→Π ψ)→Ł (ϕ→Ł ψ),
(Dist) ϕ� (χ	 ψ) ↔Ł (ϕ� χ)	 (ϕ� ψ).

The deduction rules are modus ponens and 4-necessitation
(from ϕ infer 4ϕ).

The logic ŁΠ1
2 results from the logic ŁΠ by adding axiom 1

2 ↔ ¬Ł
1
2 .
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Alternative axiomatization (in the language of L∼)

(Π) axioms and deduction rules of Π∼,

(A) (ϕ→Ł ψ)→Ł ((ψ →Ł χ)→Ł (ϕ→Ł χ)),

where ϕ→Ł ψ is defined as ∼(ϕ&∼(ϕ→ ψ)).
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ŁΠ and ŁΠ1
2 logics: algebras

An ŁΠ-algebra is a structure: A = (A,⊕,∼,→Π,�, 0, 1)

(1) (A,⊕,¬,�, 0) is a PŁ-algebra
(2) z ≤ (x→Π y) iff x� z ≤ y

OR
(1′′) (A,⊕,∼, 0) is an MV-algebra
(2′′) (A,→Π,�,∧,∨, 0, 1) is a Π-algebra
(3′′) x� (y	 z) = (x� y)	 (x� z)

(4′′) 4(x→Ł y)→Ł (x→Π y) = 1

OR
(1′) (A,�,→Π,∧,∨,∼, 0, 1) is Π∼-algebra
(2′) (x→Ł y) ≤ ((y→Ł z)→Ł (x→Ł z))

(3′) x→Ł y = ∼(x�∼(x→Π y))
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Some theorems about ŁΠ and ŁΠ1
2 logics

Both logics ŁΠ and ŁΠ1
2 have

I 4-deduction theorem
I Proof by Cases Property
I Semilinearity Property
I Linear Extension Property
I general/linaer completeness
I finite standard completeness

In ŁΠ 1
2 we can define truth constants for each rational from [0,1]

Let ∗ be a continuous t-norm s.t. ∗ is finite ordinal sum (it the
sense of Mostert–Shields Theorem). Then the logic L(∗) is
interpretable in ŁΠ1

2
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Standard epistemic logic

Modality KA = “the agent knows that A”

The principle of logical rationality of the agent
= the assumption that the agent can make inference steps ⇒ the

axiom (K) of propositional epistemic logic:

KA & K(A→ B)→ KB

The axiom is adopted in standard accounts of epistemic logic
Standard epistemic logic = the logic of logically rational agents
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The logical omniscience paradox

An unwanted consequence of the logical rationality principle:

the agent’s knowledge is closed under modus ponens
⇒ under the propositional consequence relation

⇒ the agent knows all propositional tautologies, once
he/she/it knows the axioms of CL

= an extremely implausible assumption on real-world agents
(consider, eg, a non-trivial tautology with 109 variables)
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Three kinds of knowledge

Actual knowledge . . . the modality “is known” = knowledge
immediately available to the agent

(eg, the contents of its memory)

Potential knowledge . . . the modality “is knowable” = knowledge in
principle derivable from the actual knowledge

(by logical inference)

Feasible knowledge . . . the modality “is realistically knowable” =
knowledge effectively derivable from the actual knowledge

(taking the agent’s physical restrictions into account)
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The scope of the logical omniscience paradox

The logical omniscience paradox only affects feasible knowledge:

Actual knowledge is not closed under inference steps
⇒ the axiom (K) is not plausible for actual knowledge

Potential knowledge is indeed closed under logical consequence
⇒ no paradox there

Feasible knowledge, however, seems to be:
closed under single inference steps (the agent can make them)
yet not closed under the consequence relation as a whole

(the agent cannot feasibly know all logical truths)
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Logical omniscience as an instance of the Sorites

The problem with feasible knowledge is that the agent
can always make a next step of inference, but
cannot make an arbitrarily large number of inference steps

Ie, if the agent can make n steps, so it can make n + 1 steps, and the
agent can make 0 steps.
Yet it is not the case that for each N,

the agent can make N steps of inference

= An instance of the sorites paradox for the predicate
P(n) ≡ “the agent can make at least n inference steps”

⇒ Every solution to the sorites paradox generates
a solution to the logical omniscience paradox
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Why a degree-theoretical solution?

There have been many objections against degree-theoretical
solutions to the sorites

However, a degree-theoretical solution is particularly suitable to the
logical omniscience instances of the sorites, since

the degrees have a clear interpretation
(in terms of costs of the feasible task)

and can be manipulated by suitable many-valued logics

the (implausible) existence of a sharp breaking point in the
number of steps the agent can perform is not presupposed
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Resource-aware reasoning about knowledge

What limits the agent’s ability to infer knowledge is
the agent’s limited resources (time, memory, . . . )

⇒ Resource-aware reasoning about the agent’s knowledge needed

Several models of resource-aware reasoning are available
(eg, in dynamic or linear logics)

Fuzzy logics are applicable to resource-aware reasoning, too,
capturing moreover the gradual nature of feasibility

(some tasks are more feasible than others)
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Resource-based interpretation of Łukasiewicz logic

Cost assignment: c : FmL → [0, 1] s.t. 1− c(x) is an evaluation

Intuitively: instead ‘p is true’ we read ‘p is cheap’.

The connectives then represent natural operations with costs:

> = any ‘costless task’ c(>) = 0

⊥ = any ‘unaffordable task’ c(⊥) = 1

Conjunction = bounded sum of the costs
c(ϕ& ψ) = min{1, c(ϕ) + c(ψ)}

Implication = the ‘surcharge’ for ψ, given the cost of ϕ
c(ϕ→ ψ) = max{0, c(ψ)− c(ϕ)}

Tautologies of the form A1 & . . .& An → B represent
cost-preserving rules of inference

(the cost of B is at most the sum of the costs of Ai)

Petr Cintula (CAS) Fuzzy Logic www.cs.cas.cz/cintula/mfl-tuw 98 / 103



Combination of costs in basic t-norm logics

Łukasiewicz logic: & = bounded addition of costs (via a linear
function) 0 = the maximal (or unaffordable) cost

Gödel logic: & = the maximum of costs natural, eg, in space
complexity (erase temporary memory)

Product logic: & = addition of costs (via the logarithm) 0 = the
infinite cost

Other t-norm logics: & = certain other ways of cost combination
(eg, additive up to some bound, then maxitive)
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Feasibility in t-norm logics

Atomic formulas of t-norm logics can thus be understood as
standing under the implicit graded modality is affordable, or is feasible

The degree of feasibility is inversely proportional (via a suitable
normalization function) to the cost of realization (eg, the number of
processor cycles)

Logical connectives then express natural operations with costs

Tautologies express degree/cost-preserving rules of inference
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Feasible knowledge in fuzzy logic

Given the degrees of (the feasibility of) KA and K(A→ B), the degree
of KB (inferred by the agent) needs to make allowance for the (small)
cost of performing the inference step of modus ponens by the agent
(denote it by the atom (MP))

The plausible axiom of logical rationality for feasible knowledge in
fuzzy logics thus becomes:

KA & K(A→ B) & (MP)→ KB
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Logical omniscience in fuzzy logics

Since the degree of (MP) is slightly less than 1
(as the cost of performing modus ponens is small, but non-zero),
it decreases slightly the degree of the inferred knowledge KB

For longer derivations (of B from A1, . . . ,Ak) that require n inference
steps, the axiom only yields (where An ≡ A & n. . .& A)

KA1 & . . .& KAk & (MP)n → KB

Since & is non-idempotent, the degree of (MP)n

(and so the guaranteed degree of KB) decreases, reaching eventually 0
(the resources are limited)
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Elimination of the paradox in fuzzy logics

Thus in models over fuzzy logics,
The feasibility of knowledge decreases with long derivations

(as it intuitively should)

The closure of feasible knowledge under logical consequence is
only gradual (fading with the increasing difficulty of derivation),

Yet the agents are still perfectly logically rational
(able to perform each inference step, at appropriate costs)

⇒ No paradox under suitable fuzzy logics
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