A Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems

Petr Cintula¹ and Carles Noguera²

¹Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic

²Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic

www.cs.cas.cz/cintula/MFL

PC, P. Hájek, CN. *Handbook of Mathematical Fuzzy Logic*. Studies in Logic, Mathematical Logic and Foundations 37 and 38, 2011.

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

PC, P. Hájek, CN. *Handbook of Mathematical Fuzzy Logic*. Studies in Logic, Mathematical Logic and Foundations 37 and 38, 2011.

Volume 1

I Introduction to Mathematical Fuzzy Logic Libor Běhounek, Petr Cintula, and Petr Hájek	1
II A General Framework for Mathematical Fuzzy Logic Petr Cintula and Carles Noguera	103
III Proof Theory for Mathematical Fuzzy Logic George Metcalfe	209
IV Algebraic Semantics: Semilinear FL-Algebras Rostislav Horčík	283
V Hájek's Logic BL and BL-Algebras Manuela Busaniche and Franco Montagna	355

Volume 2

	1	VI Łukasiewicz Logic and MV-Algebras Antonio Di Nola and Ioana Leuştean	469
ic	103	VII Gödel–Dummett Logics Matthias Baaz and Norbert Preining	585
	209	VIII Fuzzy Logics with Enriched Language Francesc Esteva, Lluís Godo, and Enrico Marchioni	627
	283	IX Free Algebras and Functional Representation for Fuzzy Lo Stefano Aguzzoli, Simone Bova, and Brunella Gerla	ogics 713
	355	X Computational Complexity of Propositional Fuzzy Logics Zuzana Haniková	793
		XI Arithmetical Complexity of First-Order Fuzzy Logics Petr Hájek, Franco Montagna, and Carles Noguera	853

An even more general approach

Why should we stop at SL^{ℓ} ?

fuzzy logics = logics of chains \Rightarrow general theory of semilinear logics

Necessary ingredients:

- An order relation on all algebras (so, in particular, we have chains)
- An implication \rightarrow s.t. for every $a, b \in A, a \leq b$ iif $a \rightarrow^{b}$ is true in A
- The implication gives a congruence w.r.t. all connectives (so, we can do the Lindenbaum–Tarski construction)

Using Abstract Algebraic Logic we can develop a theory of weakly implicative semilinear logics.

Basic syntactical notions - 1

Propositional language: a countable type \mathcal{L} , i.e. a function $ar: C_{\mathcal{L}} \to N$, where $C_{\mathcal{L}}$ is a countable set of symbols called connectives, giving for each one its arity. Nullary connectives are also called truth-constants. We write $\langle c, n \rangle \in \mathcal{L}$ whenever $c \in C_{\mathcal{L}}$ and ar(c) = n.

Formulae: Let *Var* be a fixed infinite countable set of symbols called variables. The set $Fm_{\mathcal{L}}$ of formulas in \mathcal{L} is the least set containing *Var* and closed under connectives of \mathcal{L} , i.e. for each $\langle c, n \rangle \in \mathcal{L}$ and every $\varphi_1, \ldots, \varphi_n \in Fm_{\mathcal{L}}, c(\varphi_1, \ldots, \varphi_n)$ is a formula.

Substitution: a mapping $\sigma: Fm_{\mathcal{L}} \to Fm_{\mathcal{L}}$, such that $\sigma(c(\varphi_1, \ldots, \varphi_n)) = c(\sigma(\varphi_1), \ldots, \sigma(\varphi_n))$ holds for each $\langle c, n \rangle \in \mathcal{L}$ and every $\varphi_1, \ldots, \varphi_n \in Fm_{\mathcal{L}}$.

Basic syntactical notions - 2

Let L be relation between sets of formulas and formulas, we write ' $\Gamma \vdash_{L} \varphi$ ' instead of ' $\langle \Gamma, \varphi \rangle \in L$ '.

Definition 6.1

A relation L between sets of formulas and formulas in \mathcal{L} is called a (finitary) logic in \mathcal{L} whenever

• If
$$\varphi \in \Gamma$$
, then $\Gamma \vdash_{L} \varphi$. (Reflexivity)
• If $\Delta \vdash_{L} \psi$ and $\Gamma, \psi \vdash_{L} \varphi$, then $\Gamma, \Delta \vdash_{L} \varphi$. (Cut)
• If $\Gamma \vdash_{L} \varphi$, then there is finite $\Delta \subseteq \Gamma$ such that $\Delta \vdash_{L} \varphi$. (Finitarity)
• If $\Gamma \vdash_{L} \varphi$, then $\sigma[\Gamma] \vdash_{L} \sigma(\varphi)$ for each substitution σ . (Structurality)

Observe that reflexivity and cut entail:

If
$$\Gamma \vdash_{L} \varphi$$
 and $\Gamma \subseteq \Delta$, then $\Delta \vdash_{L} \varphi$. (Monotonicity)

0

Basic syntactical notions - 3

Axiomatic system: a set \mathcal{AS} of pairs $\langle \Gamma, \varphi \rangle$ closed under substitutions, where Γ is a finite set of formulas. If Γ is empty we speak about axioms otherwise we speak about deduction rules.

Proof: a proof of a formula φ from a set of formulas Γ in \mathcal{AS} is a finite sequence of formulas whose each element is either

- an axiom of \mathcal{AS} , or
- an element of Γ, or
- the conclusion of a deduction rules whose premises are among its predecessors.

We write $\Gamma \vdash_{\mathcal{AS}} \varphi$ if there is a proof of φ from Γ in \mathcal{AS} .

Presentation: We say that \mathcal{AS} is an axiomatic system for (or a presentation of) the logic L if $L = \vdash_{\mathcal{AS}}$.

Theorem: a consequence of the empty set

Theory: a set of formulas *T* such that if $T \vdash_L \varphi$ then $\varphi \in T$. By Th(L) we denote the set of all theories of L.

Basic semantical notions - 1

 \mathcal{L} -algebra: $A = \langle A, \langle c^A | c \in C_{\mathcal{L}} \rangle \rangle$, where $A \neq \emptyset$ (universe) and $c^A : A^n \to A$ for each $\langle c, n \rangle \in \mathcal{L}$.

Algebra of formulas: the algebra $Fm_{\mathcal{L}}$ with domain $Fm_{\mathcal{L}}$ and operations $c^{Fm_{\mathcal{L}}}$ for each $\langle c, n \rangle \in \mathcal{L}$ defined as:

$$c^{Fm_{\mathcal{L}}}(\varphi_1,\ldots,\varphi_n)=c(\varphi_1,\ldots,\varphi_n).$$

 $Fm_{\mathcal{L}}$ if the absolutely free algebra in language \mathcal{L} with generators *Var*.

Homomorphism of algebras: a mapping $f: A \to B$ such that for every $\langle c, n \rangle \in \mathcal{L}$ and every $a_1, \ldots, a_n \in A$,

$$f(c^{\boldsymbol{A}}(a_1,\ldots,a_n))=c^{\boldsymbol{B}}(f(a_1),\ldots,f(a_n)).$$

Note that substitutions are exactly endomorphisms of $Fm_{\mathcal{L}}$.

Basic semantical notions - 2

 \mathcal{L} -matrix: a pair $\mathbf{A} = \langle \mathbf{A}, F \rangle$ where \mathbf{A} is an \mathcal{L} -algebra called the algebraic reduct of \mathbf{A} , and F is a subset of A called the filter of \mathbf{A} . The elements of F are called designated elements of \mathbf{A} .

A matrix $\mathbf{A} = \langle \mathbf{A}, F \rangle$ is

- trivial if F = A.
- finite if A is finite.
- Lindenbaum if $A = Fm_{\mathcal{L}}$.

A-evaluation: a homomorphism from $Fm_{\mathcal{L}}$ to *A*, i.e. a mapping $e: Fm_{\mathcal{L}} \to A$, such that for each $\langle c, n \rangle \in \mathcal{L}$ and each *n*-tuple of formulas $\varphi_1, \ldots, \varphi_n$ we have:

$$e(c(\varphi_1,\ldots,\varphi_n))=c^A(e(\varphi_1),\ldots,e(\varphi_n)).$$

Basic semantical notions - 3

Semantical consequence: A formula φ is a semantical consequence of a set Γ of formulas w.r.t. a class \mathbb{K} of \mathcal{L} -matrices if for each $\langle A, F \rangle \in \mathbb{K}$ and each A-evaluation e, we have $e(\varphi) \in F$ whenever $e[\Gamma] \subseteq F$; we denote it by $\Gamma \models_{\mathbb{K}} \varphi$.

L-matrix: Let L be a logic in \mathcal{L} and A an \mathcal{L} -matrix. We say that A is an L-matrix if $L \subseteq \models_A$. We denote the class of L-matrices by MOD(L).

Logical filter: Given a logic L in \mathcal{L} and an \mathcal{L} -algebra A, a subset $F \subseteq A$ is an L-filter if $\langle A, F \rangle \in MOD(L)$. By $\mathcal{F}i_L(A)$ we denote the set of all L-filters over A.

Example: Let *A* be a Boolean algebra. Then $\mathcal{F}i_{CPC}(A)$ is the class of lattice filters on *A*, in particular for the two-valued Boolean algebra 2:

 $\mathcal{F}i_{\rm CPC}(\mathbf{2}) = \{\{1\}, \{0, 1\}\}.$

The first completeness theorem

Proposition 6.2

 $\textit{For any logic } L \textit{ in a language } \mathcal{L}, \, \mathcal{F}i_L(\textit{Fm}_{\mathcal{L}}) = Th(L).$

Theorem 6.3

Let L be a logic. Then for each set Γ of formulas and each formula φ the following holds: $\Gamma \vdash_{L} \varphi$ iff $\Gamma \models_{MOD(L)} \varphi$.

Completeness theorem for classical logic

- Suppose that $T \in \text{Th}(\text{CPC})$ and $\varphi \notin T$ ($T \not\vdash_{\text{CPC}} \varphi$). We want to show that $T \not\models \varphi$ in some meaningful semantics.
- $T \not\models_{\langle Fm_{\mathcal{L}}, T \rangle} \varphi$. 1st completeness theorem
- ⟨α, β⟩ ∈ Ω(T) iff α ↔ β ∈ T (congruence relation on *Fm_L* compatible with T: if α ∈ T and ⟨α, β⟩ ∈ Ω(T), then β ∈ T).
- Lindenbaum–Tarski algebra: $Fm_{\mathcal{L}}/\Omega(T)$ is a Boolean algebra and $T \not\models_{\langle Fm_{\mathcal{L}}/\Omega(T), T/\Omega(T) \rangle} \varphi$.

2nd completeness theorem

- Lindenbaum Lemma: If $\varphi \notin T$, then there is a maximal consistent $T' \in \text{Th}(\text{CPC})$ such that $T \subseteq T'$ and $\varphi \notin T'$.
- $Fm_{\mathcal{L}}/\Omega(T') \cong 2$ (subdirectly irreducible Boolean algebra) and $T \not\models_{\langle 2, \{1\} \rangle} \varphi$. 3rd completeness theorem

Weakly implicative logics

Definition 6.4

A logic L in a language \mathcal{L} is weakly implicative if there is a binary connective \rightarrow (primitive or definable) such that:

$$\begin{array}{ll} (\mathbf{R}) & \vdash_{\mathbf{L}} \varphi \to \varphi \\ (\mathbf{MP}) & \varphi, \varphi \to \psi \vdash_{\mathbf{L}} \psi \\ (\mathbf{T}) & \varphi \to \psi, \psi \to \chi \vdash_{\mathbf{L}} \varphi \to \chi \\ (\mathrm{sCng}) & \varphi \to \psi, \psi \to \varphi \vdash_{\mathbf{L}} c(\chi_1, \dots, \chi_i, \varphi, \dots, \chi_n) \to \\ & c(\chi_1, \dots, \chi_i, \psi, \dots, \chi_n) \\ & \text{for each } \langle c, n \rangle \in \mathcal{L} \text{ and each } 0 \leq i < n. \end{array}$$

Petr Cintula and Carles Noguera (CAS)

Examples

.

The following logics are weakly implicative:

- CPC, BCI, and Inc
- global modal logics
- intuitionistic and superintuitionistic logic
- linear logic and its variants
- (the most of) fuzzy logics
- substructural logics

The following logics are not weakly implicative:

- local modal logics
- the conjunction-disjunction fragment of classical logic as it has no theorems
- Iogics of ortholattices

Congruence Property

Conventions

Unless said otherwise, L is a weakly implicative in a language ${\cal L}$ with an implication \to . We write:

- $\varphi \leftrightarrow \psi$ instead of $\{\varphi \rightarrow \psi, \psi, \rightarrow \varphi\}$
- $\Gamma \vdash \Delta$ whenever $\Gamma \vdash \chi$ for each $\chi \in \Delta$

Theorem 6.5

Let φ, ψ, χ be formulas. Then:

- $\bullet \vdash_{\mathcal{L}} \varphi \leftrightarrow \varphi$
- $\bullet \ \varphi \leftrightarrow \psi \vdash_{\mathbf{L}} \psi \leftrightarrow \varphi$
- $\varphi \leftrightarrow \delta, \delta \leftrightarrow \psi \vdash_{\mathcal{L}} \varphi \leftrightarrow \psi$
- $\varphi \leftrightarrow \psi \vdash_{\mathcal{L}} \chi \leftrightarrow \hat{\chi}$, where $\hat{\chi}$ is obtained from χ by replacing some occurrences of φ in χ by ψ .

Lindenbaum–Tarski matrix

Let L be a weakly implicative logic in \mathcal{L} and $T \in Th(L)$. For every formula φ , we define the set

$$[\varphi]_T = \{ \psi \in Fm_{\mathcal{L}} \mid \varphi \leftrightarrow \psi \subseteq T \}.$$

The Lindenbaum–Tarski matrix with respect to L and *T*, LindT_{*T*}, has the filter $\{[\varphi]_T \mid \varphi \in T\}$ and algebraic reduct with the domain $\{[\varphi]_T \mid \varphi \in Fm_{\mathcal{L}}\}$ and operations:

$$c^{\operatorname{Lind}\mathbf{T}_T}([\varphi_1]_T,\ldots,[\varphi_n]_T)=[c(\varphi_1,\ldots,\varphi_n)]_T$$

What are Lindenbaum–Tarski matrices in general? Recall that Lindenbaum matrices have domain Fm_{ℓ} and

$$\mathcal{F}i_{\mathrm{L}}(\boldsymbol{Fm}_{\mathcal{L}})=\mathrm{Th}(\mathrm{L}).$$

Petr Cintula and Carles Noguera (CAS)

Leibniz congruence

A congruence θ of A is logical in a matrix $\langle A, F \rangle$ if for each $a, b \in A$ if $a \in F$ and $\langle a, b \rangle \in \theta$, then $b \in F$.

Definition 6.6

Let $\mathbf{A} = \langle \mathbf{A}, F \rangle$ be an L-matrix. We define the Leibniz congruence $\Omega_{\mathbf{A}}(F)$ of \mathbf{A} as

$$\langle a,b\rangle \in \Omega_A(F)$$
 iff $a \leftrightarrow^A b \subseteq F$

Theorem 6.7

Let $\mathbf{A} = \langle \mathbf{A}, F \rangle$ be an L-matrix. Then $\Omega_{\mathbf{A}}(F)$ is the largest logical congruence of \mathbf{A} .

Algebraic counterpart

Definition 6.8

A L-matrix $\mathbf{A} = \langle \mathbf{A}, F \rangle$ is reduced, $\mathbf{A} \in \mathbf{MOD}^*(\mathbf{L})$ in symbols, if $\Omega_A(F)$ is the identity relation Id_A (iff \leq_A is an order).

An algebra *A* is L-algebra, $A \in ALG^*(L)$ in symbols, if there a set $F \subseteq A$ such that $\langle A, F \rangle \in MOD^*(L)$.

Example: it is easy to see that

$$\Omega_2(\{1\}) = Id_2$$
 i.e., $2 \in ALG^*(CPC)$.

Actually for any Boolean algebra A:

 $\Omega_A(\{1\}) = \mathrm{Id}_A$ i.e., $A \in \mathrm{ALG}^*(\mathrm{CPC})$.

But: $\Omega_4(\{a,1\}) = \mathrm{Id}_A \cup \{\langle 1,a \rangle, \langle 0,\neg a \rangle\}$ i.e. $\langle 4, \{a,1\} \rangle \notin \mathrm{MOD}^*(\mathrm{CPC})$.

Factorizing matrices

- Let us take $\mathbf{A} = \langle \mathbf{A}, F \rangle \in \mathbf{MOD}(L)$. We write:
 - A^* for $A/\Omega_A(F)$
 - $[\cdot]_F$ for the canonical epimorphism of A onto A^* defined as:

$$[a]_F = \{ b \in A \mid \langle a, b \rangle \in \Omega_A(F) \}$$

• \mathbf{A}^* for $\langle \mathbf{A}^*, [F]_F \rangle$.

Theorem 6.9

Let *T* be a theory, $\mathbf{A} = \langle \mathbf{A}, F \rangle \in \mathbf{MOD}(L)$, and $a, b \in A$. Then:

1 Lind
$$\mathbf{T}_T = \langle Fm_{\mathcal{L}}, T \rangle^*$$

2 $a \in F$ iff $[a]_F \in [F]_F$.
3 $[a]_F \leq_{\mathbf{A}^*} [b]_F$ iff $a \rightarrow^{\mathbf{A}} b \in F$.
4 $\mathbf{A}^* \in \mathbf{MOD}^*(\mathbf{L})$.

The second completeness theorem

Theorem 6.10

Let L be a weakly implicative logic. Then for any set Γ of formulas and any formula φ the following holds:

$$\Gamma \vdash_{\mathcal{L}} \varphi \quad iff \quad \Gamma \models_{\mathbf{MOD}^*(\mathcal{L})} \varphi.$$

Proof.

Using just the soundness part of the FCT it remains to prove:

 $\Gamma \models_{\mathbf{MOD}^*(\mathbf{L})} \varphi$ implies $\Gamma \vdash_{\mathbf{L}} \varphi$.

Assume that $\Gamma \not\vdash_{L} \varphi$ and take the theory $T = Th_{L}(\Gamma)$. Then

- Lind $\mathbf{T}_T = \langle Fm_{\mathcal{L}}, T \rangle^* \in \mathbf{MOD}^*(\mathbf{L})$ and for Lind \mathbf{T}_T -evaluation $e(\psi) = [\psi]_T$ holds $e(\psi) \in [T]_T$ iff $\psi \in T$
- Thus $e[\Gamma] \subseteq e[T] = [T]_T$ and $e(\varphi) \notin [T]_T$

Order and Leibniz congruence

Definition 6.11 Let $\mathbf{A} = \langle \mathbf{A}, F \rangle$ be an L-matrix. We define the matrix preorder $\leq_{\mathbf{A}}$ of \mathbf{A} as $a \leq_{\mathbf{A}} b$ iff $a \rightarrow^{\mathbf{A}} b \in F$

Note that

$$\langle a,b\rangle\in\Omega_A(F)$$
 iff $a\leq_A b$ and $b\leq_A a$.

Thus the Leibniz congruence of A is the identity iff \leq_A is an order, and so all reduced matrices of L are ordered by \leq_A .

Weakly implicative logics are the logics of ordered matrices.

Linear filters

Definition 6.12

Let $\mathbf{A} = \langle \mathbf{A}, F \rangle \in \mathbf{MOD}(L)$. Then

- *F* is *linear* if \leq_A is a total preorder, i.e. for every $a, b \in A$, $a \rightarrow^A b \in F$ or $b \rightarrow^A a \in F$
- A is a *linearly ordered model* (or just a *linear model*) if \leq_A is a linear order (equivalently: *F* is linear and A is reduced).

We denote the class of all linear models as $\textbf{MOD}^{\ell}(L)$.

A theory *T* is linear in L if $T \vdash_{L} \varphi \rightarrow \psi$ or $T \vdash_{L} \psi \rightarrow \varphi$, for all φ, ψ

Lemma 6.13

Let $A \in MOD(L)$. Then *F* is linear iff $A^* \in MOD^{\ell}(L)$. In particular: a theory *T* is linear iff Lind $T_T \in MOD^{\ell}(L)$

Semilinear implications and semilinear logics

Definition 6.14

We say that \rightarrow is *semilinear* if

$$\mathbf{T}_{\mathrm{L}} = \models_{\mathrm{MOD}^{\ell}(\mathrm{L})}.$$

We say that L is *semilinear* if it has a semilinear implication.

⊢

(Weakly implicative) *semilinear* logics are the logics of *linearly* ordered matrices.

Characterization of semilinear logics

Theorem 6.15

Let L be a finitary weakly implicative logic. TFAE:

- L is semilinear.
- L has the Semilinearity Property, i.e., the following meta-rule is valid:

$$\frac{\Gamma, \varphi \to \psi \vdash_{\mathsf{L}} \chi}{\Gamma \vdash_{\mathsf{L}} \chi} \xrightarrow{\Gamma, \psi \to \varphi \vdash_{\mathsf{L}} \chi}{\Gamma \vdash_{\mathsf{L}} \chi}$$

- Solution L has the Linear Extension Property, i.e., if for every theory $T \in Th(L)$ and every formula $\varphi \in Fm_{\mathcal{L}} \setminus T$, there is a linear theory $T' \supseteq T$ such that $\varphi \notin T'$.

Calculus for FLew: structural rules

A sequent is a pair $\Gamma \Rightarrow \Delta$ where Γ is a multiset of formulas and Δ is a formula or the empty set.

The calculus has the following axiom and the structural rules:

$$(ID) \quad \frac{\Gamma \Rightarrow \varphi \qquad \varphi, \Delta \Rightarrow \chi}{\Gamma, \Delta \Rightarrow \chi}$$

$$(W-L) \quad \frac{\Gamma \Rightarrow \chi}{\varphi, \Gamma \Rightarrow \chi} \qquad (W-R) \quad \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow \varphi}$$

Calculus for FL_{ew}: operational rules

$$\begin{array}{ll} (\wedge \text{-L}) & \frac{\varphi, \Gamma \Rightarrow \chi}{\varphi \land \psi, \Gamma \Rightarrow \chi} \text{, ditto } \psi & (\wedge \text{-R}) & \frac{\Gamma \Rightarrow \varphi & \Gamma \Rightarrow \psi}{\Gamma \Rightarrow \varphi \land \psi} \\ \hline (\& \text{-L}) & \frac{\varphi, \psi, \Gamma \Rightarrow \chi}{\varphi \& \psi, \Gamma \Rightarrow \chi} & (\& \text{-R}) & \frac{\Gamma \Rightarrow \varphi}{\Gamma, \Delta \Rightarrow \varphi \& \psi} \\ \hline (\lor \text{-L}) & \frac{\varphi, \Gamma \Rightarrow \chi}{\varphi \lor \psi, \Gamma \Rightarrow \chi} & (\lor \text{-R}) & \frac{\Gamma \Rightarrow \varphi}{\Gamma \Rightarrow \varphi \lor \psi} \text{, ditto } \psi \\ \hline (\to \text{-L}) & \frac{\Gamma \Rightarrow \varphi}{\varphi \to \psi, \Gamma, \Delta \Rightarrow \chi} & (\to \text{-R}) & \frac{\varphi, \Gamma \Rightarrow \psi}{\Gamma \Rightarrow \varphi \to \psi} \\ \hline (\neg \text{-L}) & \frac{\Gamma \Rightarrow \varphi}{\neg \varphi, \Gamma \Rightarrow} & (\neg \text{-R}) & \frac{\varphi, \Gamma \Rightarrow}{\Gamma \Rightarrow \neg \varphi} \end{array}$$

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

From sequents to hypersequents

A hypersequent is a multiset of sequents. We add hypersequent context \mathcal{G} to all rules:

(ID)
$$\overline{\mathcal{G} \mid \varphi \Rightarrow \varphi}$$
 (V-R) $\frac{\mathcal{G} \mid \Gamma \Rightarrow \varphi}{\mathcal{G} \mid \Gamma \Rightarrow \varphi \lor \psi}$, ditto ψ

What we need is Avron's communication rule

$$(COM) \frac{\mathcal{G} \mid \Gamma_1, \Pi_1 \Rightarrow \chi_1 \qquad \mathcal{G} \mid \Gamma_2, \Pi_2 \Rightarrow \chi_2}{\mathcal{G} \mid \Gamma_1, \Gamma_2 \Rightarrow \chi_1 \mid \Pi_1, \Pi_2 \Rightarrow \chi_2}$$

Characterizations of completeness properties

Let L be core semilinear logic and $\mathbb K$ a class of L-chains.

Theorem 6.16 (Characterization of strong K-completeness)

- For each $T \cup \{\varphi\}$ holds: $T \vdash_{L} \varphi$ iff $T \models_{\mathbb{K}} \varphi$.
- I Each countable L-chain is embeddable into some member of K.

Theorem 6.17 (Characterization of finite strong K-completeness)

- For each finite $T \cup \{\varphi\}$ holds: $T \vdash_{L} \varphi$ iff $T \models_{\mathbb{K}} \varphi$
- **2** $\mathbb{L} = \mathbf{Q}(\mathbb{K})$, *i.e.*, \mathbb{K} generates \mathbb{L} as a quasivariety.
- I Each countable L-chain is embeddable into some ultrapower of K.
- Each finite subset of an L-chain is partially embeddable into an element of K.

Completeness properties

Let L be a core semilinear logic and $\mathbb K$ a class of L-chains.

Distinguished semantics

Typical instances: $\mathbb{K} \in \{\mathcal{R}, \mathcal{Q}, \mathcal{F}\}$ (real, rational, finite-chain semantics).

Theorem 6.19 (Strong finite-chain completeness)

- L enjoys the SFC,
- all L-chains are finite,
- **③** there exists $n \in N$ such each L-chain has at most n elements,
 - there exists $n \in \mathbb{N}$ such that $\vdash_{\mathbb{L}} \bigvee_{i \leq n} (x_i \to x_{i+1})$.

Theorem 6.20 (Relation of Rational and Real completeness)

- L has the FSQC iff it has the SQC.
- 2 If L has the $\mathcal{R}C$, then it has the $\mathcal{Q}C$.
- If L has the FS $\mathcal{R}C$, then it has the S $\mathcal{Q}C$.

Known results and open problems

Logic	SRC	FSRC	SQC	FSQC	FSFC
FL^{ℓ}	No	No	No	No	No
$\mathrm{FL}^\ell_\mathrm{c}$	No	No	No	No	?
$FL_e^\ell = UL$	Yes	Yes	Yes	Yes	No
$FL_w^\ell = psMTL^r$	Yes	Yes	Yes	Yes	Yes
$FL_{ew}^{\ell} = MTL$	Yes	Yes	Yes	Yes	Yes
$\mathrm{FL}^\ell_{\mathrm{ec}}$?	?	?	?	?
$FL_{wc}^{\ell} = G$	Yes	Yes	Yes	Yes	Yes

Problem 6.21

Solve the missing cases.

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

Known results and open problems

Logic	SRC	FSRC	SQC	FSQC	FSFC
InFLℓ	No	No	No	No	No
$InFL^\ell_c$	No	No	No	No	?
$InFL_e^{\ell} = IUL$?	?	?	?	No
$InFL^\ell_{\mathrm{w}}$	Yes	Yes	Yes	Yes	?
$InFL^\ell_{\mathrm{ew}} = \mathrm{IMTL}$	Yes	Yes	Yes	Yes	Yes
$InFL^\ell_{\mathrm{ec}}$?	?	?	?	?
$InFL_{wc}^{\ell} = CL$	No	No	No	No	Yes

Problem 6.22

Solve the missing cases.

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

Known results in non-associative logics

Logic	SRC	FSRC	SQC	FSQC	FSFC
SL^{ℓ}	Yes	Yes	Yes	Yes	Yes
SL_c^ℓ	Yes	Yes	Yes	Yes	Yes
SL_e^ℓ	Yes	Yes	Yes	Yes	Yes
$\mathrm{SL}^\ell_\mathrm{w}$	Yes	Yes	Yes	Yes	Yes
SL_{ew}^{ℓ}	Yes	Yes	Yes	Yes	Yes
SL_{ec}^{ℓ}	Yes	Yes	Yes	Yes	Yes
$SL_{wc}^{\ell} = G$	Yes	Yes	Yes	Yes	Yes

More interesting questions (no one addressed yet)

Logic	SRC	FSRC	SQC	FSQC	FSFC
lnSLℓ	?	?	?	?	?
$InSL^\ell_{\mathrm{c}}$?	?	?	?	?
$InSL^\ell_{e}$?	?	?	?	?
$InSL^\ell_{\mathrm{w}}$?	?	?	?	?
$InSL^\ell_{\mathrm{ew}}$?	?	?	?	?
$InSL^\ell_{\mathrm{ec}}$?	?	?	?	?
$InSL_{wc}^{\ell} = CL$	No	No	No	No	Yes

An extensive research field

- based on the structural description of HL-chains
- classification and axiomatization of subvarieties
- amalgamation, interpolation, and Beth properties
- completions theory
- etc.

We have heard a lot about it already

If you want to know more, read:

D. Mundici. Advanced Łukasiewicz calculus and MV-algebras. Trends in Logic, Vol. 35 Springer, New York, 2011. We have heard a lot about it already

If you want to know more, read:

anything from Vienna school: M. Baaz, N. Preining, C. Fermüller, R. Zach, etc.

A plethora of results not only about ...

Petr Cintula and Carles Noguera (CAS)

Basic notions

We fix a logic L which is standard complete w.r.t. $[0, 1]_L$.

Definition 6.23 Function $f: [0,1]^n \to [0,1]$ is *represented* by formula φ of logic L if $e(\varphi) = f(e(v_1), e(v_2), \dots, e(v_m))$ for each $[0,1]_L$ -evaluation e.

Definition 6.24

Functional representation of logic L is a class of functions from any power of [0, 1] into [0, 1] s.t. each $C \in C$ is represented by some formula φ and vice-versa (i.e., for each φ there is $C \in C$ represented by φ).

An overview

Łukasiewicz logic:

Operations: truncated sum $\min\{1, x + y\}$ and involutive negation 1 - x**Functions:** continuous piece-wise linear functions with integer coeff.

 $f(x_1,\ldots,x_n)=a_1x_1+\ldots+a_nx_n+a_0\,,\quad a_i\in\mathbf{Z}$

Ext.	Added operations	Functions
P	multiplication	polynomial
RP	rational constants	rational shift ($a_0 \in \mathbf{Q}$)
\triangle	$\triangle(x) = 1 \text{if } x = 1$	non-continuity
	$\triangle(x) = 0 \text{if } x < 1$	-
δ	dividing by integers	rational coefficients ($a_i \in \mathbf{Q}$)
ŁΠ	fractions	fractions of functions

Some known results

Definition 6.25

A subset S of $[0, 1]^n$ is Q-semialgebraic if it is a Boolean combination of sets of the form

 $\{\langle x_1,\ldots,x_n\rangle\in[0,1]^n\mid P(\langle x_1,\ldots,x_n\rangle)>0\}$

for polynomials *P* with integer coefficients. If all of the polynomials are linear, then *S* is *linear* Q*-semialgebraic*.

Logic	Contin.	Domains	Pieces
Ł	yes	linear	linear functions with integer coefficients
$\mathbb{L}_{ riangle}$	no	linear	linear functions with integer coefficients
RPL	yes	linear	linear integer coefficients and a rational shift
δ Ł	yes	linear	linear rational coefficients
PŁ′	yes	?	??? Pierce-Birkhoff conjecture ???
PL'_{\triangle}	no	all	polynomials with integer coefficients
ŁП	no	all	fractions of polynomials with integer coeff.
$L\Pi^{\frac{1}{2}}$	no	all	as above plus $f[\{0,1\}^n] \subseteq \{0,1\}$

Known results (see Handbook ch. X)

Logic L	THM(L)	CONS(L)	expansion by rational constants
HL	coNP-C.	coNP-C.	-
Ł	coNP-C.	coNP-c.	coNP-C.
L ⊃Ł	coNP-C.	coNP-C.	_
G	coNP-C.	coNP-C.	coNP-c.
П	coNP-C.	coNP-c.	\in PSPACE
$L(*) \supset HL$	coNP-C.	coNP-c.	_
$L\Pi^{\frac{1}{2}}$	∈ PSPACE	∈ PSPACE	_
MTL	decidable	decidable	_
IMTL	decidable	decidable	_
ПMTL	decidable	decidable	_
NM	coNP-C.	coNP-C.	coNP-C.
WNM	coNP-C.	coNP-C.	_

Problem 6.26

Determine the precise complexity in all cases.

Petr Cintula and Carles Noguera (CAS)

Mathematical Fuzzy Logic

Known results (see Handbook ch. XI)

Logic	$stTAUT_1$	$stSAT_1$	stTAUT _{pos}	stSAT _{pos}
(I)MTL∀	Σ_1 -complete	Π_1 -complete	Σ_1 -complete	Π_1 -complete
WCMTL∀	Σ_1 -hard	Π_1 -hard	Σ_1 -hard	Π_1 -hard
∏MTL∀	Σ_1 -hard	Π_1 -hard	Σ_1 -hard	Π_1 -hard
(S)HL∀	Non-arithm.	Non-arithm.	Non-arithm.	Non-arithm.
Ł∀	Π_2 -complete	Π_1 -complete	Σ_1 -complete	Σ_2 -complete
Π∀	Non-arithm.	Non-arithm.	Non-arithm.	Non-arithm.
G∀	Σ_1 -complete	Π_1 -complete	Σ_1 -complete	Π_1 -complete
$C_n MTL \forall$	Σ_1 -complete	Π_1 -complete	Σ_1 -complete	Π_1 -complete
C_n IMTL \forall	Σ_1 -complete	Π_1 -complete	Σ_1 -complete	Π_1 -complete
WNM∀	Σ_1 -complete	Π_1 -complete	Σ_1 -complete	Π_1 -complete
NM∀	Σ_1 -complete	Π_1 -complete	Σ_1 -complete	Π_1 -complete

Problem 6.27

Determine the precise complexity in all cases.

Volume III of the Handbook (in preparation)

- XII Algebraic Semantics: Structure of Chains (Vetterlein)
- XIII Dialogue Game-based Interpretations of Fuzzy Logics (Fermüller)
- XIV Ulam-Rényi games (Cicalese, Montagna)
- XV Fuzzy Logics with Evaluated Syntax (Novák)
- XVI Fuzzy Description Logics (Bobillo, Cerami, Esteva, García-Cerdaña, Peñaloza, Straccia)
- XVII States of MV-algebras (Flaminio, Kroupa)
- XVIII Fuzzy Logics in Theories of Vagueness (Smith)

(edited by Cintula, Fermüller, and Noguera)

Those that would deserve a Handbook chapter in some of the future volumes, but are not ready yet ...

- Model Theory of Fuzzy Logics
- Model Theory in Fuzzy Logics
- Fuzzy Modal Logics
- Duality Theory
- Fragments of Fuzzy Logics
- Higher-Order Fuzzy logics
- Fuzzy Set Theories
- Fuzzy Arithmetics

Example I: model theory in fuzzy logics

Definition 6.28

Let $\langle B_1, \mathbf{M}_1 \rangle$ and $\langle B_2, \mathbf{M}_2 \rangle$ be two \mathcal{P} -models. $\langle B_1, \mathbf{M}_1 \rangle$ is *elementarily equivalent* to $\langle B_2, \mathbf{M}_2 \rangle$ if for each φ :

$$\langle \boldsymbol{B}_1, \mathbf{M}_1 \rangle \models \varphi \quad \text{iff} \quad \langle \boldsymbol{B}_2, \mathbf{M}_2 \rangle \models \varphi$$

Definition 6.29

An *elementary embedding* of a \mathcal{P}_1 -model $\langle B_1, \mathbf{M}_1 \rangle$ into a \mathcal{P}_2 -model $\langle B_2, \mathbf{M}_2 \rangle$ is a pair (f, g) such that:

- f is an injection of the domain of M_1 into the domain of M_2 .
- 2 g is an embedding of B_1 into B_2 .

• $g(\|\varphi(a_1,\ldots,a_n)\|^{\langle B_1,\mathbf{M}_1\rangle}) = \|\varphi(f(a_1),\ldots,f(a_n))\|^{\langle B_2,\mathbf{M}_2\rangle}$ holds for each \mathcal{P}_1 -formula $\varphi(x_1,\ldots,x_n)$ and $a_1,\ldots,a_n \in \mathfrak{M}$.

The characterization of conservative expansions

Theorem 6.30

Let L be a canonical fuzzy logic, T_1 and T_2 theories over L \forall . Then the following claims are equivalent:

- T_2 is a conservative extension of T_1 .
- **2** Each model of T_1 is elementarily equivalent with restriction of some model of T_2 to the language of T_1 .
- Solution \mathbf{S} **Each exhaustive** model of T_1 is elementarily equivalent with restriction of some model of T_2 to the language of T_1 .
- Each exhaustive model of T₁ can be elementarily embedded into some model of T₂.

But it is not equivalent to

Solution Each model of T_1 can be elementarily embedded into some model of T_2 .

Example II: evaluation games for Łukasiewicz logic

Let ${\bf M}$ be a witnessed ${\mathcal P}\text{-structure},$ then the labelled evaluation game for ${\bf M}$ is

- win-lose extensive game of two players (Eloise *E* and Abelard *A*);
- its states are tuples $\langle \varphi, \mathbf{e}, \bowtie, r \rangle$, where
 - φ is a \mathcal{P} -formula
 - e is an M-evaluation
 - $\blacktriangleright \bowtie \in \{\leq, \geq\}$
 - *r* ∈ [0, 1]
- it has terminal states $\langle \varphi, \mathbf{e}, \bowtie, r \rangle$ where either
 - φ is atomic formula,
 - $\bowtie = \le$ and r = 1, or
 - $\bowtie = \ge$ and r = 0
- Eloise winning in first type of TS if $||\varphi||_{\mathbf{M},v} \bowtie r$ and is 'automatically' winning in the other two
- the game moves given by the following rules ...

Rules of the game — negation and disjunction(s)

(¬) $(\neg\psi, \mathbf{v}, \bowtie, r)$: the game continues as $(\psi, \mathbf{v}, \bowtie^{-1}, 1 - r)$

(\oplus) $(\psi_1 \oplus \psi_2, \mathbf{v}, \bowtie, r)$: \mathcal{E} chooses $r' \leq r$, \mathcal{A} chooses whether to play $(\psi_1, \mathbf{v}, \bowtie r')$ or $(\psi_2, \mathbf{v}, \bowtie r - r')$.

 $(\vee^{\geq}) \quad (\psi_1 \lor \psi_2, \mathbf{v}, \geq, r):$ \mathcal{E} chooses whether to play (ψ_1, \mathbf{v}, r) or (ψ_2, \mathbf{v}, r) .

 $(\vee^{\leq}) \quad (\psi_1 \lor \psi_2, \mathbf{v}, \leq, r):$ \mathcal{A} chooses whether to play (ψ_1, \mathbf{v}, r) or (ψ_2, \mathbf{v}, r) .

Rules of the game — general quantifier

 $((\forall x)\psi, \mathbf{v}, \geq, r)$: \mathcal{E} claims that $\min\{||\psi||_{\nu[x]} \mid x \in M\} \geq r$ \mathcal{A} has to provide a counterexample - an a such that $(||\psi||_{\mathbf{v}[x \to a]} < r)$

 $\begin{array}{l} (\forall^{\geq}) & ((\forall x)\psi, \mathbf{v}, \geq, r):\\ & \mathcal{A} \text{ chooses } a \in M,\\ & \text{game continues as } (\psi, \mathbf{v}[x \rightarrow a], \geq, r). \end{array}$

 $((\forall x)\psi, \mathbf{v}, \leq, r)$: \mathcal{E} claims that $\min\{||\psi||_{v[x]} \mid x \in M\} \leq r$ \mathcal{E} has to provide a witness - an *a* such that $(||\psi||_{v[x \to a]} \leq r)$

 $\begin{array}{l} (\forall^{\leq}) & ((\forall x)\psi, \mathrm{v}, \leq, r):\\ & \mathcal{E} \text{ chooses } a \in M,\\ & \text{game continues as } (\psi, \mathrm{v}[x \rightarrow a], \leq, r). \end{array}$

Correspondence theorem

Let us by $G_{\mathbf{M}}(\varphi, \mathbf{v}, \bowtie, r)$ denote that labelled evaluation game for \mathbf{M} with initial state $(\varphi, \mathbf{v}, \bowtie, r)$. Then by Gale–Steward theorem:

Theorem 6.31 (Determinedness)

Either Eloise or Abelard has a winning strategy for every $G_{\mathbf{M}}(\varphi, \mathbf{v}, \bowtie, r)$.

Theorem 6.32 (Correspondence)

Let M be a structure, φ a formula, v an M-valuation, $\bowtie \in \{\leq, \geq\}$, and $r \in [0, 1]$. Then

Eloise has a winning strategy in $G_{\mathbf{M}}(\varphi, \mathbf{v}, \bowtie, r)$ iff $||\varphi||_{\mathbf{M}, v} \bowtie r$.

Corollary 6.33

Let **M** be a structure and φ a formula. Then **M** $\models \varphi$ iff Eloise has a winning strategy for the game $G_{\mathbf{M}}(\varphi, \mathbf{v}, \geq, 1)$ for each **M**-valuation \mathbf{v}

This all is just a beginning ... (see Handbook ch. XIII)

Indeed, having a (labelled evaluation) game semantics opens doors to many interesting opportunities, in particular

- it allows for including inperfect information, which lead to
- study of branching quantifiers and
- a new way of combining probability and vagueness.
- It provides a useful characterization of safe structures (in other than [0, 1]-based models) and
- gives some notion of 'truth' even in the non-safe ones.
- It gives a novel 'explanation/justification' of the semantics of Łukasiewicz logic

Ο...

- Libor Běhounek, Ondrej Majer. A semantics for counterfactuals based on fuzzy logic. In M. Peliš, V. Punčochař (eds.), The Logica Yearbook 2010, pp. 25–41, College Publications, 2011.
- Libor Běhounek. Fuzzy logics interpreted as logics of resources. In M. Peliš (ed.): The Logica Yearbook 2008, pp. 9–21, College Publications 2009.
- Libor Běhounek, Petr Cintula. From fuzzy logic to fuzzy mathematics: a methodological manifesto. *Fuzzy Sets and Systems* 157(5): 642–646, 2006.
- Roberto Cignoli, Itala M.L. D'Ottaviano and Daniele Mundici, *Algebraic Foundations of Many-Valued Reasoning*, Trends in Logic, vol. 7, Kluwer, Dordrecht, 1999.

- Petr Cintula, Francesc Esteva, Joan Gispert, Lluís Godo, Franco Montagna and Carles Noguera. Distinguished Algebraic Semantics For T-Norm Based Fuzzy Logics: Methods and Algebraic Equivalencies, *Annals of Pure and Applied Logic* 160(1): 53–81, 2009.
- Petr Cintula, Petr Hájek, Carles Noguera (eds). Handbook of Mathematical Fuzzy Logic. Studies in Logic, Mathematical Logic and Foundations, vol. 37 and 38, London, College Publications, 2011.
- Petr Cintula, Rostislav Horčík and Carles Noguera. Non-Associative Substructural Logics and their Semilinear Extensions: Axiomatization and Completeness Properties, *The Review of Symbolic Logic* 6(3):394–423, 2013.
- Michael Dummett. A propositional calculus with denumerable matrix. Journal of Symbolic Logic, 24:97–106, 1959.

- Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and Hiroakira Ono. Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics, vol. 151, Amsterdam, Elsevier, 2007.
- Joseph Amadee Goguen. The logic of inexact concepts. Synthese, 19:325–373, 1969.
- Siegfried Gottwald. A Treatise on Many-Valued Logics, volume 9 of Studies in Logic and Computation. Research Studies Press, Baldock, 2001.
- Petr Hájek. Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic. Kluwer, Dordrecht, 1998.
- Jan Łukasiewicz and Alfred Tarski. Untersuchungen über den Aussagenkalkül. Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, 23:30–50, 1930.

- George Metcalfe, Nicola Olivetti and Dov M. Gabbay, *Proof Theory for Fuzzy Logics*, Applied Logic Series, vol. 36, Springer, 2008.
- Daniele Mundici, *Advanced Łukasiewicz Calculus and MV-Algebras*, Springer, New York, 2011.
- Vilém Novák, Irina Perfilieva, and Jiří Močkoř. Mathematical Principles of Fuzzy Logic. Kluwer, Dordrecht, 2000.
- Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

Conclusions

- MFL is a well-developed field, with a genuine agenda of Mathematical Logic: axiomatization, completeness, proof theory, functional representation, computational complexity, model theory, etc.
- All these areas are active, mathematically deep and pose challenging open problems.
- The objects studied by MFL are semilinear logics, i.e. logics of chains.
- Graduality in the semantics (linearly ordered truth-values) is a flexible tool amenable for many interesting applications.
- MFL, its extensions and applications has still a long way to go, the best is yet to come, and so there are plenty of topics for potential Ph.D. theses.