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1. G

K. Bimbó and J.M. Dunn (2008).

Let L be a lattice, and let o : Ln 7→ L be an operation (n ≥ 1).

We say that o has the distribution type d1, . . . , dn → dn+1, where each
di ∈ {∨,∧}, if, for any 1 ≤ i ≤ n:

o(a1, . . . , aidibi, . . . , an) =

o(a1, . . . , ai, . . . , an)dn+1o(a1, . . . , bi, . . . , an)

Example
Let L = (L,∨,∧, ·, \, /, 1) be a residuated lattice. The residuation
laws

a · b ≤ c iff b ≤ a\c iff a ≤ c/b

determine the following distributions types:

· : ∨,∨ → ∨, \ : ∨,∧ → ∧, / : ∧,∨ → ∧
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Distribution types determine tonicity types (t1, . . . , tn), where each
ti ∈ {↑, ↓}. An operation o of the tonicity type (t1, . . . , tn) is isotone
(resp. antitone) in i−th argument, if ti =↑ (resp. ti =↓). For the above
example:

· : (↑, ↑), \ : (↓, ↑), / : (↑, ↓)
If L contains bounds ⊥,>, then the ⊥,>−laws associated with
distribution types are as follows:

o : d1, . . . ,∨, . . . , dn → ∨ o(a1, . . . ,⊥, . . . , an) = ⊥
o : d1, . . . ,∧, . . . , dn → ∨ o(a1, . . . ,>, . . . , an) = ⊥
o : d1, . . . ,∨, . . . , dn → ∧ o(a1, . . . ,⊥, . . . , an) = >
o : d1, . . . ,∧, . . . , dn → ∧ o(a1, . . . ,>, . . . , an) = >
For the example:

⊥ · a = ⊥ = a · ⊥, a\> = > = >/a, ⊥\a = > = a/⊥
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Two operations o1, o2 : Ln 7→ L can be connected by one of the
following residuation laws.
(r1) o1(a1, . . . , b[i], . . . , an) ≤ c iff b ≤ o2(a1, . . . , c[i], . . . , an)
(r2) o1(a1, . . . , b[i], . . . , an) ≤ c iff o2(a1, . . . , c[i], . . . , an) ≤ b
(r3) c ≤ o1(a1, . . . , b[i], . . . , an) iff b ≤ o2(a1, . . . , c[i], . . . , an)
Here b[i] (resp. c[i]) means that b (resp. c) is the i−th argument.
According to (Bimbó and Dunn 2008), a multi-gaggle is an ordered
algebra L supplied with operations (o j) j∈J, having distribution
(tonicity) types; in some cases, one also assumes the associated
⊥,>−laws. A gaggle is a multi-gaggle such that any two operations
oi, o j can be connected by the reflexive and transitive closure of the
relation of ‘being connected by a residuation law’.
The ordered algebras can be boolean algebras (boolean gaggles),
lattices (nondistributive gaggles), distributive lattices (distributive
gaggles), posets (partial gaggles), and others.
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It seems reasonable to modify the above definitions. One fixes a set
R of residuation laws for (names of) some operations o j. A
multi-gaggle can be formally defined as a triple (L,Ω,R) such that L
is an ordered algebra, Ω = (o j) j∈J is a family of operations on L, and
all laws from R are satisfied.

A gaggle is a multi-gaggle (L,Ω,R) such that any two operations
from Ω are connected by the reflexive and transitive closure of the
relation of ‘being connected by a law from R’.

If the underlying ordered algebras (semi-lattices, at least) form a
variety, then the class of all (multi-)gaggles based on these algebras
with a fixed similarity type of Ω and a fixed R is a variety.
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According to (Buszkowski 2011), a residuated algebra is an ordered
algebra L with operations (o j) j∈J and their residual operations o j/i,
1 ≤ i ≤ n( j), satisfying (r1) for o1 = o j and o2 = o j/i, for any
1 ≤ i ≤ n( j). It means: each basic operation o j admits n( j) residual
operations o j/i, satisfying (r1).
Clearly residuated algebras are certain multi-gaggles.
A residuated lattice is an example of a residuated algebra with the
basic operation · and its residual operations ·/1 = /, ·/2 = \.
In a residuated algebra, each basic operation o has the distribution
type ∨, . . . ,∨ → ∨, and its residual o/i has the type
∨, . . . ,∧[i], . . . ,∨ → ∧, and the associated ⊥,>−laws are fulfilled (if
the bounds exist); for posets, tonicity types are used instead.
In general, each law (r1)-(r3) determines di and dn+1 in the
distribution types of o1, o2, but the other d j remain unspecified.
Nonetheless, the distribution type of o1 determines that of o2, and
conversely.
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2. M- 

We define a many-sorted multi-gaggle as a family of ordered
algebras (Ls)s∈S supplied with operations (o j) j∈J such that each
operation o j : L j(1) × · · · × L j(n( j)) 7→ L j(n( j)+1), where all j(i) ∈ S , has
a distribution-tonicity type (optionally: some ⊥,>−laws are
satisfied). We also assume that a fixed set R of residuation laws must
be satisfied (see below).
For instance, if all Ls are boolean algebras, then we use distribution
types and assume ⊥,>−laws, and similarly for bounded distributive
lattices. If all Ls are posets, then we use tonicity types and do not
assume ⊥,>−laws.
We admit the case that some Ls are boolean algebras, some other are
(bounded) distributive lattices, and the remaining ones are posets.
Then, distribution-tonicity types are involved, as e.g. ↑,∨ → ∧; an
operation o of this type is isotone in the first argument and satisfies:
o(a, b ∨ b′) = o(a, b) ∧ o(a, b′).
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Many-sorted residuation laws:

(R1) o1 : L1 × · · · × Ln 7→ L, o2 : L1 × · · · × L[i] × · · · × Ln 7→ Li

o1(a1, . . . , b[i], . . . , an) ≤L c iff b ≤Li o2(a1, . . . , c[i], . . . , an)

(R2) o1, o2 as above.

o1(a1, . . . , b[i], . . . , an) ≤L c iff o2(a1, . . . , c[i], . . . , an) ≤Li b

(R3) o1, o2 as above.

c ≤L o1(a1, . . . , b[i], . . . , an) iff b ≤Li o2(a1, . . . , c[i], . . . , an)

We define a many-sorted gaggle (based on R) as a many-sorted
multi-gaggle (based on R) such that any two operations oi, o j are
connected by the reflexive and transitive closure of the relation of
‘being connected by a law from R’.

Many notions and results for (multi-)gaggles can easily be
generalized for the many-sorted versions.
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3. E:  

Given a frame (W,R) such that R ⊆ Wn+1, one defines an infinitely
additive operation oR : P(W)n 7→ P(W):

oR(X1, . . . , Xn) = {γ ∈ W : (∃α1 ∈ X1, . . . , αn ∈ Xn)R(α1, . . . , αn, γ)}
The operation oR admits n residual operations (oR/i)(X1, . . . , Xn) =

= {αi ∈ W : (∀ j , i)(∀α j ∈ X j)(∀γ ∈ W)(R(α1, . . . , αn, γ)⇒ γ ∈ Xi)},
which satisfy (r1).

The Jónsson-Tarski theorem states that every BAO A (a boolean
algebra with a family of additive operations, satisfying ⊥−laws) is
embeddable in the canonical BAO P(W); here W = F(A) is the set of
all ultrafilters in A, and an additive operation o from A determines
the operation oR as above, where the canonical accessibility relation
R is defined as follows:

R(α1, . . . , αn, γ) iff oP(α1, . . . , αn) ⊆ γ.
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Here oP(X1, . . . , Xn) = {o(x1, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn} is the
powerset operation on P(A) determined by o. The canonical
embedding v : A 7→ P(F(A)) is given by: v(a) = {γ ∈ F(A) : a ∈ γ}.
In (Bimbó and Dunn 2008) this theorem is generalized for different
(multi-)gaggles, e.g. boolean, distributive, partial. The authors prove
that the canonical embedding preserves operations having arbitrary
distribution (tonicity) types and preserves residuals (precisely, if a
residuation law holds in A, then it holds in P(F(A)) for the
corresponding operations).

For boolean gaggles, F(A) consists of ultrafilters on A; for
distributive lattices, F(A) consists of prime filters on A, and for
posets, F(A) consists of all upsets.

This task can be performed in a more uniform and elegant way, if
one applies many-sorted gaggles. Furthermore, analogous results
can be obtained for many-sorted (multi-)gaggles.
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Many-sorted frames are tuples (W1, . . . ,Wn+1,R) such that
R ⊆ W1 × · · · ×Wn+1.
The additive operation oR : P(W1) × · · · × P(Wn) 7→ P(Wn+1) can be
defined as above, and similarly for the residual operations (oR/i),
1 ≤ i ≤ n.
Clearly the family (P(Wi))1≤i≤n+1 with operations oR, oR/1, . . . , oR/n
and the set of the corresponding residuation laws (R1) is a
many-sorted gaggle (residuated algebra).
Let A = ((As)s∈S , (oa

j) j∈J) and B = ((Bs)s∈S , (ob
j) j∈J) be two

many-sorted multi-gaggles of the same similarity type (the set of
residuation laws is not essential). A homomorphism h : A 7→ B is a
family (hs)s∈S of homomorphisms hs : As 7→ Bs which preserves all
operations o j. Precisely, if oa

j : As1 × · · · × Asn 7→ As (hence
ob

j : Bs1 × · · · × Bsn 7→ Bs) then:

hs(oa
j(a1, . . . , an)) = ob

j(hs1(a1), . . . , hsn(an)), for all ai ∈ Asi .
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We consider a special case of a bounded distributive lattice L with an
operation · and its residuals \, /, satisfying:

a · b ≤ c iff b ≤ a\c iii a ≤ c/b.

We have v(a · b) = v(a) ·R(·) v(b), which can be proved like the
Jónsson-Tarski theorem. Recall the proof of ⊆. Assume γ ∈ v(a · b).
Then a · b ∈ γ. The operation · is additive (type ∨,∨ → ∨), hence
a↑ ·P b↑ ⊆ γ. Using the maximality principle, one finds prime filters
α, β such that a↑ ⊆ α, b↑ ⊆ β and α ·P β ⊆ γ. Consequently, there
exist α ∈ v(a), β ∈ v(b) such that R(·)(α, β, γ), which yields
γ ∈ v(a) ·R(·) v(b). The proof of the converse inclusion is easier.

We want to prove v(c/b) = v(c)/′v(b). Here /′ is the (left) residual
operation for ·R(·). We cannot copy the above argument, since
/ : ∧,∨ → ∧. We transform / into an additive operation
/1 : L∂ × L 7→ L∂ such that / = /1 as functions. L∂ denotes the lattice
dual to L. /1 satisfies ⊥−laws.
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By copying the above argument, one shows:

vL∂(c/b) = vL∂(c)/R(/1)
1 vL(b)

Clearly vL∂(a) = {γ ∈ F(L∂) : a ∈ γ} consists of all prime ideals of L
which contain a.

For X ⊆ L, we define ∼ X = L − X.

For W ⊆ P(L), we define W∼ = {∼ X : X ∈ W}.
For U ⊆ F(L), we define U∗ =∼F(L∂) (U∼) = (∼F(L) U)∼.

For V ⊆ F(L∂), we define ∗V =∼F(L) (V∼) = (∼F(L∂) V)∼.

Here ∼F(L) U = F(L) − U, ∼F(L∂) V = F(L∂) − V .

Clearly (−)∗ : P(F(L)) 7→ P(F(L∂)), ∗(−) : P(F(L∂)) 7→ P(F(L)). We
have ∗(U∗) = U, (∗V)∗ = V .

Also vL∂(a) = vL(a)∗, which yields:

vL(c/b) = ∗(vL(c)∗/R(/1)
1 vL(b))
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It remains to show that U1/
′U2 = ∗(U∗1/

R(/1)
1 U2), for any

U1,U2 ⊆ F(L). For γ ∈ F(L), we have:

γ ∈ ∗(U∗1/R(/1)
1 U2) iff

∼ γ < U∗1/
R(/1)
1 U2 iff

¬(∃α ∈ F(L∂), β ∈ F(L))(α ∈ U∗1 & β ∈ U2 & R(/1)(α, β,∼ γ)) iff
¬(∃α ∈ F(L∂), β ∈ F(L))(α ∈ U∗1 & β ∈ U2 &α/P

1β ⊆∼ γ) iff
(∀α ∈ F(L∂), β ∈ F(L))(β ∈ U2 &α/P

1β ⊆∼ γ ⇒ α < U∗1) iff
(∀α ∈ F(L∂), β ∈ F(L))(β ∈ U2 &α/P

1β ⊆∼ γ ⇒∼ α ∈ U1) iff
(∀α, β ∈ F(L))(β ∈ U2 & (∼ α)/P

1β ⊆∼ γ ⇒ α ∈ U1) iff
γ ∈ U1/

′U2,

since

(∼ α)/P
1β ⊆∼ γ iff γ ·P β ⊆ α iff R(·)(γ, β, α)
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(∼ α)/P
1β ⊆∼ γ iff

(∀x, y, z ∈ L)(x ∈∼ α& y ∈ β& x/y ≤L∂ z⇒ z ∈∼ γ) iff
(∀x, y, z ∈ L)(z ∈ γ& y ∈ β& z ≤L x/y⇒ x ∈ α) iff
(∀x, y, z ∈ L)(z ∈ γ& y ∈ β& z · y ≤L x⇒ x ∈ α) iff
γ ·P β ⊆ α
In this way one shows that the canonical embedding preserves
residual operations satisfying (r1). One generalizes this result for
many-sorted multi-gaggles in an obvious way. Other residuation
laws can be reduced to (R1) by analogous transformations. For
instance, (R2) is reduced to (R1), if one replaces Li with L∂i .

For many-sorted boolean multi-gaggles, these transformations can
be performed easier, using the internal boolean negations. For
instance, an operation o : ∧,∨ → ∧ is transformed into an additive
operation o1 : ∨,∨ → ∨ by setting o1(a, b) = −o(−a, b).
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4. M-  

GL Generalized Lambek Calculus; (W.B. 2011) and earlier papers.
Groupoid Logic - with one binary operation and its residuals,
satisfying (r1).
Formulae: variables, o(A1, . . . , An), (o/i)(A1, . . . , An), for 1 ≤ i ≤ n;
optionally: A ∨ B, A ∧ B, −A, ⊥,>.
Formula-structures: formulae, (X1, . . . , Xn)o.
Sequents: X ⇒ A, where X is a structure and A is a formula.
Axioms: (Id) A⇒ A, (0) ()o ⇒ o.
Rules:

(o⇒)
X[(A1, . . . , An)o]⇒ A
X[o(A1, . . . , An)]⇒ A

(⇒ o)
X1 ⇒ A1; . . . ; Xn ⇒ An

(X1, . . . , Xn)o ⇒ o(A1, . . . , An)
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(o/i⇒)
X[Ai]⇒ B; (Y j ⇒ A j) j,i

X[(Y1, . . . , (o/i)(A1, . . . , An), . . . , Yn)o]⇒ B

(⇒ o/i)
(A1, . . . , X, . . . , An)o ⇒ Ai

X ⇒ (o/i)(A1, . . . , An)

(∨ ⇒)
X[A]⇒ C; X[B]⇒ C

X[A ∨ B]⇒ C

(⇒ ∨)
X ⇒ Ai

X ⇒ A1 ∨ A2
, for i = 1 and i = 2

(∧ ⇒)
X[Ai]⇒ B

X[A1 ∧ A2]⇒ B
, for i = 1 and i = 2

(⇒ ∧)
X ⇒ A; X ⇒ B

X ⇒ A ∧ B
(⊥ ⇒) X[⊥]⇒ A, (⇒ >) X ⇒ >
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(CUT)
X[A]⇒ B; Y ⇒ A

X[Y]⇒ B

GL is strongly complete w.r.t. the class of residuated algebras.

Distributive GL (DGL) admits the distributive axiom:

(D) A ∧ (B ∨C)⇒ (A ∧ B) ∨ (A ∧C)

Boolean GL (BGL) admits (D) and the axioms:

(−1) A ∧ (−A)⇒ ⊥, (−2) > ⇒ A ∨ (−A)

GL admits cut-elimination. It does not hold for DGL, BGL,
although cut-free sequent systems for these logics exist (they employ
more involved structures).



ALCOP 2012, Prague, April 16–18, 2012 19

Many-sorted GL will be denoted by msGL. We fix a set of basic
operation symbols.

We fix a (finite) set S of types. We assign types from S to variables
p : s and function types to operation symbols o : s1, . . . , sn → s.

The types od operations o and o/i must satisfy the condition:
o : s1, . . . , sn → s iff o/i : s1, . . . , s[i], . . . , sn → si.

Now, types are assigned to formulae and formula-structures.

If A1 : s1, . . . , An : sn and o : s1, . . . , sn → s then o(A1, . . . , An) : s.

If A : s and B : s then A ∨s B : s, A ∧s B : s and −sA : s. We may
assume ⊥s : s and >s : s.

If X1 : s1, . . . , Xn : sn and o : s1, . . . , sn → s then (X1, . . . , Xn)o : s.

Sequents are of the form X ⇒s A, where X : s and A : s.

The axioms and the rules are the same as for GL, restricted to
correctly typed formulae and sequents.
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msGL is strongly complete with respect to many-sorted residuated
algebras. It admits cut-elimination. The consequence relation is
decidable; it is undecidable, if at least one binary operation is
associative. Without lattice operations the consequence relation of
msGL is polynomial. The proofs are as in (W.B. 2005), (W.B. 2011)
for GL.
With lattice (boolean) operations the consequence relation is
PSPACE-hard (if at least one o is binary). The pure msGL (without
(D)) is PSPACE.
Horčik and Terui (2011) prove the PSPACE-hardness of many
substructural logics with a binary associative operation · and its
residuals \, /, but the proof essentially uses associativity. Without
associativity, I can only prove the PSPACE-hardness of the
consequence relation.
An interpolation lemma, proved for GL without lattice, DGL and
BGL in (W.B. 2005, 2011), also holds for msGL.
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I L (W.B. 2005, 2011). Let Φ be a finite set of
assumptions (certain sequents). Let T be a finite set of formulae,
containing all formulae occurring in Φ and X ⇒ A and being closed
under subformulae. If Φ ` X[Y]⇒ A then there is D ∈ T such that
Φ ` Y ⇒ D and Φ ` X[D]⇒ A.
Without lattice operations T = T ; with lattice operations, T is the
closure of T under ∨,∧ (if − is present, it is also closed under −).

For GL without lattice, DGL, BGL, the set T is finite up to the
deductive equivalence. The interpolation lemma implies the
finiteness of the family of basic closed sets [X[ ], B] used in some
standard constructions of models (by nuclear completion). This
yields the strong finite model property of these systems, and
consequently, the finite embeddability property of the corresponding
classes of algebras (Farulewski 2008, W.B. 2011).
The same results can be obtained for many-sorted residuated
algebras and many-sorted multi-gaggles.
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