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Abstract

We show how to understand frame semantics of distributive substructural logics coal-
gebraically, thus opening a possibility to study them as coalgebraic logics. As an ap-
plication of this approach we prove a general version of Goldblatt-Thomason theorem
that characterizes definability of classes of frames for logics extending the distributive
Full Lambek logic, as e.g. relevance logics, many-valued logics or intuitionistic logic.
The paper is rather conceptual and does not claim to contain significant new results.
We consider a category of frames as posets equipped with monotone relations, and
show that they can be understood as coalgebras for an endofunctor of the category
of posets. In fact, we adopt a more general definition of frames that allows to cover a
wider class of distributive modal logics. Goldblatt-Thomason theorem for classes of
resulting coalgebras for instance shows that frames for axiomatic extensions of dis-
tributive Full Lambek logic are modally definable classes of certain coalgebras, the
respective modal algebras being precisely the corresponding subvarieties of distribu-
tive residuated lattices.

Keywords: Substructural logics, frame semantics, coalgebras, coalgebraic logic,
Goldblatt-Thomason theorem.

1 Introduction

Modal logics are coalgebraic, the relational frames of classical modal logics can
be seen as Set coalgebras for the powerset functor. Given an endofunctor T on
Set, a conceptually clear setting of classical coalgebraic logic of T -coalgebras
can be based on an adjunction called logical connection, linking categories Set
and BA of sets and Boolean algebras [5,6] and capturing syntax and seman-
tics of the propositional part of the language. Such connection can be ”lifted”
to a connection between categories of T -coalgebras and Boolean algebras with

1 The authors acknowledge the support of the grant No. P202/11/1632 of the Czech Science
Foundation. email: bilkova@cs.cas.cz, horcik@cs.cas.cz, velebil@math.feld.cvut.cz
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operators, which is in general ”almost” an adjunction, capturing syntax and se-
mantics of the modal part of the language. From certain properties of the lifted
connection one automatically obtains soundness, completeness and expressiv-
ity of the modal language. One can also explore the connection to obtain the
Goldblatt-Thomason definability theorem for classes of T -coalgebras for a rea-
sonable class of Set functors [24].

In this paper, lead by a motivation to approach distributive substructural
logics in a coalgebraic way, we use an (enriched) logical connection [25,29] be-
tween categories Pos of posets and DL of distributive lattices. We consider
a general language of distributive lattices with operators, including the usual
language of substructural logics as an instance. We start with requiring no
additional axioms the operators should satisfy (not even the residuation laws),
obtaining coalgebras for a certain endofunctor T on posets as semantics of this
language. As an application of this setting we prove Goldblatt-Thomason de-
finability theorem for classes of T -coalgebras. Classes of T -coalgebras definable
by additional axioms of distributive substructural logics then precisely corre-
spond to frames for these logics as surveyed and studied in [30]. Distributive
modal logics have been treated coalgebraically before [7,27]. We see the main
novelty of this paper in the fact that we use a weaker assumption than a dual-
ity of the category of algebras and certain topological spaces, thus resulting in
non-topological coalgebras as semantics of distributive modal or substructural
logics.

A leading example of a logic, semantics of which we want to cover, is the
distributive full Lambek calculus dFL [15] in the following language

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⊗ ϕ | ϕ→ ϕ | ϕ← ϕ | e (1)

where p ranges through a given poset of atomic propositions, ∧ and ∨ are tied
together by a distributive law, and the remaining four connectives ⊗, ←, →, e
satisfy additional equational axioms as, for example, the residuation laws. The
algebraic semantics of dFL are residuated lattices.

We want to take the stance that ∧ and ∨ are the only propositional connec-
tives of the language, while the remaining four constructions ⊗, ←, →, e are
modalities. To prove that the study of relational models of the above language
falls into the realm of coalgebraic modal logic it will be essential to start with
a weaker setting, with no additional requirements on the modalities, apart from
being monotone and preserving ∧ or ∨, i.e. being operators over distributive
lattices.

As it turns out, the natural environment for giving models of the above
language is the one of posets and monotone relations. Namely, a relational
model will consist of a poset W and four monotone relations P⊗, P←, P→ and
Pe on W . For example, P⊗ will be a monotone relation (i.e., a monotone map
P⊗ : W op × W op × W −→ 2, where 2 is the two-element chain) that we will
denote by P⊗ : W ×W � //W . Hence the “arity” of P⊗ mirrors the arity
of the “modality” ⊗. Analogously, Pe will be a monotone relation of the form
Pe : 1 � //W where 1 denotes the one-element preorder. Hence Pe will appear
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as a “nullary” monotone relation, mirroring the fact that the “modality” e is
nullary. We prove that the above quintuple W = (W , P⊗, P←, P→, Pe) can be
seen as a coalgebra for an endofunctor T of the category Pos of posets and
monotone maps.

The reasoning does not change much if we incorporate slightly more general
languages of the form

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ♥(ϕ0, . . . , ϕn−1) | (ϕ0, . . . , ϕl−1) ( ψ | ∼ϕ (2)

where p ranges through a poset At of atomic propositions, the connectives ∧, ∨
are tied together by the distributive law, ♥ is an n-ary fusion-like connective,
( is an l-ary implication-like connective, and ∼ is a negation-like connective.
These connectives are required to interact with ∧ and ∨ in the sense that the
following equalities are valid for each 0 ≤ i ≤ n:

♥(. . . , ϕi ∨ ϕ′i . . . ) =♥(. . . , ϕi, . . . ) ∨ ♥(. . . , ϕ′i, . . . )

(. . . , ϕi ∨ ϕ′i, . . . )( ψ = ((. . . , ϕi, . . . )( ψ) ∧ ((. . . , ϕ′i, . . . )( ψ)

(ϕ0, . . . , ϕl−1)( (ψ ∧ ψ′) = ((ϕ0, . . . , ϕl−1)( ψ) ∧ ((ϕ0, . . . , ϕl−1)( ψ′)

∼(ϕ1 ∨ ϕ2) = ∼ϕ1 ∧∼ϕ2

In slogans: ♥ should preserve ∨ pointwise, ( should pointwise transform ∨ in its
premises to ∧, and it should preserve ∧ in its conclusion, ∼ should transform ∨ into
∧. 2

We will prove that:

(i) Relational models of the language (2) are precisely the coalgebras for an endo-
functor T : Pos −→ Pos. Moreover, the construction of T copies the syntax of
the “modalities” ♥, (, ∼ in (2).

(ii) The algebraic semantics of (2) will be given by a variety DL♥,(,∼ of distributive
lattices with operators ♥, ( and ∼.

(iii) It is essential to start with no requirements on the modalities in order to ob-
tain a coalgebraic description. Any additional equational requirements on the
modalities ♥, ( and ∼ will result in a modally definable class of T -coalgebras.
We characterize modally definable classes in the spirit of Goldblatt-Thomason
Theorem known from the classical modal logic.

As an illustration, we explain how various classes of frames for languages of the
type (2) can be perceived as modally definable. In particular, we cover all the frames
for the distributive substructural logics as studied in [30], namely:

• The class of frames modelling the distributive full Lambek calculus is modally de-
finable by the equations for residuated distributive lattices. The modalities are ⊗,
→, ← and e.

• The class of frames modelling the intuitionistic logic is modally definable by the
equations for Heyting algebras. The modalities are ⊗ (coinciding with ∧) and →.

2 The language above, in its greatest generality, allows for finitely many connectives of each
kind, all of various arities. In order not to make the notation too heavy, we will assume that
there is just one connective of each kind in our signature. The results for the general case
are straightforward generalisations of results for our simplification.
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• The class of frames modelling relevance logic is modally definable. The modalities
are ⊗, →, ←, e and ∼.

Related work: Using relational models on posets for modelling semantics of vari-
ous nonclassical logics goes back at least to the work of Routley and Meyer [31], and
Dunn, see [10,11,12] or [30] for an overview. We see the novelty of our approach in the
fact that we can systematically work with such frames as coalgebras, hence one has
a canonical notion of a frame morphism as morphism of corresponding coalgebras. 3

The original Goldblatt-Thomason theorem for modal logics [21] characterizes
modally definable classes of Kripke frames. For positive modal logic it was proved
in [9]. Our version of the theorem is an analog of coalgebraic Goldblatt-Thomason
theorem for Set coalgebras [24, Theorem 3.15(2.)]. Possibilities to generalize the
theorem to coalgebras over measurable spaces have been explored in [28]. Coalge-
braic Goldblatt-Thomason theorem for classes of models can be found in [20] and [24,
Theorem 3.15(1.)].

Our approach relates to, but significantly differs from extensive work relating al-
gebraic and frame (or topological) semantics of modal and substructural logics, using
dualities and discrete dualities for distributive lattices [17,18,19], distributive lattices
with operators [32,33,23,27], or posets [13], most of it using canonical extensions: in
contrast to this approach we do not use a dual equivalence of distributive lattices
and certain topological spaces, a weaker kind of adjunction between DL and posets,
called logical connection, is enough. The frames, and thus the coalgebras we consider
are not topological as those obtained in [27], [7] or [1], they can however be seen as
non-topological analogues of those.

Organisation of the paper: Section 2 is devoted to fixing the terminology and
notation for monotone relations. In Section 3 we briefly recall how the semantics of
the propositional part of coalgebraic logic is captured by an adjunction of a special
kind, called logical connection. Relational frames as coalgebras are introduced in
Section 4. Complex algebras and canonical frames are studied in Sections 5 and 6.
Our main result: the modal definability theorem is proved in Section 7. We illustrate
this result by examples of distributive full Lambek calculus, relevance logic, etc. We
hint at possible generalizations of our approach in Section 8.

Remark on the notation we use: We work with posets and monotone relations
as with categories enriched over the two-element chain 2, see Section 2. Therefore
our formulas for manipulation monotone relations use the structure of the complete
Boolean algebra 2 and are to be computed there. We think that the notation will
become convenient in future generalizations to enriched categories, see Section 8.

Due to space limitations we have omitted most of the proofs. §

2 Preliminaries
Recall that a poset W is a set W equipped with a reflexive, transitive and antisym-
metric relation ≤. Instead of writing x ≤ x′ we will often write W (x, x′) = 1 (and
writing W (x, x′) = 0, if x ≤ x′ does not hold). This is in compliance with the fact
that a poset W can be seen as a small category enriched in the two-element chain

3 The usual notion of morphism for substructural frames is different — it requires equalities
a = f(x), b = f(y) in the back condition in 4.6. The same notion of a frame morphism as
ours in the special case of frames for fuzzy logics is given in [8].
§ For the purposes of the refereeing process, all the proofs are in the Appendix.
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2. Although we will not use any machinery of enriched category theory explicitly, we
find the above notation convenient in the view of further generalizations, see Section 8
below.

An opposite W op of the poset W has the same set of elements as W , but we put
W op(x, x′) = W (x′, x).

Recall further that a monotone map f : W1 −→ W2 consists of an assignment
x 7→ fx such that, for any x and x′, the inequality W1(x, x′) ≤ W2(fx, fx′) holds in
2. The poset of all monotone maps from W1 to W2, with the order defined pointwise,
is denoted by [W1,W2]. A product W1 ×W2 of posets W1, W2 is an order on the pairs
of elements, defined pointwise. We denote by W n the product of n-many copies of
W with itself, writing W 0 = 1 — the one-element poset.

Given posets W1 and W2, a monotone relation from W1 to W2, denoted by

R : W1 � // W2

is a monotone map of the form R : W op
1 ×W2 −→ 2. We write R(x, x′) = 1 to denote

that x is related to x′. In what follows we will omit the adjective ‘monotone’ and
speak just of relations. A relation of the form

R : W n � // W

is called an n-ary relation on W , where n ≥ 0. For n = 0 we obtain

R : 1 � // W

and it is easy to see that such a relation corresponds to an upperset of W , i.e., the
set U = {x | Rx = 1} has the property: if x ∈ U and x ≤ x′, then x′ ∈ U .

Relations compose in the usual way: the composite of the relations
R : W1 � //W2 S : W2 � // W3 is a relation S ·R : W1 � //W3 given by the for-
mula

S ·R(x, z) =
_
y

S(y, z) ∧R(x, y)

For every poset W , the identity relation idW : W � //W is defined by putting
idW (x, x′) = 1 iff x ≤ x′. Hence it is consistent to write W instead of idW .

It is easy to see that the above composition is associative and that it has identity
relations as units, hence we obtain a category (enriched in posets) of posets and
relations. The above definitions are specializations of the theory of profunctors (also
distributors, or, modules), known from enriched category theory. See, for example,
[34] for more details.

3 The logical connection
The semantics of the propositional part of the language, i.e., of the language

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ (3)

where p ranges through a poset At of atomic propositions and ∧ and ∨ are tied by the
distributive law, will be given by a logical connection of the category Pos of posets and
monotone maps and the category DL of distributive lattices and lattice morphisms.
The logical connection

Stone a Pred : Posop −→ DL (4)

is given by the two-element chain 2 as a schizophrenic object . Recall how the above
connection works (we refer to [29] or [25] for more details on logical connections):
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(i) Pred sends a poset W to the distributive lattice ([W , 2],∩,∪) of uppersets on
W . A monotone map f is sent to [f,2] : U 7→ U · f .

For a poset W , the distributive lattice Pred(W ) is to be considered as the “dis-
tributive lattice of truth-distributions on W ”.

(ii) For a distributive lattice A , Stone(A ) is the poset DL(A , 2) of prime filters on
A . The mapping Stone(h) is given by composition: a prime filter F is sent to
the prime filter F · h.

The poset Stone(A ) is the “Stone space” of the distributive lattice A .

(iii) The unit ηA : A −→ [DL(A , 2), 2] is the lattice homomorphism sending x in
A to the upperset of all prime filters on A that contain x.

(iv) The counit εW : W −→ DL([W , 2], 2) is the monotone map sending x in W to
the prime filter of those uppersets on W that contain x.

The semantics of the propositional language (3) is given by the logical connec-
tion (4), together with another adjunction

F a U : DL −→ Pos (5)

where U denotes the obvious forgetful functor and F sends a poset X to the free
distributive lattice on X . More in detail, the semantics is given as follows:

(i) Fix a poset At of atomic propositions. The distributive lattice F (At) is then the
Lindenbaum-Tarski algebra of formulas.

(ii) Observe that U(Pred(W )) = [W ,2], for every poset W . Hence, due to the
adjunction F a U , monotone maps of the form val : At −→ [W ,2] are in bijective
correspondence with lattice morphisms ‖−‖val : F (At) −→ Pred(W ).

Of course, as the notation suggests, the monotone map val is the valuation of
atomic propositions, assigning to every p the upperset val(p) of those x’s in W ,
where p is valid. The lattice homomorphism ‖−‖val is then the free extension of
the valuation val. It can be described inductively as follows:

‖p‖val = val(p), ‖ϕ1 ∧ ϕ2‖val = ‖ϕ1‖val ∩ ‖ϕ2‖val, ‖ϕ1 ∨ ϕ2‖val = ‖ϕ1‖val ∪ ‖ϕ2‖val

We will later add more connectives (fusion-like, implication-like and negation-like)
but we are going to consider them as modal operators on distributive lattices. In fact,
as we will see, such extension of the language will yield extensions of the above two
functors Pred and Stone.

4 Relational frames as coalgebras
We define structures that we call (relational) frames for the language of the type (2).
Frames will consist of a poset of states and various relations reflecting the syntax of
“modalities” of the language, compare to frames in [30]. We prove that frames are
exactly the coalgebras for a certain endofunctor of the category of posets.

Notation 4.1 We will introduce the following “vector” conventions: for a re-
lation P : W n � //W we will write P (~x;x) instead of P (x0, . . . , xn−1;x). For

P : W � //(W op)l ×W we will write P (x; ~y, z) instead of P (x; y0, . . . , yl−1, z).
Analogously we will write W2(~a, f~x) instead of W2(a0, fx0) ∧ · · · ∧ W2(an−1, fxn−1),
etc.
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Definition 4.2 A relational frame for the language (2) is a quadruple W =
(W , P♥, P(, P∼), consisting of a poset W , and relations

P♥ : W n � // W , P( : W � // (W l)op ×W , P∼ : W � // W op

A morphism from W1 = (W1, P
1
♥, P

1
(, P 1

∼) to W2 = (W2, P
2
♥, P

2
(, P 2

∼) is a monotone
map f : W1 −→ W2 such that the following three equations hold:

P 2
♥(~a; fy) =

_
~x

W2(~a, f~x) ∧ P 1
♥(~x; y) (6)

P 2
((fx;~b, c) =

_
~y,z

W2(~b, f~y) ∧W2(fz, c) ∧ P 1
((x; ~y, z) (7)

P 2
∼(fx; b) =

_
y

W2(b, fy) ∧ P 1
∼(x; y) (8)

We write f : W1 −→ W2 to indicate that f is a morphism of relational frames.

Remark 4.3 We have not defined semantics in a relational frame yet, but the fol-
lowing intuitions about the “meaning” of the individual relations P♥, P( and P∼ on
W might be useful (see Notation 4.1).

(i) P♥(~x; y) = 1 holds, if ~x  ~ϕ implies y  ♥~ϕ.

(ii) P((x; ~y, z) = 1 holds, if x  ~ϕ( ψ and ~y  ~ϕ imply z  ψ.

(iii) P∼(x; y) = 1 holds, if y  ϕ implies x 6 ∼ϕ.

See Remark 5.5 below for precising the above intuitions.

Example 4.4 A relational frame W for the language (1) consists of a poset
W , together with fusion-like relations P⊗ : W ×W � //W , Pe : 1 � //W , and
implication-like relations P→ : W � //W op ×W and P← : W � //W op ×W .

Let us stress that the relations P⊗, Pe, P→ and P← are (as of yet) arbitrary.
When one needs special properties as, for example, the frame to be the model of a
distributive full Lambek calculus (for such frames see [30]), one needs to invoke modal
definability theorem. This is shown in Example 7.7 below.

Example 4.5 Relational frames for the language ∧, ∨, ⊗, →, e and ∼ of rele-
vance logic, see [12], are posets W equipped with relations P⊗ : W ×W � //W ,
Pe : 1 � //W , P→ : W � //W op ×W and P∼ : W � //W op . The above rela-
tions are as of yet arbitrary. Frames for various classes of relevance logic are modally
definable, see Remark 7.8 below.

Remark 4.6 It is very easy to prove that the above equations (6)–(8) can be “split”
into six inequalities, giving us the back & forth description of morphisms for fusion-
like, implication-like and negation-like connectives. More precisely:

(i) The equation (6) is equivalent to the conjunction of the following two inequalities

P 1
♥(~x; y)≤ P 2

♥(f~x; fy) (9)

P 2
♥(~a; fy)≤

_
~x

W2(~a, f~x) ∧ P 1
♥(~x; y) (10)

(ii) The equation (7) is equivalent to the conjunction of the following two inequalities

P 1
((x; ~y, z)≤ P 2

((fx; f~y; fz) (11)

P 2
((fx;~b, c)≤

_
~y,z

W2(~b, f~y) ∧W2(fz, c) ∧ P 1
((x; ~y, z) (12)
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(iii) The equation (8) is equivalent to the conjunction of the following two inequalities

P 1
∼(x; y)≤ P 2

∼(fx; fy) (13)

P 2
∼(fx; b)≤

_
y

W2(b, fy) ∧ P 1
∼(x; y) (14)

We define now three functors

T♥ : Pos −→ Pos, T( : Pos −→ Pos, T∼ : Pos −→ Pos

and prove that their product T = T♥ × T( × T∼ gives rise to relational frames
and their morphisms. Namely: frames are T -coalgebras and frame morphisms are
T -coalgebra morphisms.

Definition 4.7

(i) The functor T♥ sends W to the poset [(W n)op , 2] of lowersets on W n. For a
monotone map f : W1 −→ W2, the map T♥(f) sends ~L : (W n

1 )op −→ 2 to

~b 7→
_
~x

W2(~b, f~x) ∧ ~L~x

(ii) The functor T( sends W to the poset [(W l)op ×W ,2]op . For a monotone map
f : W1 −→ W2, the map T((f) sends X : (W l

1 )op ×W1 −→ 2 to

(~b, c) 7→
_
~y,z

W2(~b, f~y) ∧W2(fz, c) ∧X(~y, z)

(iii) The functor T∼ sends W to the poset [W op , 2]op . For a monotone map f :
W1 −→ W2, the map T∼(f) sends X : W op

1 −→ 2 to

b 7→
_
y

W2(b, fy) ∧Xy

Proposition 4.8 Put T = T♥×T(×T∼. The category of relational frames and their
morphisms is isomorphic to the category PosT of T -coalgebras and their morphisms.

Proof.

(i) To give a monotone map γ : W −→ T (W ) is to give three monotone maps
γ♥ : W −→ T♥(W ), γ( : W −→ T((W ) and γ∼ : W −→ T∼(W ). Each of
the three maps, however, can be uncurried to produce monotone maps P♥ :
(W n)op ×W −→ 2, P( : W op × (W l)op ×W −→ 2 and P∼ : W op ×W op −→ 2.
To conclude: T -coalgebras are exactly the relational frames.

(ii) To give a monotone map f : W1 −→ W2 such that the square

W1
γ1 //

f

��

T (W1)

T (f)

��

W2 γ2
// T (W2)

commutes, is, by Definition 4.7, to give a monotone map f such that equa-
tions (6)–(8) hold. To conclude: coalgebra homomorphisms are exactly the
morphisms of relational frames.

2
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5 Complex algebras
The complex algebra Pred ](W) of the frame W will be a distributive lattice Pred(W ),
equipped with extra operators ♥, ( and ∼.

We prove that taking a complex algebra defines a functor Pred ] from the (opposite
of the) category of relational frames and their morphisms to the category DL♥,(,∼
of distributive lattices equipped with extra operations. Moreover, this construction
extends the predicate functor Pred : Posop −→ DL in the sense that the square

(PosT )op Pred]
//

(VT )op

��

DL♥,(,∼

U♥,(,∼

��
Posop Pred

// DL

(15)

commutes. Above, VT : PosT −→ Pos is the forgetful functor sending a coalgebra
(W , γ) to the poset W .

Definition 5.1 The category DL♥,(,∼ is defined as follows:

(i) Objects are distributive lattices A = (Ao,∧,∨) (where Ao denotes the underly-
ing poset), together with monotone maps

[[♥]]A : A n
o −→ Ao, [[(]]A : (A l

o )op ×Ao −→ Ao, [[∼]]A : A op
o −→ Ao

called the interpretations of ♥, ( and ∼. We will usually omit the brackets
[[−]]A and denote (A ,♥,(,∼) by A.

The operations are required to satisfy the following axioms, for each 0 ≤ i ≤ n:

♥(. . . , xi ∨ x′i, . . . ) =♥(. . . , xi, . . . ) ∨ ♥(. . . , x′i, . . . )

(. . . , xi ∨ x′i, . . . )( y = ((. . . , xi, . . . )( y) ∧ ((. . . , x′i, . . . )( y)

~x( (y1 ∧ y2) = (~x( y1) ∧ (~x( y2)

∼(x1 ∨ x2) = ∼x1 ∧∼x2

(ii) A morphism from A1 to A2 is a lattice morphism h : A1 −→ A2 preserving the
additional operations ♥, ( and ∼ on the nose.

The obvious underlying functor will be denoted by U♥,(,∼ : DL♥,(,∼ −→ DL.

Remark 5.2 It is clear that DL♥,(,∼ is a finitary variety over Pos in the sense of cat-
egorical universal algebra. More precisely: the composite U · U♥,(,∼ : DL♥,(,∼ −→
Pos of the obvious forgetful functors is a monadic functor. In particular, the forgetful
functor U · U♥,(,∼ : DL♥,(,∼ −→ Pos has a left adjoint, hence there also exists
a left adjoint F♥,(,∼ : DL −→ DL♥,(,∼ to U♥,(,∼. Thus, given a poset At, we
can form F♥,(,∼(F (At)). This is the Lindenbaum-Tarski algebra of formulas for the
language (2) and we denote it by L (At).

Definition 5.3 The complex algebra Pred ](W) = (([W , 2],∩,∪),♥,(,∼) is defined
as follows:

(i) Given a vector ~U of uppersets U0, . . . , Un−1, the upperset ♥~U is defined by the
formula

y 7→
_
~x

~U~x ∧ P♥(~x; y)
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(ii) Given a vector ~U of uppersets U0, . . . , Ul−1, and an upperset W , the upperset
~U (W is defined by the formula

x 7→
^
~y,z

~U~y ∧ P((x; ~y, z)⇒Wz

(iii) Given an upperset U , the upperset ∼U is defined by the formula

x 7→
^
y

P∼(x; y)⇒ ¬Uy

where the ¬ sign is negation in 2.

The following result is easy to prove, when one uses the back & forth description
of morphism of frames, see Remark 4.6.

Proposition 5.4 The assignment W 7→ Pred ](W) can be extended to a functor from
(PosT )op to DL♥,(,∼. Moreover, the square (15) commutes.

Remark 5.5 The square (15) allows us to give semantics of the language. More
precisely, we saw in Section 3 that the adjunction F a U : DL −→ Pos, together with
Stone a Pred : Posop −→ DL, takes care of the semantics ‖−‖val of the propositional
part of the logic.

The adjunction F♥,(,∼ a U♥,(,∼ : DL♥,(,∼ −→ DL, together with square (15),
allow us to define, for every frame W, a semantics morphism

‖−‖val : L (At) −→ Pred ](W)

in DL♥,(,∼ as the transpose under the composite adjunction

DL♥,(,∼
U♥,(,∼

//⊥ DL
U

//

F♥,(,∼oo
⊥ Pos
Foo

of a valuation val : At −→ [W , 2].
It is possible to give an inductive description of ‖−‖val. Namely: the equations

‖p‖val = val(p), ‖ϕ1 ∧ ϕ2‖val = ‖ϕ1‖val ∩ ‖ϕ2‖val,
‖ϕ1 ∨ ϕ2‖val = ‖ϕ1‖val ∪ ‖ϕ2‖val ‖♥~ϕ‖val = ♥‖~ϕ‖val,
‖~ϕ( ψ‖val = ‖~ϕ‖val ( ‖ψ‖val, ‖∼ϕ‖val = ∼‖ϕ‖val

hold. Above, the symbols ♥, ( and ∼ on the right-hand sides are to be interpreted
as the operations in the complex algebra Pred ](W).

Let us call the pair (W, val), consisting of a frame and a valuation, a model . Then
the morphism ‖−‖val defines the notion of local truth in the model (W, val) — we
write x W,val ϕ, if x belongs to the upperset ‖ϕ‖val, or, equivalently, if ‖ϕ‖valx = 1.
If rewritten in terms of , the above equations give the familiar inductive definition
of validity. Namely (omitting the obvious cases of atomic propositions and ∧ and ∨):

(i) x W,val ♥~ϕ holds iff there exists ~y such that both ~y  ~ϕ and P♥(~y;x) hold.

(ii) x W,val ~ϕ ( ψ holds iff for all ~y and z such that ~y  ~ϕ and P((x; ~y, z) hold,
z  ψ holds.

(iii) x W,val ∼ϕ iff for all y such that P∼(x; y) holds, y 6 ϕ holds.
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6 Canonical relational frames
The assignment of the canonical frame Stone](A) to an object A of DL♥,(,∼ is, in a
way, dual to the formation of complex algebras. We prove below that A 7→ Stone](A)
is functorial and that the square

DL♥,(,∼
Stone]

//

U♥,(,∼

��

(PosT )op

(VT )op

��
DL Stone

// Posop

(16)

commutes.

Definition 6.1 Suppose A = (A ,♥,(,∼) is in DL♥,(,∼. Define Stone](A) as fol-
lows:

(i) The underlying poset of Stone](A) is the poset DL(A , 2) of prime filters on the
distributive lattice A .

(ii) The relation P♥ is defined as follows:

P♥(~F ;G) =
^
~x

~F~x⇒ G(♥~x)

(iii) The relation P( is defined as follows:

P((F ; ~G,H) =
^
~x,y

F (~x( y) ∧ ~G~x⇒ Hy

(iv) The relation P∼ is defined as follows:

P∼(F ;G) =
^
x

Gx⇒ ¬F (∼x)

where the ¬ sign is the negation in 2.

The above definitions clearly make sense if we work with mere uppersets in lieu of
prime filters. We will need the following three technical results that slightly generalize
the results originating in the work on relevance logic, see Section 6 of [11].

Lemma 6.2 (Squeeze Lemma for ♥) Suppose P♥( ~F ′;G) = 1 holds, where ~F ′ is
a vector of filters and G a prime filter. Then there is a vector ~F of prime filters that
extends ~F ′ and P♥(~F ;G) = 1.

Lemma 6.3 (Squeeze Lemma for () Suppose P((F ; ~G′, I ′) = 1, where F is a
prime filter, ~G′ is a vector of filters and I ′ is a complement of an ideal I ′. Then there
exists a vector ~G of prime filters such that ~G extends ~G′ and a prime ideal I that
extends I ′ and P((F ; ~G, I) = 1, where I denotes the complement of I.

Lemma 6.4 (Squeeze Lemma for ∼) Suppose P∼(F ;G′) = 1, where F is a prime
filter and G′ is a filter. Then there exists a prime filter G extending G′ such that
P∼(F ;G) = 1.

The above three lemmata allow us to prove that the computation of a canonical
frame is a functorial process.

Proposition 6.5 The assignment A 7→ Stone](A) can be extended to a functor from
DL♥,(,∼ to (PosT )op . Moreover, the square (16) commutes.
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7 Modal definability
Our modal definability theorem (Theorem 7.6 below) will identify classes C of frames
such that the image of C under Pred ] is an “HSP” class in DL♥,(,∼, i.e., it is a
variety (compare with the version of Goldblatt-Thomason theorem for modal logics [3,
Theorem 5.54] and [24, Theorem 3.15/2.]). Since we work over posets, the notion of
HSP-closedness has to take this fact under consideration. Namely, we will use the
factorization system (E ,M) on Pos where E consists of surjective monotone maps
and M of monotone maps reflecting order, i.e., f : W1 −→ W2 is in M if W1(x, x′) =
W2(fx, fx′) holds for every x and x′. That (E ,M) is indeed a factorization system
on Pos is proved in [4]. We will use the HSP Theorem w.r.t. a factorization system,
see [26]:

A class A of algebras in a variety V over Pos is definable by equations in V iff A
satisfies the following conditions (U : V −→ Pos denotes the underlying functor):

(H) If e : A1 −→ A2 is such that U(e) is a split epi in Pos and A1 is in A , then A2 is
in A.

(S) If m : A1 −→ A2 is such that U(m) is in M and A2 is in A , then A1 is in A.
(P) If Ai, i ∈ I, are in A , then

Q
i∈I Ai is in A.

In fact, since the algebraic semantics of our logic takes place in (distributive)
lattices, we may as well replace equationally defined classes by inequationally defined.
We prefer to introduce the inequational description, since it is often more useful in
applications.

Definition 7.1 Suppose W is a relational frame. We say that α entails β, and
denote this fact by α |=W β, provided that ‖α‖val ≤ ‖β‖val holds, for every valuation
val : At −→ [W , 2].

Given a class Σ of pairs of formulas, we denote by Mod(Σ) the class of frames W
such that α |=W β, for all (α, β) ∈ Σ.

The following result is trivial.

Lemma 7.2 α |=W β holds iff Pred ](W) |= α∧ β = α, where the |= sign on the right
denotes validity in the sense of universal algebra.

Although the notation might suggest it, it is not the case that the logical connec-
tion Stone a Pred lifts to an adjunction Stone] a Pred ]. The unit of Stone a Pred
does lift, however, and we will need this technicality in the proof of Theorem 7.6.

Lemma 7.3 The unit η of Stone a Pred is a morphism in DL♥,(,∼, i.e., η lifts along
the functor U♥,(,∼ : DL♥,(,∼ −→ DL to a natural transformation η] : IdDL♥,(,∼ −→
Pred ]Stone].

Another technical result that we need for Theorem 7.6 is the following one.

Lemma 7.4 The functor Stone sends maps reflecting order to surjective monotone
maps.

Finally, before stating Theorem 7.6, we need to introduce the concept of a prime
extension of a frame.

Definition 7.5 The frame W∗ = Stone]Pred ](W) is called the prime extension of W.

Theorem 7.6 Suppose C is a class of relational frames that is closed under prime
extensions (if W is in C, then W

∗ is in C). Then the following are equivalent:

(i) There is Σ such that C = Mod(Σ).
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(ii) C satisfies the following four conditions:

(a) C is closed under “surjective coalgebraic quotients”, i.e., if e : W1 −→ W2

is surjective and W1 is in C, so is W2.
(b) C is closed under “subcoalgebras”, i.e., if m : W1 −→ W2 reflects order and

W2 is in C, so is W1.
(c) C is closed under coproducts.
(d) C reflects prime extensions: if W∗ is in C, so is W.

Proof. For proof see Appendix. 2

Example 7.7 The distributive and associative full Lambek calculus (denoted by
dFL) is given by the grammar (1), where ⊗ is required to be associative, to have e as a
unit and to satisfy the residuation laws ϕ⊗ψ ≤ χ iff ψ ≤ ϕ→ χ iff ϕ ≤ χ← ψ. Thus,
the subvariety of DL⊗,e,→,← that we want to deal with is exactly that of distributive
residuated lattices.

The frames that are definable by the above (in)equations are precisely the quin-
tuples (W , P⊗, P→, P←, Pe) that satisfy the following conditions (for details see [30,
Chapter 11]):

(i) P⊗ is associative:
W
z(P⊗(x, y; z) ∧ P⊗(z, u; v)) =

W
w(P⊗(y, u;w) ∧ P⊗(x,w; v))

(ii) and has Pe as a (left and right) unit:
W (x, y) =

W
z(Pe(z)→ P⊗(z, x; y)) =

W
z(Pe(z)→ P⊗(x, z; y))

(iii) The equalities P⊗(x0, x1; y) = P→(x1;x0, y) = P←(x0;x1, y) hold.

Class C of frames satisfying the above conditions is easily seen to verify the conditions
in Theorem 7.6.

Example 7.8 Many interesting examples can be found among the extensions of (as-
sociative) dFL with, e.g., the structural rules, or when expanding the language by
negation. Instances of the first possibility are: dFL extended with any combination
of: exchange, weakening, contraction. See [30] for details on what follows.

(i) The exchange rule corresponds to the commutativity of P⊗, i.e. to the equality
P⊗(x, y; z) = P⊗(y, x; z).

(ii) Weakening corresponds to: P⊗(x0, x1; y) implies x0 ≤ y and x1 ≤ y.

(iii) Contraction corresponds to the equality P⊗(x, x;x) = 1.

This includes, for example, intuitionistic logic, obtained as an extension of dFL with
all the three structural rules. 4 Instances of the second possibility include, e.g., the
relevance logic R, see [12] or [30]. Here the language ⊗, →, ←, e is extended by a
negation connective ∼.

The frames (W , P⊗, P→, P←, Pe, P∼) for the relevance logic R are the frames for
dFL satisfying, in addition, the contraction equality together with the following three
axioms ([30]):

(a) P∼(x; y) = P∼(y;x),

(b)
W
y P⊗(x0, x1; y) ∧ P∼(y;u) ≤

W
s P⊗(u, x0; s) ∧ P∼(x1; s),

(c)
W
y(P∼(x; y) ∧

V
z(P∼(y; z)⇒ W (z, x))) = 1.

The class C of frames satisfying these axioms is easily seen to verify the conditions
of Theorem 7.6. It is modally definable by corresponding axioms of R.

4 A usual frame (X,≤) for intuitionistic logic can be perceived as a relational frame defining
P (x, y; z) = x ≤ z ∧ y ≤ z. Then coalgebraic morphisms correspond precisely to bounded
morphisms.



14 Distributive substructural logics as coalgebraic logics over posets

8 Conclusions and further work
We have shown that frames for various kinds of distributive substructural logic can be
perceived naturally as modally definable classes of poset coalgebras. It seems natural
to construct first frames for logics that have minimal necessary restrictions on the
modalities — these frames are exactly the coalgebras for a certain endofunctor of the
category of posets. Such an approach yields the notion of frame morphisms for free:
the morphisms of frames are exactly the coalgebra morphisms. Any (in)equational re-
quirement on the modalities results in singling out a subclass of frames that is modally
definable in the sense of Goldblatt-Thomason Theorem. Hence any subvariety of
modal algebras (= distributive lattices with operators) defines a Goldblatt-Thomason
subclass of frames, and vice versa, which has been illustrated by well-known examples
of frames for distributive full Lambek calculus, relevance logic, etc.

The limitation of our result lies certainly in the presence of the distributive law
for the propositional part of the logic since it leaves out nondistributive substructural
logics. We believe that this can be easily overcome by passing to general lattices
and using a two-sorted representation of lattices in the sense of [22]. The under-
lying logical connection will be two-sorted, hence the “state space” will consist of
two posets connected with a monotone relation. This is in compliance with various
notions of generalized frames, as studied, e.g., in [16] and [14]. Furthermore, this ap-
proach will also allow to pass naturally from posets to categories enriched in a general
commutative quantale. In the latter framework, we believe to be able to study, e.g.,
many-valued modal and substructural logics in a rather conceptual way.

A natural further direction would be to prove a more general Goldblatt-Thomason
theorem for coalgebras over posets or categories enriched in a general commutative
quantale, obtaining an analogue of [24, Theorem 3.15]. Another line of research
explores the fact that the coalgebraic functor we obtained is easily seen to satisfy the
Beck-Chevalley Condition in the sense of [2]. Hence it will be possible to develop the
theory of cover modalities over coalgebras for distributive substructural logics.
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Appendix

The verification of the “back & forth” description of frame
morphisms — Remark 4.6

(i) Suppose (6) holds. Then the computations

P 2
♥(f~x; fy) =

_
~x′

W2(f~x, f ~x′) ∧ P 1
♥(~x′; y)

≥
_
~x′

W1(~x, ~x′) ∧ P 1
♥(~x′; y)

= P 1
♥(~x; y)

verify the “forth” condition (9) for ♥ and the “back” condition (10) for ♥ is
trivial.

Conversely, suppose inequalities (9) and (10) hold. Then the inequalities_
~x

W2(~a, f~x) ∧ P 1
♥(~x; y)≤

_
~x

W2(~a, f~x) ∧ P 2
♥(f~x; fy)

≤ P 2
♥(~a; fy)

hold by (9) and monotonicity of P 2
♥. This proves (6).

(ii) Suppose (7) holds. We only need to verify the inequality (11):

P 2
((fx; f~y, fz) =

_
~y′,z′

W2(f~y, f ~y′) ∧W2(fz′, fz) ∧ P 1
((x; ~y′, z′)

≥
_
~y′,z′

W1(~y, ~y′) ∧W1(z′, z) ∧ P 1
((x; ~y′, z′)

= P 1
((x; ~y, z)

Conversely, suppose inequalities (11) and (12) hold. Then the inequalities_
~y,z

W2(~b, f~y) ∧W2(fz, c) ∧ P 1
((x; ~y, z)≤

_
~y,z

W2(~b, f~y) ∧W2(fz, c) ∧ P 2
((fx; f~y, fz)

≤ P 2
((fx; b, c)

prove (7).

(iii) Suppose (8) holds. Then we have inequalities

P 2
∼(fx; fy) =

_
y′

W2(fy, fy′) ∧ P 1
∼(x; y′)

≥
_
y′

W1(y, y′) ∧ P 1
∼(x; y′)

= P 1
∼(x; y)

and inequality (13) hold.

Conversely, suppose inequalities (13) and (14) hold. Then we have inequalities_
y

W2(b, fy) ∧ P 1
∼(x; y)≤

_
y

W2(b, fy) ∧ P 2
∼(fx; fy)

≤ P 2
∼(fx; b)

proving (8).
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Proof of Proposition 5.4
It is easy to verify that, given a frame W, the algebra Pred ](W) is an object of
DL♥,(,∼.

For a frame morphism f : W1 −→ W2, put Pred ](f) to be the mapping [f,2] :
[W2,2] −→ [W1, 2]. We verify that the three operations are preserved on the nose:

(i) The commutativity of the square

[W2, 2]n
[f,2]n

//

♥

��

[W1, 2]n

♥

��

[W2, 2]
[f,2]

// [W1, 2]

is the requirement that the equality_
~a

~U~a ∧ P 2
♥(~a; fy) =

_
~x

~Uf~x ∧ P 1
♥(~x; y)

holds for every y. The inequality ≥ is obvious: put ~a = f~x and use that
P 1
♥(~x; y) ≤ P 2

♥(f~x; fy) holds, see (9). The converse inequality follows from the
inequality (10).

(ii) The commutativity of the square

([W2, 2]l)op × [W2, 2]
([f,2]l)op×[f,2]

//

(

��

([W1,2]l)op × [W1, 2]

(

��

[W2, 2]
[f,2]

// [W1, 2]

is the requirement that the equality^
~b,c

~U~b ∧ P 2
((fx;~b, c)⇒Wc =

^
~y,z

~Uf~y ∧ P 1
((x; ~y, z)⇒Wfz

holds for every x. The inequality ≤ follows from P 1
((x; ~y, z) ≤ P 2

((fx; f~y, fz),
see (11). For the converse inequality, use inequality (12).

(iii) The commutativity of the square

[W2,2]op
[f,2]op

//

∼

��

[W1, 2]op

∼

��

[W2,2]
[f,2]

// [W1,2]

is the requirement that the equality^
b

P 2
∼(fx; b)⇒ ¬Ub =

^
y

P 1
∼(x; y)⇒ ¬Ufy

holds for every x. The inequality≤ follows from inequality (13). For the converse
inequality, use inequality (14).
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Proof of Lemma 6.2
Consider the following system

E = {~P | ~P extends ~F ′ and P♥(~P ;G) = 1 }

of vectors of filters, ordered by inclusion. The set E is nonempty by assumption and
every nonempty chain in E has clearly a supremum. By Zorn’s Lemma, there exists
a maximal element ~F = (F0, . . . , Fn−1) of E. We prove that it is a vector of prime
filters. We only prove that F0 is a prime filter, the reasoning about the remaining
cases is the same.

Suppose a 6∈ F0 and b 6∈ F0 and denote by Fa the filter generated by F0 ∪{a} and
by Fb the filter generated by F0 ∪ {b}. We can write

Fa = {y | there exists x ∈ F0 such that a ∧ x ≤ y }

Fb = {y | there exists x ∈ F0 such that b ∧ x ≤ y }
By maximality of ~F , neither ~F a = (Fa, F1 . . . , Fn−1) nor ~F b = (Fb, F1, . . . , Fn−1)
is in E. It only holds if both vectors violate the conditions P♥(~F a;G) = 1 and
P♥(~F b;G) = 1. Thus we have witnesses ~ya = (ya, ya1 , . . . , y

a
n−1) in ~F a, and ~yb =

(yb, yb1, . . . , y
b
n−1) in ~F b such that ♥~ya 6∈ G and ♥~yb 6∈ G. In particular, there are

xa ∈ F0, xb ∈ F0 such that a ∧ xa ≤ ya and b ∧ xb ≤ yb. Put x = xa ∧ xb and
y1 = ya1 ∧ yb1, . . . , yn−1 = yan−1 ∧ ybn−1. Use that Fa, Fb and G are filters to obtain
a ∧ x ≤ ya and ♥(ya, y1, . . . , yn−1) 6∈ G, and b ∧ x ≤ yb and ♥(yb, y1, . . . , yn−1) 6∈ G.
Thus ♥(a ∧ x, y1, . . . , yn−1) 6∈ G and ♥(b ∧ x, y1, . . . , yn−1) 6∈ G. Since G is assumed
to be prime, we have proved

♥(a ∧ x, y1, . . . , yn−1) ∨ ♥(b ∧ x, y1, . . . , yn−1) 6∈ G

Since ♥ preserves joins by Definition 5.1, and the lattice is distributive, we obtain

♥(a ∧ x, y1, . . . , yn−1) ∨ ♥(b ∧ x, y1, . . . , yn−1) =♥((a ∧ x) ∨ (b ∧ x), y1, . . . , yn−1)

=♥((a ∨ b) ∧ x, y1, . . . , yn−1) 6∈ G
If we assume that a ∨ b ∈ F0, then (a ∨ b) ∧ x ∈ F0, since x ∈ F0 and F0 is a filter.
But then ((a ∨ b) ∧ x, y1, . . . , yn−1) ∈ ~F , yielding ♥((a ∨ b) ∧ x, y1, . . . , yn−1) ∈ G, a
contradiction.

Proof of Lemma 6.3
Consider the set

E = {( ~Q, J) | ~Q extends ~G′, J extends I ′, and P((F ; ~Q, I) = 1}

of pairs (vector of filters, ideal), ordered by inclusion. The set is nonempty by as-
sumption and it clearly has suprema of nonempty chains. By Zorn’s Lemma, there
exists a maximal element (~G, I) in E.

We prove that ~G is a vector of prime filters and that I is a prime ideal.

(i) To prove that Gi in ~G = (G0, . . . , Gl−1) is a prime filter is analogous to previous
lemma.

We prove that G0 in ~G = (G0, . . . , Gl−1) is a prime filter, the reasoning for the
remaining cases is the same.

Suppose a 6∈ G0 and b 6∈ G0. Denote by Ga the filter generated by G0 ∪{a} and
by Gb the filter generated by G0 ∪ {b}. Moreover, we can write
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Ga = {x | there exists z ∈ G0 such that a ∧ z ≤ x }

Gb = {x | there exists z ∈ G0 such that b ∧ z ≤ x }
By maximality of ( ~G, I), neither the pair ( ~Ga, I) = ((Ga, G1 . . . , Gn−1), I) nor
the pair ( ~Gb, I) = ((Gb, G1, . . . , Gn−1), I) is in E. It only holds if both pairs
violate the conditions P((F ; ~Ga, I) = 1 and P((F ; ~Gb, I) = 1.

Denote by ((xa, xa1 , . . . , x
a
l−1), ya) and ((xb, xb1, . . . , x

b
l−1), yb) the witnesses of the

above failures, i.e., (xa, xa1 , . . . , x
a
l−1)( ya ∈ F , (xa, xa1 , . . . , x

a
l−1) ∈ ~Ga, ya ∈ I,

and (xb, xb1, . . . , x
b
l−1) ( yb ∈ F , (xb, xb1, . . . , x

b
l−1) ∈ ~Gb, yb ∈ I hold, where

a ∧ za ≤ xa and b ∧ zb ≤ xb for some za, zb in G0.

Since I is an ideal, y = ya ∨ yb ∈ I. By Definition 5.1,( is monotone in its last
argument. Hence both (xa, xa1 , . . . , x

a
l−1)( y ∈ F and (xb, xb1, . . . , x

b
l−1)( y ∈

F hold.

Put z = za ∧ zb, x1 = xa1 ∧ xb1, . . . , xl−1 = xal−1 ∧ xbl−1. Then we have

(z, x1, . . . , xl−1) ∈ ~G and since( is antitone in its first l arguments (see Defini-
tion 5.1), both (a ∧ z, x1, . . . , xl−1)( y ∈ F and (b ∧ z, x1, . . . , xl−1)( y ∈ F
hold.

Thus, using Definition 5.1 and distributivity of the lattice, we obtain

((a ∧ z, x1, . . . , xl−1)( y) ∧ ((b ∧ z, x1, . . . , xl−1)( y) =

((a ∧ z) ∨ (b ∧ z), x1, . . . , xl−1)( y) =

((a ∨ b) ∧ z, x1, . . . , xl−1)( y) ∈ F
Suppose a∨b ∈ G0. Then (a∨b)∧z ∈ G0 and hence ((a∨b)∧z, x1, . . . , xl−1) ∈ ~G.
Thus y ∈ I. But y ∈ I, a contradiction.

(ii) We prove that I is a prime ideal. Consider a 6∈ I, b 6∈ I. Denote by Ia the ideal
generated by I ∪ {a} and by Ib the ideal generated by I ∪ {b}. We have the
formulas

Ia = {y | there exists x ∈ I such that y ≤ a ∨ x }

Ib = {y | there exists x ∈ I such that y ≤ b ∨ x }
By maximality of I, neither P((F ; ~G, Ia) = 1 nor P((F ; ~G, Ib) = 1 holds.

Denote by (~xa, ya) and (~xb, yb) the witnesses of the above failures, i.e., ~xa (
ya ∈ F , ~xa ∈ ~G, ya ∈ Ia, and ~xb ( yb ∈ F , ~xb ∈ ~G, yb ∈ Ib hold, where
ya ≤ a ∨ za and yb ≤ b ∨ zb for some za, zb in I. Put z = za ∨ zb ∈ I,
~x = ~xa ∧ ~xb.
Then ~x ∈ ~G, ~x( (a ∨ z) ∈ F and ~x( (b ∨ z) ∈ F . Hence, by Definition 5.1,
~x( ((a ∨ z) ∧ (b ∨ z)) ∈ F . Using distributivity of the lattice, we have proved
~x( ((a ∧ b) ∨ z) ∈ F .

Suppose a∧b ∈ I. Since, by the above, (a∧b)∨z ∈ I, we obtain a contradiction.

Proof of Lemma 6.4
Consider the set

E = {P | P extends G′ and P∼(F ;P ) = 1}

of filters, ordered by inclusion. The set E is nonempty, has suprema of nonempty
chains, and by Zorn’s Lemma it therefore possesses a maximal element G. To prove
that G is a prime filter is analogous to previous cases.
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Suppose a 6∈ G and b 6∈ G. Denote by Ga the filter generated by G ∪ {a} and by
Gb the filter generated by G ∪ {b}. In formulas:

Ga = {y | there exists x ∈ G such that a ∧ x ≤ y }

Gb = {y | there exists x ∈ G such that b ∧ x ≤ y }
By maximality, neither P∼(F ;Ga) = 1 nor P∼(F ;Gb) = 1 holds. Thus we have
some y1 ∈ Ga and y2 ∈ Gb with ∼y1 ∈ F and ∼y2 ∈ F . Since F is a filter and by
Definition 5.1, ∼y1 ∧ ∼y2 = ∼(y1 ∨ y2) ∈ F . As before, there is x ∈ G such that
a∧x ≤ y1 and b∧x ≤ y2. By distributivity and Definition 5.1 again, (a∨b)∧x ≤ y1∨y2
and ∼(y1 ∨ y2) ≤ ∼((a ∨ b) ∧ x). Thus, ∼((a ∨ b) ∧ x) ∈ F .

Now suppose for contradiction that a∨ b ∈ G. Then (a∨ b)∧x ∈ G, contradicting
G ∈ E.

Proof of Proposition 6.5
Given h : A1 −→ A2, we define Stone](h) as DL(h, 2) : DL(A2, 2) −→ DL(A1, 2). We
only need to prove that equations (6)–(8) are satisfied. For the purposes of better
readability we denote [h, 2] by h† in what follows.

(i) The required equality

P 1
♥( ~K;h†G) =

_
~F

DL(A1, 2)( ~K, h† ~F ) ∧ P 2
♥(~F ;G)

can be rewritten, using the definition of h†, to the equation

P 1
♥( ~K;Gh) =

_
~F

DL(A1, 2)( ~K, ~Fh) ∧ P 2
♥(~F ;G)

We prove inequalities (9) and (10):

(a) To prove P 2
♥(~F ;G) ≤ P 1

♥(~Fh;Gh), suppose ~Fhx = 1. Then G(♥(hx)) =
Gh(♥x) = 1 and we are done.

(b) We prove P 1
♥( ~K;Gh) ≤

W
~F DL(A1, 2)( ~K, ~Fh) ∧ P 2

♥(~F ;G).

Define a vector ~K′ of filters on A2 by putting

~K′~a =
_
~x

A2(h~x,~a) ∧ ~K~x

We prove P 2
♥( ~K′;G) = 1, supposing P 1

♥( ~K;Gh) = 1. To that end, suppose
~K′~a = 1 and choose ~x such that A2(h~x,~a) ∧ ~K~x = 1. Then Gh(♥~x) =
G(♥(h~x)) = 1, hence G(♥~a) = 1, since ♥ is monotone.

Now use Lemma 6.2 to find a vector ~F of prime filters such that ~F
extends ~K′ and P 2

♥(~F ;G) = 1 holds. It remains to prove the equality

DL(A1, 2)( ~K, ~Fh) = 1. This follows immediately from the fact that ~F ex-
tends ~K′: if ~K~x = 1, then ~K′(h~x) = 1, hence ~Fh~x = 1.

(ii) The required equality

P 1
((h†F ; ~L,M) =

_
~G,H

DL(A1, 2)(~L, h† ~G) ∧ DL(A1,2)(h†H,M) ∧ P 2
((F ; ~G,H)

can be rewritten to the equality

P 1
((Fh; ~L,M) =

_
~G,H

DL(A1, 2)(~L, ~Gh) ∧ DL(A1, 2)(Hh,M) ∧ P 2
((F ; ~G,H)



B́ılková, Horč́ık and Velebil 21

We prove inequalities (11) and (12):

(a) For proving the inequality P 2
((F ; ~G,H) ≤ P 1

((Fh; ~Gh,Hh), assume
P 2

((F ; ~G,H) = 1. If Fh(~x ( y) ∧ ~Gh~x = F (h~x ( hy) ∧ ~Gh~x = 1,
then Hhy = 1, which was to be proved.

(b) We prove the inequality

P 1
((Fh; ~L,M) ≤

_
~G,H

DL(A1,2)(~L, ~Gh)∧DL(A1, 2)(Hh,M)∧ P 2
((F ; ~G,H)

Define
~G′~b =

_
~y

A2(h~y,~b) ∧ ~L~y, I ′c =
_
z

A2(c, hz) ∧ ¬Mz

and observe that ~G′ is a vector of filters and I ′ is an ideal. Moreover, the
complement I ′ of I ′ is given by the formula

I ′c =
^
z

A2(c, hz)⇒Mz

We will prove that P 2
((F ; ~G′, I ′) = 1, if we suppose P 1

((Fh; ~L,M) = 1.

To that end, suppose F (~b ( c) ∧ ~G′~b = 1 and suppose z is such that
A2(c, hz) = 1 holds. We need to prove Mz = 1.

Pick ~y witnessing ~G′~b = 1. Then F (h~y ( hz) = Fh(~y ( z) = 1 and
~L~y = 1. Therefore Mz = 1, since we assumed P 1

((Fh; ~L,M) = 1.
By Lemma 6.3 there exist ~G and I such that ~G is a vector of prime filters
extending ~G′, I is a prime ideal extending I ′, and P 2

((F, ~G, I) = 1 holds.
Since a complement of a prime ideal is a prime filter, we can put H = I.

It remains to show that ~Gh extends L and Hh is extended by M .
Since ~G′h clearly extends L, so does ~Gh (use that ~G extends ~G′).

Since I ′h is extended by M , so is Ih. This follows from the fact that I
extends I ′.

(iii) The required equality

P 1
∼(h†F ;L) =

_
G

DL(A1, 2)(L, h†G) ∧ P 2
∼(F ;G)

can be rewritten to the equality

P 1
∼(Fh;L) =

_
G

DL(A1, 2)(L,Gh) ∧ P 2
∼(F ;G)

We prove inequalities in (13) and (14):

(a) To prove the inequality P 2
∼(F ;G) ≤ P 1

∼(Fh;Gh), suppose that P 2
∼(F ;G) =

1 and Fhx = 1. Then ¬G(∼hx) = ¬Gh(∼x) = 1, which had to be proved.
(b) We prove the inequality P 1

∼(Fh;L) ≤
W
G DL(A1, 2)(L,Gh) ∧ P 2

∼(F ;G).
Define the filter G′ by the formula

G′b =
_
y

A2(hy, b) ∧ Ly

and observe that P 2
∼(F ;G′) = 1 holds, if we assume P 1

∼(Fh;L) = 1.



22 Distributive substructural logics as coalgebraic logics over posets

Indeed: suppose G′b = 1 and let y witness this equality. We need to
prove ¬F (∼b) = 1. But we know ¬Fh(∼y) = ¬F (∼(hy)) = 1. Therefore
¬F (∼b) = 1, since A2(hy, b) = 1 and F is an upperset.

By Lemma 6.4 we can find a prime filter G extending G′ such that
P 2

∼(F ;G) = 1 holds. Moreover, Gh extends L, since G′h does.

Proof of Lemma 7.3
Recall from Section 3 that ηA is the lattice homomorphism that maps an element x
to the set of all prime filters on A that contain x.

We want to prove that, for any A = ((A ,∧,∨),♥,(,∼), the underlying monotone
mapping ιA of ηA preserves the operations ♥, ( and ∼. That is, ιA works exactly
like ηA , we only “forget” that it is a lattice homomorphism.

For better readability, we denote the poset [DL(A , 2), 2] by A ∗ and the operations
thereon by ♥∗, (∗ and ∼∗.

(i) The commutativity of the square

A n
ιnA //

♥

��

(A ∗)n

♥∗

��
A ιA

// A ∗

means, when chasing the elements, the requirement

~x
� //

_

��

{~F | ~F~x = 1}_

��

♥~x � // {G | G(♥~x) = 1} = {G |
W
~F
~F~x ∧ P♥(~F ;G) = 1}

i.e., the requirement on the equality

G(♥~x) =
_
~F

~F~x ∧ P♥(~F ;G)

to hold, where P♥(~F ;G) =
V
~x
~F~x⇒ G(♥~x).

The inequality ≥ holds: suppose ~F~x ∧ P♥(~F ;G) = 1. Then G(♥~x) = 1 by the
definition of P♥.

The inequality ≤ holds: define a “vector”

~F ′ = A n(~x,−)

of uppersets and observe that ~F ′ is a vector of filters on A . Observe further
that P♥( ~F ′;G) = 1 holds. Use Lemma 6.2 to produce a vector of prime filters
such that ~F ′ ≤ ~F and P♥(~F ;G) = 1. This finishes the proof of ≤.

(ii) The commutativity of the square

(A l)op ×A
(ιlA )op×ιA //

(

��

((A ∗)l)op ×A ∗

(∗

��
A ιA

// A ∗
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means, when chasing the elements, the requirement

(~y, z)
� //

_

��

{( ~G,H) | ~G~y ∧Hz = 1}_

��

~y( z
� // {F | F (~y( z) = 1} = {F |

V
~G,H

~G~y ∧ P((F ; ~G,H)⇒ Hz = 1}

i.e., the requirement on the equality

F (~y( z) =
^
~G,H

~G~y ∧ P((F ; ~G,H)⇒ Hz

to hold, where P((F ; ~G,H) =
V
~y,z F (~y( z) ∧ ~G~y ⇒ Hz.

The inequality ≤ holds: suppose F (~y ( z) = 1 and ~G~y ∧ P((F ; ~G,H) = 1.
Then Hz = 1 holds by the definition of P(.

The inequality ≥ holds: define a “vector”

~G′ = A l(~y,−)

of uppersets, and an upperset

H ′ = F (~y( −)

Then ~G′ is a vector of filters and H ′ is a filter. Observe further that
P((F ; ~G′, H ′) = 1. Now use Lemma 6.3 to produce prime filters ~G, H such
that ~G′ ≤ ~G and H ≤ H ′ and P((F ; ~G,H) = 1. Hence ~G~y ∧P((F ; ~G,H) = 1,
therefore Hz = 1. Finally H ′z = 1, which we were supposed to prove.

(iii) The commutativity of the square

A op
ι
op
A //

∼

��

(A ∗)op

∼∗

��
A ιA

// A ∗

means, when chasing the elements, the requirement

x � //_

��

{G | Gx = 1}_

��

∼x � // {F | F (∼x) = 1} = {F |
V
G P∼(F ;G)⇒ ¬Gx}

i.e., the requirement on the equality

F (∼x) =
^
G

P∼(F ;G)⇒ ¬Gx

to hold, where P∼(F ;G) =
V
xGx⇒ ¬F (∼x).

The inequality ≤ holds: suppose F (∼x) = 1 and P∼(F ;G) = 1. Suppose further
that ¬Gx = 0, or, equivalently Gx = 1 Then ¬F (∼x) = 1, which contradicts
F (∼x) = 1.
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The inequality ≥ holds: suppose
V
G P∼(F ;G) ⇒ ¬Gx = 1 and F (∼x) = 0.

Then G′ = A (x;−) is a filter and P∼(F ;G′) = 1 holds: if x ≤ x′ in A , then
¬F (∼x′) = 1 holds since F is an upperset. Use Lemma 6.4 to produce a prime
filter G extending G′ such that P∼(F ;G) = 1. Then ¬Gx = 1, i.e., Gx = 0.
This is a contradiction.

Proof of Lemma 7.4
Suppose m : A −→ B is a lattice homomorphism that reflects order. We need to
prove that the monotone map Stone(m) : Stone(B) −→ Stone(A ) is surjective. To
that end, fix a prime filter F on A . Define the set

E = {G | G ·m = F}

of filters on B, ordered by inclusion. The set E is nonempty, since m reflects order:
put Gb =

W
a B(ma, b) ∧ Fa and observe that G is in E. Furthermore, the union of

a nonempty chain of elements of E is an element of E. By Zorn’s Lemma, E has a
maximal element G0. It is easy to prove that it is a prime filter.

Choose b1 and b2 such that b1 ∨ b2 ∈ G0 and b1 6∈ G0, b2 6∈ G0. Define

Gb1 = {x | there exists z ∈ G0 such that b1 ∧ z ≤ x }

Gb2 = {x | there exists z ∈ G0 such that b2 ∧ z ≤ x }
By maximality of G0, neither Gb1 · m = F , nor Gb2 · m = F holds. Hence there
are zb1 , zb2 in G0 and a1, a2 in A , both not in F , such that b1 ∧ zb1 ≤ ma1 and
b2∧zb2 ≤ ma2 hold. Since G0 is a filter, z = zb1∧zb2 is in G0. Moreover, b1∧z ≤ ma1

and b2 ∧ z ≤ ma2. Since m is monotone, the inequalities b1 ∧ z ≤ m(a1 ∨ a2) and
b2∧z ≤ m(a1∨a2) hold. Hence, using distributivity, the inequality (b1∧z)∨(b2∧z) =
(b1 ∨ b2) ∧ z ≤ m(a1 ∨ a2) holds. This proves that a1 ∨ a2 is in F , hence a1 or a2 is
in F , since F is supposed to be prime. This is a contradiction.

Proof of Theorem 7.6
1 implies 2. Suppose C = Mod(Σ). We will verify the four conditions for C.

(a) Suppose e : W1 −→ W2 is a surjective coalgebra morphism. We prove that if
α |=W1 β, then α |=W2 β.

Consider y ∈ W2 and a valuation val : At −→ [W2,2]. We can define a new
valuation val′ : At −→ [W1,2] by the composition

At
val // [W2, 2]

[e,2]
// [W1,2]

Then the diagram

L (At)
‖−‖val // Pred ](W2)

Pred](e)
// Pred ](W1)BC OO@A

‖−‖val
′

commutes in DL♥,(,∼.

Let x be such that ex = y. Then, by assumption, x val′ α ≤ β, hence

‖α ∧ β‖valex= [e, 2](‖α ∧ β‖val)x = ‖α ∧ β‖val′x = ‖α‖val′x = [e, 2](‖α‖val)x

= ‖α‖valex
Therefore ex val α ≤ β, i.e., y val α ≤ β.
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(b) Suppose m : W1 −→ W2 is a coalgebra morphism with m reflecting order. We
prove that if α |=W2 β, then α |=W1 β.

Observe that [m, 2] : [W2, 2] −→ [W1, 2] is a split epimorphism in Pos. Indeed:
there exists a monotone map z : [W1, 2] −→ [W2, 2] such that [m, 2] · z = id .
Given u : W1 −→ 2, define v : W2 −→ 2 by the formula

vy =
_
x

W2(mx, y) ∧ ux

Then z : u 7→ v is monotone and the equalities

vmx′ =
_
x

W2(mx,mx′) ∧ ux =
_
x

W1(x, x′) ∧ ux = ux′

prove [m,2] · z = id (above, we have used that m reflects order).

Suppose val : At −→ [W1, 2] is given. To prove x ∈ ‖α‖val, consider

val′ ≡ At
val // [W1, 2] z // [W2, 2]

By assumption, ‖α ∧ β‖val′mx = ‖α‖val′mx. But the diagram

L (At)
‖−‖val′ // Pred ](W2)

Pred](m)
// Pred ](W1)BC OO@A

‖−‖val

commutes in DL♥,(,∼ due to [m, 2] · z = id . Hence ‖α ∧ β‖valx = ‖α‖valx.

(c) Suppose α |=Wi β, for all i ∈ I. We prove that α |=‘
i∈I Wi

β.

The functor Pred ] preserves products (in fact, it preserves all limits). Products
in (PosT )op are, of course, coproducts in PosT .

Consider x in
‘
i∈I Wi. Since coproducts of frames are formed on the level of

posets, there is i ∈ I such that x is in Wi. Let val : At −→
Q
i∈I [Wi, 2] be any

valuation. Then, by assumption, x vali α ∧ β = α, where

vali ≡ At
val //

Q
i∈I [Wi, 2]

pi // [Wi, 2]

and where pi denotes the i-th projection.

This proves ‖α ∧ β‖valx = ‖α‖valx.

(d) Suppose α |=W∗ β. We prove that α |=W β.

Take x in W and val : At −→ [W ,2]. Recall that, by Lemma 7.3, η lifts to η],
hence we can consider the valuation

val′ ≡ At
val // [W , 2]

UU♥,(,∼(η
]

Pred](W)
)

// [StonePred(W ),2]

and therefore the diagram

L (At)
‖−‖val // Pred ](W)

η
]

Pred](W)// Pred ]Stone]Pred ](W)BC OO@A
‖−‖val′

(i)
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commutes in DL♥,(,∼. Thus, we obtain a commutative diagram

U♥,(,∼L (At)
U♥,(,∼(‖−‖val)// Pred(W )

ηPred(W )// PredStonePred(W )BC OO@A
U♥,(,∼(‖−‖val′ )

in DL (apply U♥,(,∼ to diagram (i) and use that U♥,(,∼(η]
Pred](W)

) = ηPred(W )).

Hence also the diagram

U♥,(,∼L (At)
U♥,(,∼(‖−‖val) //

U♥,(,∼(‖−‖val′ )

++WWWWWWWWWWWWWWWWWWWWW

U♥,(,∼(‖−‖val)

''OOOOOOOOOOOOOOOOOOOOOOOOOOOO Pred(W )

ηPred(W )

��

PredStonePred(W )

Pred(εW )

��

(∗)

Pred(W )

BC
oo

ED
id (ii)

commutes in DL. In fact, the area (∗) in the above diagram is just one of the
triangle equalities for Stone a Pred .

By assumption, εW (x) val′ α∧ β = α. From the lower triangle in (ii) it follows
that x val α ∧ β = α:

‖α ∧ β‖valx= [εW ,2](‖α ∧ β‖val′x) = ‖α ∧ β‖val′εW (x) = ‖α‖val′εW (x)

= [εW ,2](‖α‖val′x) = ‖α‖valx

2 implies 1. Denote by Σ the set of pairs (α, β) such that α |=W β, for all W in C.
Hence C ⊆ Mod(Σ) by definition.

Suppose W0 is in Mod(Σ), we want to prove that W0 is in C.
Define A to be the closure of {Pred ](W) | W ∈ C} under products, subalgebras

along monotone maps reflecting order and images along split epis in Pos. Therefore
Pred ](W0) is in A and there is a diagram

Pred ](W0) A
m //eoo

Q
i∈I Pred ](Wi)

in DL♥,(,∼, where A is in A, Wi are in C, for all i ∈ I, and m reflects orders, and e
is split epi in Pos.

Consider the image of the above diagram

Stone]Pred ](W0) Stone](A)
Stone](m)

//
Stone](e)

oo Stone](
Q
i∈I Pred ](Wi))

under Stone] : DL♥,(,∼ −→ (PosT )op .
When reading the above diagram in PosT , i.e., when reversing the arrows, we

obtain a diagram

Stone]Pred ](W0)
Stone](e)

// Stone](A) Stone](Pred ](
‘
i∈I Wi))

Stone](m)
oo

Then:
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(i) Stone](Pred ](
‘
i∈I Wi)) is in C, since it is a prime extension of a coproduct of

elements of C.

(ii) Stone](A) is in C.

(a) By Lemma 7.4, Stone](m) is a surjective coalgebra homomorphism. Indeed,
the underlying map of Stone](m) is Stone(m) by (16).

(b) Since Stone](Pred ](
‘
i∈I Wi)) is in C, so is Stone](A). Use properties of C.

(iii) Stone]Pred ](W0) is in C.

This will follow after we prove that Stone](e) reflects orders. Its underlying
map is restriction along e from the poset of prime filters on A to the poset of
prime filters on Pred(W0). Recall that e is a split epimorphism, denote by z the
monotone map satisfying e · z = id . Consider two prime filters u, u′ on A such
that u · e ≤ u′ · e holds. Then u = u · e · z ≤ u′ · e · z = u′ holds.

Since we proved that Stone]Pred ](W0) is in C, we know that W0 is in C, since C
reflects ultrafilter extensions.
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