
Solution of a system of linear equations with

fuzzy numbers

Rostislav Horč́ık 1
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Abstract

In this paper, the interval nature of fuzzy numbers is revealed by showing that many
interesting results from classical interval analysis transfer also into the fuzzy case.
The paper deals with a solution of a fuzzy interval system of linear equations, i.e. a
system in which fuzzy intervals (numbers) appear instead of crisp numbers.
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1 Introduction

Equations involving fuzzy numbers and their solutions are investigated al-
ready for quite a long time. Although fuzzy numbers are called “numbers”
they are rather fuzzified versions of classical crisp intervals. This is quite an
obvious observation which was already made by several authors (for details
on the connection between fuzzy numbers and classical intervals see [13,15]).
Consequently, we should expect that the theory of fuzzy numbers and their
arithmetic should be a fuzzified version of interval analysis, i.e. we should look
for an inspiration among results of interval analysis and try to prove them in
fuzzy setting.
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In this paper we are going to follow this line and prove several results for
systems of linear equations involving fuzzy numbers. Before we introduce the
topic of this paper in more details, let us discuss what are the differences
between this paper and similar papers on fuzzy numbers which appeared in
the literature. The first difference consists in the fuzzy logic which is used for
deriving results. Most of the papers (see e.g. [4–7,12,19,21,22]) define the fuzzy
arithmetic in such a way that it preserves cuts. Equivalently, it can be said that
such papers use Gödel logic in order to derive their results. Recall that Gödel
logic is the logic where conjunction is interpreted by the minimum (see [10]).
Unlike such papers we are going to prove more general results since we work
in Monoidal T-norm Based Logic (MTL) which is the logic of left-continuous
t-norms and their residua (see [9]), i.e. we do not restrict the interpretation
of our conjunction to be only the minimum. However, there are also a few
papers in the literature which use instead of Gödel logic systems where basic
connectives are conjunction, disjunction, and negation interpreted respectively
by a t-norm, t-conorm, and involution (see [8,11]).

The second difference consists in the shape and the solution of equations un-
der consideration. Many papers dealing with “fuzzy” equations focus on an
equation of the form A ∗X = B where X is an unknown fuzzy number and ∗
is the extension of an operation on reals, defined by means of Zadeh’s exten-
sion principle (see [4,8,19,22]). Usually, ∗ is one of the following operations on
fuzzy numbers: addition, subtraction, multiplication, and division. There are
also papers considering more general equations, e.g. quadratic equations are
considered in [5,6] or equations of the form f(X,A1, . . . , An) = C are investi-
gated in [21]. The solution in all above-mentioned cases is defined as a fuzzy
number which satisfies the given equation if substituted for X.

Unlike the papers mentioned above, we consider in this paper a system of
linear equations whose parameters are uncertain:

A11x1 + · · ·+ A1nxn =B1 ,
...

Am1x1 + · · ·+ Amnxn =Bm ,

for Aij, Bi fuzzy numbers, and xj real numbers. The solution set of such a
system is defined as is common in interval analysis (see e.g. [17,20]). Pre-
cisely, it is the fuzzy subset of Rn such that the membership-degree of a tuple
(x1, . . . , xn) is determined by the truth degree of the following first-order for-
mula when interpreted in fuzzy logic:

(∃a11 ∈ A11) · · · (∃amn ∈ Amn)(∃b1 ∈ B1)(∃bm ∈ Bm)

(a11x1 + · · ·+ a1nxn = b1 & · · · & am1x1 + · · ·+ amnxn = bm) .
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Such a solution set is usually called united solution set in interval analysis and
was considered already in [16]. In fuzzy setting this definition appeared in [7]
where however only several easy observations were made and no description
of the solution set offered. We consider here also other types of solution sets
where some of the quantifiers above can be replaced by universal quantifier.
This is usual in interval analysis (see e.g. [20]) but it appeared also in fuzzy lit-
erature. In [11] the authors used this approach in order to define a fuzzy linear
program. A usage of universal quantifier was considered also in [8] contain-
ing an interesting claim indicating that the solution of the above-mentioned
equation A · X = B, where · is the multiplication of fuzzy numbers, can be
described as {x | (∀a ∈ A)(∃b ∈ B)(ax = b)} which can be seen as a special
case of our definition of the solution set (see Section 4).

At the end of the introduction we will present a motivational example explain-
ing informally what is the topic of this paper. Consider a plane containing n
points, say (a1, b1), . . . , (an, bn) ∈ R2. We can ask whether there is a line p
which goes through all the points. This question leads to a system of linear
equations

a1k + q= b1 ,
...

ank + q= bn ,

where k is the slope of p and q is its offset (i.e. p can be described by equation
y = kx + q). Thus the line exists iff the above system of linear equations has
a solution.

Now we will modify slightly the task. We replace the coordinates ai, bi of
the points by crisp intervals [a↑i , a

↓
i ], [b↑i , b

↓
i ] respectively. Then an analogous

question could be whether there is a line p which “goes through” all the
cartesian products [a↑i , a

↓
i ]× [b↑i , b

↓
i ]. Formally, this means that we ask if p has

a non-empty intersection with each cartesian product [a↑i , a
↓
i ] × [b↑i , b

↓
i ]. This

question leads to a typical task from classical interval analysis (for details
see [20]). The answer is affirmative iff the following interval system of linear
equations has a solution:

[a↑1, a
↓
1]k + q= [b↑1, b

↓
1] ,

...

[a↑n, a
↓
n]k + q= [b↑n, b

↓
n] .

A solution of such an interval system is usually defined as follows: we say
that a pair (k, q) describing the line p is a solution iff the following classical
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first-order formula holds:

n∧
i=1

(
∃(αi, βi) ∈ [a↑i , a

↓
i ]× [b↑i , b

↓
i ]
)

(αik + q = βi) ,

where ∧ is the classical conjunction. Observe that this formula is true if in
each box [a↑i , a

↓
i ]× [b↑i , b

↓
i ] there exists a point which lies on p. In order to solve

this problem, classical interval analysis gives us methods how to find the set
of all solutions.

The purpose of this paper is to discuss what happens if we change the crisp
intervals to fuzzy intervals or fuzzy numbers. Let A1, . . . , An and B1, . . . , Bn

be fuzzy intervals (numbers). Analogously to the previous task we would like
to find a line p which goes through all fuzzy points Ai × Bi. Clearly, as the
sets Ai ×Bi are not crisp, some of the lines satisfy this condition better than
the others. The corresponding system of equations which we have to solve is
the following one:

A1k + q=B1 ,
...

Ank + q=Bn .

A solution to this system of equations can be defined in the same way as in
the case of classical interval analysis, only interpreted in fuzzy logic. We say
that a pair (k, q) describing a line p is a solution to such an extent to which
the following first-order formula holds:

n

&
i=1

(∃(αi, βi) ∈ Ai ×Bi)(αik + q = βi) ,

where & is the strong conjunction in our fuzzy logic and ∃ is interpreted by
supremum as usual in first-order fuzzy logic. Then the corresponding solution
set is a fuzzy set of pairs (k, q) where a pair (k, q) belongs to this set to a
degree to which there are points in each fuzzy point Ai × Bi lying on the
corresponding line.

Such a definition has also a reasonable interpretation. The truth degree to
which a crisp point (x, y) belongs to a fuzzy point Ai×Bi can be understood
as a penalty which we have to pay if the line in demand goes through this
point. The greatest truth degree 1 represents no penalty and the lowest truth
degree 0 the unacceptable penalty (i.e. a line going through this point cannot
be a solution by no means). Then the truth degree to which a pair (k, q)
describing a line p belongs to the solution set can be interpreted as follows:
in each fuzzy point Ai × Bi we find the “best” point lying on p (i.e. the
point with the greatest truth degree), the truth degree of this point tells us
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how “good” this point is, and then we compute the conjunction of the truth
degrees of all these points (i.e. we have to sum all the penalties we receive
in each fuzzy point Ai × Bi). The way the penalties are summed together
depends on the chosen fuzzy logic. For instance, in the standard semantics
of  Lukasiewicz logic, where the conjunction is interpreted by the  Lukasiewicz
t-norm, the penalties are summed by the usual addition and truncated at a
maximum penalty.

Let A11, . . . , Amn and B1, . . . , Bn be fuzzy intervals (numbers). In this paper
we are going to discuss how to solve the following systems of linear equations:

A11x1 + · · ·+ A1nxn =B1 ,
...

Am1x1 + · · ·+ Amnxn =Bm .

Then the above mentioned system of linear equation from the motivational
example is in fact a special case of this general one. We can also understand
such systems of equations as systems where parameters are uncertain, only
known to belong to some given fuzzy intervals (numbers). This interpreta-
tion is further explained in Section 4. We are in fact going to generalize some
results from [20] to the fuzzy case. In particular, we will show that the fun-
damental theorem [20, Theorem 3.4] is valid also in the fuzzy case. Then we
derive a general description of the solution set for a system of linear equations
with fuzzy intervals (numbers). Finally, we use this description and compute
the exact shape of the solution set in the case when all the fuzzy intervals
appearing in the system are trapezoidal.

The paper is organized as follows: we recall the definition of Fuzzy Class
Theory which will be our main formal tool for dealing with fuzzy intervals
(numbers) and fuzzy arithmetic in Section 2. Section 3 contains some technical
results about fuzzy intervals. In Section 4, we define formally the most general
form of the solution set considered in this paper. Then we will prove the funda-
mental theorem characterizing the solutions by means of fuzzy arithmetic. In
Section 6, we describe the solution set when all parameters are quantified by
existential quantifiers (so-called united solution set). Finally, we present how
to use our results and solve a system of linear equation with fuzzy intervals of
trapezoidal shape in the logic of  Lukasiewicz t-norm.
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2 Preliminaries

2.1 Fuzzy class theory

All the results in this paper will be derived formally in fuzzy logic according
to the methodological manifesto [2]. Most of our results in this paper can be
proved in any fuzzy logic that is at least as strong and expressive as MTL∆.
Only at the end of the paper we restrict ourselves to a particular fuzzy logic.
Let F be any fuzzy propositional logic expanding MTL∆. Thus F can be for
instance Hájek’s BL,  Lukasiewicz logic, Gödel logic, or product logic (of course
all of them extended by Baaz’s delta operator ∆). For details on MTL see [9].
Details on fuzzy logics stronger than BL can be found in [10].

For dealing with fuzzy intervals we will use Fuzzy Class Theory (FCT) built
over the logic F . Originally this theory introduced in [1] was built over the
logic  LΠ. However, the definitions and basic results from [1] work in any logic
extending MTL∆ (see [3]). For convenience, we reproduce basic definitions of
Fuzzy Class Theory. Recall that from the point of view of formal logic, it can
be characterized as Henkin-style higher-order fuzzy logic.

Definition 1 (Henkin-style second-order fuzzy logic) Let F be a logic
which extends MTL∆. The Henkin-style second-order fuzzy logic over F is a
theory in multi-sorted first-order logic F∀ with sorts for atomic objects (low-
ercase variables) and classes (uppercase variables). Both of the sorts subsume
subsorts for n-tuples, for all n ≥ 1. Tuples are governed by the usual axioms
known from classical mathematics (e.g., that tuples equal iff their respective
constituents equal).

Besides the logical predicate of identity, the only primitive predicate is the
membership predicate ∈ between objects and classes. The axioms for ∈ are the
following:

(1) The comprehension axioms (∃X)∆(∀x)(x ∈ X ↔ ϕ), ϕ not containing
X, which enable the (eliminable) introduction of comprehension terms
{x | ϕ} with the axioms y ∈ {x | ϕ(x)} ↔ ϕ(y) (where ϕ may be allowed
to contain other comprehension terms).

(2) The extensionality axiom (∀x)∆(x ∈ X ↔ x ∈ Y )→ X = Y .

Convention 2 For better readability, let us make the following conventions:

• The formulae (∀x)(x ∈ X → ϕ) and (∃x)(x ∈ X & ϕ) and the comprehen-
sion terms {x | x ∈ A & ϕ} are abbreviated (∀x ∈ X)ϕ, (∃x ∈ X)ϕ, and
{x ∈ A | ϕ} respectively (similar notation can be used for defined binary
predicates).
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• The formulae ϕ& · · ·& ϕ (n times) are abbreviated ϕn.
• Let c be an atomic object. Then {c} denotes the crisp class containing only
c to degree 1, i.e. {c} = {x | x = c}.

• A chain of implications ϕ1 → ϕ2, ϕ2 → ϕ3, . . . , ϕn−1 → ϕn, for n ≥ 2,
will for short be written as ϕ1 −→ ϕ2 −→ · · · −→ ϕn; analogously for the
equivalence connective.

Most of the formal proofs in FCT which appear in this paper use the well-known
facts how the quantifiers distribute over the connectives of F∀. Since we will
use these facts without mentioning, we recall them all now.

Lemma 3 Assume that ν does not contain x freely. The following are theo-
rems of F∀:

(T∀1) (∀x)(ν → ϕ)↔ (ν → (∀x)ϕ)

(T∀2) (∀x)(ϕ→ ν)↔ ((∃x)ϕ→ ν)

(T∀3) (∃x)(ν → ϕ)→ (ν → (∃x)ϕ)

(T∀4) (∃x)(ϕ→ ν)→ ((∀x)ϕ→ ν)

(T∀5) (∀x)ϕ(x)↔ (∀y)ϕ(y)

(T∀6) (∃x)ϕ(x)↔ (∃y)ϕ(y)

(T∀7) (∃x)(ϕ& ν)↔ ((∃x)ϕ& ν)

(T∀8) (∃x)(ν ∧ ϕ)↔ (ν ∧ (∃x)ϕ)

(T∀9) (∃x)(ν ∨ ϕ)↔ (ν ∨ (∃x)ϕ)

(T∀10) (∀x)(ν ∧ ϕ)↔ (ν ∧ (∀x)ϕ)

In our proofs we will also prove by cases. The fact that this is correct follows
from the following lemma.

Lemma 4 Let T be a theory and T ` ϕ → χ, T ` ψ → χ in F∀. Then
T ` ϕ ∨ ψ → χ.

Another useful lemma states that if we know that x is equal to a term t then
we can substitute it for x in a formula ϕ(x).

Lemma 5 For an arbitrary term t substitutable for x in ϕ(x) it is provable
that

(∀x)(x = t→ ϕ(x))↔ϕ(t) , (1)

(∃x)(x = t & ϕ(x))↔ϕ(t) . (2)
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PROOF. (1) Left-to-right: by specification of x to t. Right to left: from the
identity axiom ϕ(t)→ (x = t→ ϕ(x)) by generalization on x and shifting the
quantifier.

(2) Left-to-right: from the identity axiom x = t & ϕ(x) → ϕ(t) by general-
ization on x and shifting the quantifier to the antecedent. Right to left: ϕ(t)
implies t = t & ϕ(t), which implies (∃x)(x = t & ϕ(x)).

We also recall several basic operations and relations involving fuzzy classes
which we will need in the sequel.

Definition 6 (Fuzzy class operations) The following elementary fuzzy set
operations can be defined:

∅ =df {x | 0} empty class

V =df {x | 1} universal class

Ker(X) =df {x | ∆(x ∈ X)} kernel

X ∩ Y =df {x | x ∈ X & x ∈ Y } intersection

X t Y =df {x | x ∈ X ∨ x ∈ Y } max-union

Definition 7 (Fuzzy class relations) Further we define the following ele-
mentary relations between fuzzy sets:

Hgt(X) ≡df (∃x)(x ∈ X) height

Norm(X) ≡df (∃x)∆(x ∈ X) normality

Crisp(X) ≡df (∀x)∆(x ∈ X ∨ x /∈ X) crispness

X ⊆ Y ≡df (∀x)(x ∈ X → x ∈ Y ) inclusion

X ≈Y ≡df (∀x)(x ∈ X ↔ x ∈ Y ) weak bi-inclusion

X ‖ Y ≡df (∃x)(x ∈ X & x ∈ Y ) compatibility

Lemma 8 The following formulas are provable in F∀:

(1) A ⊆ B → B≈A tB.
(2) ∆(A ⊆ B)→ B = A tB.
(3) Crisp(A)→ A ∩ A = A.

(4)
⋂m

i=1

(⊔n
j=1Aij

)
=
⊔n

j1=1 · · ·
⊔n

jm=1 (
⋂m

i=1Aiji
).

PROOF. In the whole proof we use the techniques developed in [1, Theorems
33 and 35] without mentioning. The following propositional formula is provable
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in F : (ϕ → ψ) → (ϕ ∨ ψ ↔ ψ). Thus the first statement holds. Further, by
necessitation we get ∆(ϕ → ψ) → ∆(ϕ ∨ ψ ↔ ψ) which proves the second
statement. The third formula follows from the valid propositional formula
∆(ϕ ∨ ¬ϕ)→ ∆(ϕ↔ ϕ2).

For the last statement we have &m
i=1

∨n
j=1 ϕij ↔ &m

i=1

∨n
ji=1 ϕiji

. Since &
distributes over ∨ (i.e., ϕ & (ψ ∨ χ) ↔ (ϕ & ψ) ∨ (ϕ & χ)), we obtain &m

i=1∨n
ji=1 ϕiji

↔ ∨n
j1=1 · · ·

∨n
jm=1 &m

i=1 ϕiji
.

2.2 Fuzzy (interval) arithmetic

Our intended universal class V of all objects is the set of real numbers R
endowed with the usual structure of an ordered field. However, almost all our
results hold over any ordered field. The field operations and the order between
objects will be denoted in the usual way, i.e. x+y, x−y, x ≤ y, etc. Formally,
one can consider that we are working within FCT extended by axioms and
language of the theory of real closed fields. The way how to do this precisely
is described in [1, Section 6].

Definition 9 The following arithmetical operations and relations can be de-
fined by Zadeh’s extension principle for any fuzzy classes A, B, and a real
number k:

A+B =df {z | (∃x ∈ A)(∃y ∈ B)(z = x+ y)} addition

A−B =df {z | (∃x ∈ A)(∃y ∈ B)(z = x− y)} substraction

kA =df Ak =df {z | (∃x ∈ A)(z = kx)} scalar multiplication

A ≤ B ≡df (∃x ∈ A)(∃y ∈ B)(x ≤ y) order

Lemma 10 The following are well-known facts from fuzzy arithmetic:

(1) A−B = A+ (−1)B.
(2) A+ {0} = A.
(3) 0A = {0}.

Convention 11 Tuples of elements of the universe and tuples of fuzzy classes
are denoted by ~x, ~y, ~z, . . . and ~A, ~B, ~C, . . . respectively. Matrices of elements are
denoted by A,B,C, . . . and matrices of fuzzy classes by boldface capital letters
A,B,C, . . .

Let A = (Aij) be an m × n matrix of fuzzy classes. Then (∀A ∈ A)ϕ stands
for (∀a11 ∈ A11) · · · (∀amn ∈ Amn)ϕ. Further, the formula (∃A ∈ A)ϕ stands
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for (∃a11 ∈ A11) · · · (∃amn ∈ Amn)ϕ. We use the analogous conventions also
for tuples of fuzzy classes.

Finally, let us introduce basic definitions on tuples of fuzzy classes. Let ~A =
〈A1, . . . , An〉 and ~B = 〈B1, . . . , Bn〉 be tuples of fuzzy classes and ~z = 〈z1, . . . , zn〉
be a tuple of real numbers. Then we define

~z ∈ ~A ≡df &n
i=1 zi ∈ Ai

~A ⊆ ~B ≡df (∀~z)(~z ∈ ~A→ ~z ∈ ~B) ,

where (∀~z)ϕ ≡df (∀z1) · · · (∀zn)ϕ. If we expand the definitions, we obtain:

~A ⊆ ~B ←→ (∀z1) · · · (∀zn) (&n
i=1 zi ∈ Ai → &n

i=1 zi ∈ Bi) .

Observe that the right hand side of the last formula is equivalent to

(∀z1 ∈ A1) · · · (∀zn ∈ An)(&n
i=1 zi ∈ Bi) .

The addition and substraction of matrices or vectors of fuzzy classes is defined
componentwise by means of Definition 9. The multiplication of anm×nmatrix
A = (Aij) with a vector ~x = 〈x1, . . . , xn〉 is defined as follows:

A~x =


A11x1 + · · ·+ A1nxn

...

Am1x1 + · · ·+ Amnxn

 .

3 Fuzzy intervals

In this section we are going to introduce the notion of a fuzzy interval and
prove a couple of technical results on them. The proofs of the statements are
usually easy but they may serve for a reader as a good illustration how Fuzzy
Class Theory works.

A fuzzy class A is said to be convex to the degree to which the following
formula holds:

Convex(A) ≡df (x ∈ A & y ∈ A & x ≤ z ≤ y)→ z ∈ A ,

where x ≤ z ≤ y stands for x ≤ z & z ≤ y.
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Definition 12 Let A be a fuzzy class. The degree of A being a fuzzy interval
is given by the following formula:

FInt(A) ≡df Norm(A) & Convex(A) .

Fuzzy classes which are fully fuzzy intervals can be characterized by means
of its down-class and up-class. A down-class and an up-class generated by a
class A are defined as follows:

A↓ =df {x | (∃a ∈ A)(x ≤ a)} ,

A↑ =df {x | (∃a ∈ A)(x ≥ a)} .

Theorem 13 Let A be a normal class. Then A is fully convex iff A = A↓∩A↑,
i.e.,

Norm(A)→ (∆ Convex(A)↔ A = A↓ ∩ A↑) .

PROOF. Let b be the element such that ∆(b ∈ A). Suppose that ∆ Convex(A)
holds. Then we have to show that

x ∈ A←→ x ∈ A↓ ∩ A↑ .

Observe that

x ∈ A↓ ∩ A↑ ←→ (∃a ∈ A)(x ≤ a) & (∃a′ ∈ A)(x ≥ a′) .

Clearly, if x ≤ b then ∆(∃a ∈ A)(x ≤ a) otherwise ∆(∃a′ ∈ A)(x ≥ a′). As-
sume that x ≥ b (the case for x ≤ b is analogous). Then x ∈ A↓∩A↑ ↔ x ∈ A↓.
Thus we have to show that x ∈ A↔ x ∈ A↓. Firstly, we have

x ∈ A←→ x ∈ A & x ≤ x −→ (∃a ∈ A)(x ≤ a)←→ x ∈ A↓ .

Conversely, we get from the convexity, normality of A, and our assumption
x ≥ b that

(b ∈ A & a ∈ A & b ≤ x ≤ a→ x ∈ A)←→ (a ∈ A & x ≤ a→ x ∈ A) .

Thus by generalization we obtain

(∀a)(a ∈ A & x ≤ a→ x ∈ A)←→ ((∃a ∈ A)(x ≤ a)→ x ∈ A)←→ (x ∈ A↓ → x ∈ A) .

Now, suppose that A = A↓ ∩ A↑. We have to show that A is convex. Assume
that z ≥ b. Then z ∈ A↔ z ∈ A↓ and we have

x ∈ A & y ∈ A & x ≤ z ≤ y −→ y ∈ A & z ≤ y −→ (∃a ∈ A)(z ≤ a)←→ z ∈ A↓ .

The case for z ≤ b is completely analogous. 2
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Corollary 14 Each fuzzy interval A to degree 1 is equal to the intersection
of its down-class and up-class, i.e.,

∆ FInt(A)→ A = A↓ ∩ A↑ .

Fuzzy intervals (to degree 1) are also closed under the arithmetical operations.

Lemma 15 Let A,B be fuzzy classes. Then

∆ FInt(A) & ∆ FInt(B)→ ∆ FInt(A+B) .

PROOF. We have to show that Norm(A+B) and ∆ Convex(A+B) hold. The
first condition is obvious. Let ∆(a ∈ A) and ∆(b ∈ B). Then ∆(a+b ∈ A+B).
Now, assume that a ≤ a′ and b ≤ b′. Then we have the following implication:

x = a+b & y = a′+b′ & x ≤ z ≤ y → z = a0+b0 & a ≤ a0 ≤ a′ & b ≤ b0 ≤ b′ ,
(3)

where

a0 = a+
z − x
y − x

(a′ − a) , b0 = b+
z − x
y − x

(b− b′) .

From the implication in Equation (3) we can derive:

a ∈ A & b ∈ B & a′ ∈ A & b′ ∈ B & x = a+ b & y = a′ + b′ & x ≤ z ≤ y →
a ∈ A & b ∈ B & a′ ∈ A & b′ ∈ B & z = a0+b0 & a ≤ a0 ≤ a′ & b ≤ b0 ≤ b′ .

Recall that a ∈ A & a′ ∈ A & a ≤ a0 ≤ a′ → a0 ∈ A and b ∈ B & b′ ∈ B &
b ≤ b0 ≤ b′ → b0 ∈ B since A,B are fully convex. Using this and transitivity
we obtain:

a ∈ A & b ∈ B & a′ ∈ A & b′ ∈ B &

x = a+ b & y = a′ + b′ & x ≤ z ≤ y → a0 ∈ A & b0 ∈ B & z = a0 + b0 .

Finally

a0 ∈ A & b0 ∈ B & z = a0+b0 −→ (∃c)(∃d)(c ∈ A & d ∈ B & z = c+d)←→ z ∈ A+B .

Thus we get

a ∈ A & b ∈ B & a′ ∈ A & b′ ∈ B &

x = a+ b & y = a′ + b′ & x ≤ z ≤ y → z ∈ A+B .

12



By generalization we get:

(∃a ∈ A)(∃b ∈ B)(x = a+ b) &

(∃a′ ∈ A)(∃b′ ∈ B)(y = a′ + b′) & x ≤ z ≤ y → z ∈ A+B ←→
(x ∈ A+B & y ∈ A+B & x ≤ z ≤ y → z ∈ A+B)←→

∆ Convex(A+B)

The proofs of other cases when a > a′ or b > b′ are completely analogous with
the roles of a and a′, or b and b′ interchanged. 2

Lemma 16 Let A be a fuzzy class and k a real number. Then

∆ FInt(A)→ ∆ FInt(kA) .

PROOF. The normality of kA is easy. Let us prove ∆ Convex(kA). If k = 0
then it is obvious since {0} is clearly fully convex. We will do it for k < 0 (the
case for k > 0 is analogous). The following formula is valid:

x ≤ z ≤ y −→ y

k
≤ z

k
≤ x

k
.

We also have x ∈ kA↔ x/k ∈ A. Putting these together we obtain

x ∈ kA & y ∈ kA & x ≤ z ≤ y −→ x

k
∈ A &

y

k
∈ A &

y

k
≤ z

k
≤ x

k
.

By convexity of A we get

x

k
∈ A &

y

k
∈ A &

y

k
≤ z

k
≤ x

k
−→ z

k
∈ A .

Finally,

z

k
∈ A −→ z

k
∈ A & z = k

z

k
−→ (∃a ∈ A)(z = ka)←→ z ∈ kA .

Thus the proof is done by transitivity. 2

The remaining lemmata in this section will be stated without proofs since the
proofs are easy and purely syntactical. A reader can find them in the appendix.

Lemma 17 The following hold for any fuzzy classes A,B:

A↓ +B↓ = (A+B)↓ , A↑ +B↑ = (A+B)↑ .

Lemma 18 Let A be a fuzzy class and k ∈ R. If k > 0 then (kA)↓ = kA↓ and
(kA)↑ = kA↑. If k < 0 then (kA)↓ = kA↑ and (kA)↑ = kA↓.
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Note that if k = 0 then kA↓ = {0} and (kA)↓ = {0}↓ = (−∞, 0] (analogously
for up-classes).

Lemma 19 Let A,B be fuzzy classes. Then the following is provable in FCT:

(1) A ≤ B ↔ A↑ ‖ B↓,
(2) 0 ∈ B↓ − A↑ ↔ A ≤ B and 0 ∈ B↑ − A↓ ↔ B ≤ A,
(3) A↓ + {0}↓ = A↓ and A↑ + {0}↑ = A↑,
(4) {0}↑ ‖ B↓ ↔ {0} ‖ B↓ and {0}↓ ‖ B↑ ↔ {0} ‖ B↑.

4 Fuzzy interval linear system and its solution set

In this section we formally define the solution set of a system of linear equa-
tions with uncertain parameters, i.e., the parameters which are known to be-
long to given fuzzy classes. Our intention is of course that these classes will
be fuzzy intervals. However, some of our results hold generally for any fuzzy
classes. Thus we define the solution set for arbitrary fuzzy classes.

Definition 20 Let A = (Aij) be an m× n matrix of fuzzy classes (intervals)

and ~B = 〈B1, . . . , Bn〉 be an n-tuple of fuzzy classes (intervals). Then the

system A~x = ~B is called fuzzy (interval) linear system.

Thus a system of linear equations with fuzzy classes is called a fuzzy linear
system whereas the system with fuzzy intervals is called a fuzzy interval linear
system.

The most common approach (in classical interval analysis) how to define a

solution set Ξuni(A, ~B) of a fuzzy linear system A~x = ~B is in fact the one
which we described in the introduction, i.e.

Ξuni(A, ~B) =df {~x | (∃a11 ∈ A11) · · · (∃amn ∈ Amn)(∃b1 ∈ B1) · · · (∃bn ∈ Bn)(A~x = ~b)} .

Note that all parameters a11, . . . , amn, b1, . . . , bn are independent. The sub-
script “uni” refers to the fact that this solution set is usually called united
solution set. It is usually written in a simplified form as follows:

Ξuni(A, ~B) =df {~x | (∃A ∈ A)(∃~b ∈ ~B)(A~x = ~b)} .

However it turns out that usage of the universal quantifiers in the definition is
also meaningful. We will shortly present the main motivation for this coming
from the very nice paper [20] on classical interval analysis. Consider a system
which is to be controlled. This system is described by a system of linear equa-
tions A~x = ~b. Suppose that the entries of A corresponds to the inputs of the

14



system and ~b to its outputs. Both inputs and outputs can be of two sorts. In
the set of inputs we distinguish between

• perturbations: the inputs on which we have no influence (e.g. noise, unknown
material parameter, etc.), but we know that they belong to given fuzzy
classes,
• controls: the inputs intended for a controller. We can set them arbitrarily

but we are restricted by some constraints, i.e., they can be choosen only
within given fuzzy classes.

In the set of outputs we distinguish between

• stabilized: the outputs which should be stabilized into given fuzzy classes
(e.g. temperature of a heating),
• controlled: the outputs to which we must be able to attain any given values

from prescribed fuzzy classes (e.g. it must be possible to put a robot’s arm
into any place in its operational space).

The vector ~x corresponds to a state of the system. Now we are interested in
those states ~x for which for any perturbations and for any values of controlled
outputs from the prescribed fuzzy classes, there exist suitable controls such
that the stabilized outputs are within the given fuzzy classes and the controlled
outputs attain the desired values. Such fuzzy class of vectors ~x will be for us
the most general solution set of a fuzzy linear system.

Let A~x = ~B be a fuzzy linear system. In order to express formally the most
general definition of the solution set of A~x = ~B, let us index the elements in
A by one index i ∈ {1, . . . ,mn}, i.e.,

A =


A1 · · · An

...
. . .

...

An(m−1)+1 · · · Amn

 .

Further, let π be a permutation on the set {1, . . . ,mn} and σ a permutation
on the set {1, . . . , n}. Finally, let k ∈ {1, . . . ,mn} be the number of elements
from A corresponding to the perturbations and s ∈ {1, . . . , n} the number

of elements from ~B corresponding to the controlled outputs. Then the most
general definition of the solution set considered in this paper can be written
as follows:

Ξ(A, ~B) = {~x | (∀aπ(1) ∈ Aπ(1)) · · · (∀aπ(k) ∈ Aπ(k))

(∀bσ(1) ∈ Bσ(1)) · · · (∀bσ(s) ∈ Bσ(s))

(∃aπ(k+1) ∈ Aπ(k+1)) · · · (∃aπ(mn) ∈ Aπ(mn))

(∃bσ(s+1) ∈ Bσ(s+1)) · · · (∃bσ(n) ∈ Bσ(n))(A~x = ~b)} , (4)
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where A =


a1 · · · an

...
. . .

...

an(m−1)+1 · · · amn

 and ~b = 〈b1, . . . , bn〉.

Observe that the definition of the solution set could be further generalized
since the universal quantifier does not generally commute with the existential
one. Thus in a more general definition we could even consider different or-
ders of quantifiers appearing in the comprehension term. However we restrict
here ourselves to the case when all universal quantifiers are followed by the
existential ones.

Example 21 Let A =

A1 A2

A3 A4

 and ~B = 〈B1, B2〉. Then one of the possible

solution sets could be the following fuzzy class:

Ξ(A, ~B) = {~x | (∀a2 ∈ A2)(∀a3 ∈ A3)(∀b2 ∈ B2)(∃a1 ∈ A1)(∃a4 ∈ A4)(∃b1 ∈ B1)(A~x = ~b)} ,

where A =

 a1 a2

a3 a4

 and ~b = 〈b1, b2〉.

In order to simplify the formula describing the solution set, we split the matrix
A and the tuple ~B into two disjoint parts according to the quantifiers. We
define A∀ = (A∀

ij), A∃ = (A∃
ij), ~B

∀ = (B∀
i ), and ~B ∃ = (B∃

i ), where

A∀
ij =

Aij if Aij should be quantified by ∀,
{0} otherwise,

A∃
ij =

Aij if Aij should be quantified by ∃,
{0} otherwise,

B∀
i =

Bi if Bi should be quantified by ∀,
{0} otherwise,

B∃
i =

Bi if Bi should be quantified by ∃,
{0} otherwise.

Then we have A = A∀+A∃, ~B = ~B ∀+ ~B ∃. Now we can write down the formal
definition of the solution set.

Definition 22 Let (A∀ + A∃)~x = ~B ∀ + ~B ∃ be a fuzzy linear system. Then its
solution set is the following fuzzy class:

Ξ(A∀,A∃, ~B ∀, ~B ∃) =df {~x | ((∀U ∈ A∀)(∀~u ∈ ~B ∀)(∃E ∈ A∃)(∃~e ∈ ~B ∃)((U+E)~x = ~u+~e)} .
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The fact that this definition is equivalent to that given by the formula (4)
follows from Lemma 5 for t = 0 and the fact that x ∈ {0} ←→ x = 0.

5 Fundamental theorem

In this section we are going to generalize the fundamental theorem [20, The-
orem 3.4] from classical logic to fuzzy logic. The theorem characterizes the
solutions by means of the arithmetic defined on fuzzy classes in Subsection 2.2.

Theorem 23 (Fundamental theorem) Let (A∀ + A∃)~x = ~B ∀ + ~B ∃ be a

fuzzy linear system. Then a vector ~x belongs to the solution set Ξ(A∀,A∃, ~B ∀, ~B ∃)

to the same degree as the formula A∀~x− ~B ∀ ⊆ ~B ∃ −A∃~x holds, i.e.,

~x ∈ Ξ(A∀,A∃, ~B ∀, ~B ∃)←→ A∀~x− ~B ∀ ⊆ ~B ∃ −A∃~x .

The operations in A∀~x − ~B ∀ and ~B ∃ − A∃~x are the arithmetical operations
defined on matrices and tuples of fuzzy classes in Subsection 2.2.

PROOF. We start with the definition of the solution set Ξ(A∀,A∃, ~B ∀, ~B ∃)
and we get the following chain of equivalences:

~x ∈ Ξ(A∀,A∃, ~B ∀, ~B ∃)←→
(∀U ∈ A∀)(∀~u ∈ ~B ∀)(∃E ∈ A∃)(∃~e ∈ ~B ∃)((U + E)~x = ~u+ ~e)←→
(∀U ∈ A∀)(∀~u ∈ ~B ∀)(∃E ∈ A∃)(∃~e ∈ ~B ∃)(U~x− ~u = ~e− E~x)←→
(∀U ∈ A∀)(∀~u ∈ ~B ∀)(∃E ∈ A∃)(∃~e ∈ ~B ∃)(&n

i=1 Ui~x− ui = ei − Ei~x) ,

where Ui is the i-th row of U and similarly for Ei. The i-th component of
~u (resp. ~e) is denoted by ui (resp. ei). Finally Ui~x is just multiplication of
one-row matrix by the vector ~x.

Since the existential quantifier distributes over &, we get

(∀U ∈ A∀)(∀~u ∈ ~B ∀)
(
&n

i=1 (∃Ei ∈ A∃
i)(∃ei ∈ B ∃

i )(Ui~x− ui = ei − Ei~x)
)
←→

(∀U ∈ A∀)(∀~u ∈ ~B ∀)
(
&n

i=1 Ui~x− ui ∈ B ∃
i −A∃

i~x
)
←→

(∀U ∈ A∀)(∀~u ∈ ~B ∀)(U~x− ~u ∈ ~B ∃ −A∃~x) , (5)

where A∃
i is the i-th row of A and B ∃

i is the i-th component of ~B ∃.

On the other hand, we have that A∀~x− ~B ∀ ⊆ ~B ∃ −A∃~x is equivalent to

(∀z1 ∈ A∀
1~x−B ∀

1 ) · · · (∀zn ∈ A∀
n~x−B ∀

n )(&n
i=1 zi ∈ B ∃

i −A∃
i~x) ,
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Consider the following part of the previous formula

(∀zn ∈ A∀
n~x−B ∀

n )(&n
i=1 zi ∈ B ∃

i −A∃
i~x)←→

(∀zn)(zn ∈ A∀
n~x−B ∀

n → (&n
i=1 zi ∈ B ∃

i −A∃
i~x))←→

(∀zn)
(
(∃Un ∈ A∀

n)(∃un ∈ B ∀
n )(zn = Un~x− un)→ (&n

i=1 zi ∈ B ∃
i −A∃

i~x)
)
.

We can shift the existential quantifiers outside the bracket, i.e. we get

(∀zn)(∀Un)(∀un)
(
Un ∈ A∀

n & un ∈ B ∀
n & zn = Un~x− un → (&n

i=1 zi ∈ B ∃
i −A∃

i~x)
)
←→

(∀Un)(∀un)
(
Un ∈ A∀

n & un ∈ B ∀
n → (∀zn)

(
zn = Un~x− un → (&n

i=1 zi ∈ B ∃
i −A∃

i~x)
))

.

By Lemma 5 for t = Un~x− un, we get

(∀zn)
(
zn = Un~x− un → (&n

i=1 zi ∈ B ∃
i −A∃

i~x)
)
←→

Un~x− un ∈ B ∃
n −A∃

n~x & (&n−1
i=1 zi ∈ B ∃

i −A∃
i~x) .

Thus we obtain

(∀Un ∈ A∀
n)(∀un ∈ B ∀

n )
(
Un~x− un ∈ B ∃

n −A∃
n~x & (&n−1

i=1 zi ∈ B ∃
i −A∃

i~x)
)
.

Then we can use the same procedure to eliminate (∀zi ∈ A∀
i~x− ~B ∀

i ) for each
i < n and finally we end up with

(∀U1 ∈ A∀
1) · · · (∀Un ∈ A∀

n)(∀u1 ∈ B ∀
1 ) · · · (∀un ∈ B ∀

n )(&n
i=1 Ui~x−ui ∈ B ∃

i −A∃
i~x) .

The last formula is equivalent to

(∀U ∈ A∀)(∀~u ∈ ~B ∀)(U~x− ~u ∈ ~B ∃ −A∃~x) ,

which is the same formula as the last formula in Equation (5). 2

6 United solution set

The fundamental theorem serves as a good starting point for computing the
solution set. Although it works for arbitrary fuzzy classes, we will restrict
ourselves to fuzzy intervals in the rest of the paper. This restriction is necessary
if we want to obtain results like in the classical interval analysis.

The second restriction we make in this section concerns the quantifiers in the
definition of solution set. More precisely, we are going to describe the solution
set for a fuzzy interval linear system in the case when all the quantifiers ap-
pearing in the system are existential. This restriction allows us to separate the
particular equations in the computation of the solution set. This means that
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we can find the solutions for each equation separately and then the resulting
solution set is just their intersection. This is not possible in general and it is
necessary to solve the whole system simultaneously (see also Section 9). We
leave this issue to forthcoming papers.

Assume that all quantifiers in Definition 22 of the solution set are existential.
Then A∀ is the matrix of crisp fuzzy classes {0} and the same holds for ~B ∀.

Thus we will denote the solution set in this case by Ξ(A∃, ~B ∃) and call it
the united solution set as in classical interval analysis. From the fundamental
theorem we get

x ∈ Ξ(A∃, ~B ∃)←→


{0}

...

{0}

 ⊆ ~B ∃ −A∃~x ,

The last formula is equivalent to

(∀z1) · · · (∀zn)(&n
i=1 zi ∈ {0} → &n

i=1 zi ∈ B ∃
i −A∃

i~x)←→
(∀z1) · · · (∀zn)(&n

i=1 zi = 0→ &n
i=1 zi ∈ B ∃

i −A∃
i~x)←→

&n
i=1 0 ∈ B ∃

i −A∃
i~x .

Thus when we compute the solution set in this case it is sufficient to find
the fuzzy class of ~x satisfying 0 ∈ B ∃

i − A∃
i~x for each i and then take their

intersection. Note that generally this does not work when some of the entries
of A or ~B are quantified by the universal quantifier as we already mentioned
at the beginning of this section.

Since B ∃
i −A∃

i~x is a fuzzy interval (to degree 1) by Lemmata 15 and 16, we
get B ∃

i −A∃
i~x = (B ∃

i −A∃
i~x)↓ ∩ (B ∃

i −A∃
i~x)↑ due to Corollary 14. Thus thanks

to Lemma 19(2) and Lemma 19(1), we obtain

0 ∈ B ∃
i −A∃

i~x←→ 0 ∈ (B ∃
i −A∃

i~x)↓ ∩ (B ∃
i −A∃

i~x)↑ ←→
0 ∈ (B ∃

i )↓ − (A∃
i~x)↑ & 0 ∈ (B ∃

i )↑ − (A∃
i~x)↓ ←→

A∃
i~x ≤ B ∃

i & B ∃
i ≤ A∃

i~x←→
(A∃

i~x)↑ ‖ (B ∃
i )↓ & (B ∃

i )↑ ‖ (A∃
i~x)↓ .

Let us introduce the following classes:

Hd
i = {~x | (A∃

i~x)↑ ‖ (B ∃
i )↓} , Hu

i = {~x | (A∃
i~x)↓ ‖ (B ∃

i )↑} .

Then the solution set can be expressed as follows:

Ξ(A∃, ~B ∃) =
m⋂

i=1

(Hd
i ∩Hu

i ) . (6)
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Let K = {↑, ↓}n be the set of all sequences of symbols ↑, ↓ whose length is
n. The j-th component of k ∈ K will be denoted by kj. Further, we define
εjk = 1 if kj =↑ and −1 otherwise. Let Qk, k ∈ K, be the family of all orthants
of Rn, i.e., we have for each Qk:

Qk = {~x ∈ Rn | ε1kx1 ≥ 0 & · · · & εnkxn ≥ 0} ,

where xj stands for the j-th component of ~x. Each Qk is obviously crisp.
Observe also that for ~x ∈ Qk we have xj ≥ 0 if kj =↑ and x ≤ 0 if kj =↓.

Lemma 24 Let k ∈ K. Then

~x ∈ Qk →

(A∃
i~x)↑ ‖ (B ∃

i )↓ ↔

 n∑
j=1

A
kj

ij xj

 ‖ (B ∃
i )↓

 ,

~x ∈ Qk →

(A∃
i~x)↓ ‖ (B ∃

i )↑ ↔

 n∑
j=1

A
−kj

ij xj

 ‖ (B ∃
i )↑

 ,

where

−kj =

↓ if kj =↑ ,
↑ if kj =↓ .

PROOF. If ~x = ~0 then A∃
i~x =

∑n
j=1A

kj

ij xj =
∑n

j=1A
−kj

ij xj = {0} and the

both statements follow from Lemma 19(4). Let ~x ∈ Qk and ~x 6= ~0. Consider
the following formula:

(A∃
i~x)↑ =

 n∑
j=1

Aijxj

↑

.

We would like to distribute ↑ over the sum. It follows from Lemma 18 that we
can do it only in the case when xj 6= 0. In fact it is sufficient that at least for
one j we have xj 6= 0 (i.e., ~x 6= ~0). Then

(A∃
i~x)↑ =

∑
xj 6=0

Aijxj

↑

=
∑
xj 6=0

A
kj

ij xj + {0} =
∑
xj 6=0

A
kj

ij xj+
∑
xj=0

A
kj

ij xj =
n∑

j=1

A
kj

ij xj .

Similarly, if at least one xj 6= 0 then we have

(A∃
i~x)↓ =

n∑
j=1

A
−kj

ij xj . 2
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Let us define the following fuzzy classes:

Sd
ik = {~x | (

n∑
j=1

A
kj

ij xj) ‖ (B ∃
i )↓} , Su

ik = {~x | (
n∑

j=1

A
−kj

ij xj) ‖ (B ∃
i )↑} .

Due to the latter lemma, the classes Hd
i and Hu

i in any orthant Qk can be
described by means of Sd

ik and Su
ik respectively. Consequently, we obtain the

following lemma.

Lemma 25

Hd
i =

⊔
k∈K

(Qk ∩ Sd
ik) , Hu

i =
⊔

k∈K

(Qk ∩ Su
ik) .

PROOF. By Lemma 24 we have ~x ∈ Qk → (~x ∈ Hd
i ↔ ~x ∈ Sd

ik). Thus
~x ∈ Qk & ~x ∈ Sd

ik → ~x ∈ Hd
i for each k. Consequently,

∨
k∈K(~x ∈ Qk & ~x ∈

Sd
ik)→ ~x ∈ Hd

i . Hence

~x ∈
⊔

k∈K

(Qk ∩ Sd
ik)←→

∨
k∈K

(~x ∈ Qk & ~x ∈ Sd
ik) −→ ~x ∈ Hd

i .

On the other hand, we have ~x ∈ Qk & ~x ∈ Hd
i → ~x ∈ Sd

ik by Lemma 24. Thus
(~x ∈ Qk)2 & ~x ∈ Hd

i → ~x ∈ Qk & ~x ∈ Sd
ik. Since Crisp(Qk) holds for each k,

we get (~x ∈ Qk)2 ↔ ~x ∈ Qk. Consequently,

~x ∈ Hd
i ←→ ~x ∈ Hd

i &
∨

k∈K

(~x ∈ Qk)←→∨
k∈K

(~x ∈ Qk & ~x ∈ Hd
i ) −→

∨
k∈K

(~x ∈ Qk & ~x ∈ Sd
ik)←→ ~x ∈

⊔
k∈K

(Qk ∩ Sd
ik) .

The proof of the second statement is analogous. 2

From the latter lemma we obtain the final description of the united solution
set.

Theorem 26

Ξ(A∃, ~B ∃) =
⊔

k∈K

(
m⋂

i=1

(Qk ∩Wik)

)
,

where Wik = Sd
ik ∩ Su

ik and

Sd
ik = {~x | (

n∑
j=1

A
kj

ij xj) ‖ (B ∃
i )↓} , Su

ik = {~x | (
n∑

j=1

A
−kj

ij xj) ‖ (B ∃
i )↑} .
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PROOF. By Lemma 25 it follows from Equation (6)

Ξ(A∃, ~B ∃) =
m⋂

i=1

 ⊔
k∈K

(Qk ∩ Sd
ik) ∩

⊔
l∈K

(Ql ∩ Su
il)

 =

m⋂
i=1

 ⊔
k∈K

⊔
l∈K

(Qk ∩ Sd
ik ∩Ql ∩ Su

il)

 .

Observe that ~x ∈ Qk ∩Ql iff xj = 0 for all 1 ≤ j ≤ n such that kj 6= lj. Thus
we get Sd

ik ∩Qk ∩Ql = Sd
il ∩Qk ∩Ql and Su

ik ∩Qk ∩Ql = Su
il ∩Qk ∩Ql because

xj = 0 when kj 6= lj and −kj 6= −lj. Consequently,

Qk ∩Sd
ik ∩Ql∩Su

il = Qk ∩Sd
ik ∩Ql∩Su

ik ⊆ Qk ∩Sd
ik ∩Su

ik = Qk ∩Sd
ik ∩Qk ∩Su

ik .

The last equality follows from the fact that each Qk is crisp. Hence the only
interesting combinations of k, l are cases when k = l. Thus⊔

k∈K

⊔
l∈K

(Qk ∩ Sd
ik ∩Ql ∩ Su

il) =
⊔

k∈K

(Qk ∩ Sd
ik ∩ Su

ik) .

Now we have

Ξ(A∃, ~B ∃) =
m⋂

i=1

 ⊔
k∈K

(Qk ∩ Sd
ik ∩ Su

ik)

 =
m⋂

i=1

 ⊔
ki∈K

(Qki
∩ Sd

iki
∩ Su

iki
)

 =

⊔
k1∈K

· · ·
⊔

km∈K

(
m⋂

i=1

(Qki
∩ Sd

iki
∩ Su

iki
)

)
.

Whenever ki 6= kj then using the same argument as above we get

Qki
∩Qkj

∩ Sd
iki
∩ Su

iki
∩ Sd

jkj
∩ Su

jkj
=

Qki
∩Qkj

∩ Sd
ikj
∩ Su

ikj
∩ Sd

jkj
∩ Su

jkj
⊆ Qkj

∩ Sd
ikj
∩ Su

ikj
∩ Sd

jkj
∩ Su

jkj
=

Qkj
∩Qkj

∩ Sd
ikj
∩ Su

ikj
∩ Sd

jkj
∩ Su

jkj
.

Hence all intersections for at least one pair of different indices ki are subsets
of an intersection when all indices ki are the same, i.e. k1 = · · · = km. Thus it
is sufficient to make the union over only one index k.

Ξ(A∃, ~B ∃) =
⊔

k1∈K

· · ·
⊔

km∈K

(
m⋂

i=1

(Qki
∩ Sd

iki
∩ Su

iki
)

)
=

⊔
k∈K

(
m⋂

i=1

(Qk ∩Wik)

)
.

2

Thus if we want to find the united solution of a fuzzy interval system, it
is sufficient to compute the solution independently in each orthant, i.e., to
compute

⋂m
i=1(Qk ∩Wik), and then just make the union of all results. In order
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to compute the solution in an orthant, we have to be able to express any linear
combination of up-classes (resp. down-classes) in the evaluation of Sd

ik and Su
ik,

and to compute the degree of compatibility of any pair of an up-class and a
down-class in the evaluation of Wik.

Remark 27 Theorem 26 is also related to [20, Theorem 3.6].Let (A∀+A∃)~x =
~B ∀ + ~B ∃ be a classical interval linear system. Then [20, Theorem 3.6] states

that the solution set Ξ(A∀,A∃, ~B ∀, ~B ∃) in each orthant forms a convex poly-

hedron defined by a usual system of linear inequalities C~x ≤ ~d where entries
in C lie among the bounds of intervals appearing in A∀ + A∃, and entries of
~d among the bounds of intervals appearing in ~B ∀ + ~B ∃. This results when A∀

and ~B ∀ consist of the crisp singletons {0}, i.e. all quantifiers in Definition 22
of the solution set are existential, was already proved in [18].

A generalization of this special case is presented in fact in Theorem 26. It
is clear that unlike the crisp intervals, a fuzzy interval need not have a crisp
lower-bound and upper-bound. Nevertheless, we can replace them respectively
by its down-class and up-class. Then note that Theorem 26 is in fact of the
same shape as [20, Theorem 3.6]. It tells us that a solution set in a given
orthant Qk is determined by a system of linear inequalities since ‖ can be
replaced by ≤ by Lemma 19. The only difference is that we have to use the
down-classes and up-classes instead of the bounds of crisp intervals.

7 United solution set for trapezoidal fuzzy intervals in  Lukasiewicz
logic

In this section, we want to demonstrate how to use the results from the previ-
ous section for computing concrete solution sets. For this purpose we have to
restrict ourselves to one concrete logic (we choose  Lukasiewicz logic) and one
special type of fuzzy intervals (namely those which are known in the literature
under the name trapezoidal fuzzy numbers). Of course it is possible to do it
for other logics like Gödel 2 or product logic but the concrete solution depends
on the chosen logic so that we can choose only one logic in order to keep the
paper in a reasonable size. We also assume that all crisp intervals are closed.

We will work with the standard semantics of  Lukasiewicz logic, i.e., with
the standard MV-algebra on [0, 1]. Thus all the predicates can be viewed as
[0, 1]-valued functions on reals, & is interpreted as  Lukasiewicz t-norm, → as

2 In Gödel logic we have even a stronger relation to classical interval analysis. Since
the fuzzy interval arithmetic in Gödel logic behaves on each α-cut like classical
interval arithmetic, we can compute in this case any α-cut of the solution set of a
fuzzy interval linear system by the same methods as in the classical case.
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the corresponding residuum, ∧,∨ as min and max respectively.

We firstly introduce some notation for dealing with the chosen fuzzy intervals.
Let f : R→ R be a function. We define its truncation [f ]10 = (f ∨ 0) ∧ 1.

Lemma 28 Let f, g be functions from R to R. Then [f ]10 ∨ [g]10 = [f ∨ g]10.

PROOF. By distributivity of ∨ and ∧ we get

[f ]10∨[g]10 = ((f∨0)∧1)∨((g∨0)∧1) = ((f∨0∨g∨0)∧1 = ((f∨g)∨0)∧1 = [f ∨ g]10 .

2

The trapezoidal fuzzy intervals form a certain subset of piecewise linear [0, 1]-valued
functions. We firstly define their up-classes and down-classes. Let d > 0. Then

/a, d/(t) =
[(
t− a
d

+ 1
)]1

0
=


1 if t ≥ a ,
t−a
d

+ 1 if a− d ≤ t ≤ a ,

0 otherwise,

\a, d\(t) =
[(
a− t
d

+ 1
)]1

0
=


1 if t ≤ a ,
a−t
d

+ 1 if a ≤ t ≤ a+ d ,

0 otherwise.

For d = 0 we define

/a, 0/(t) =

1 if t ≥ a ,

0 otherwise,
\a, 0\(t) =

1 if t ≤ a ,

0 otherwise.

Note that we require in /a, d/ (resp. \a, d\) the coefficient d to be nonnegative.
Typical examples of /a, d/ and \a, d\ are depicted in Figure 1.

a a+d

\ a,d \

a−d a

/a,d/

Fig. 1. Typical examples of /a, d/ and \a, d\.

Definition 29 Let a1, a2, d1, d2 ∈ R such that a1 ≤ a2 and d1, d2 ≥ 0. Then
the trapezoidal fuzzy interval 〈/a1, d1/, \a2, d2\〉 is the intersection /a1, d1/ ∩
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\a2, d2\ of the above defined fuzzy classes, i.e.,

〈/a1, d1/, \a2, d2\〉(t) = (/a1, d1/(t)+\a2, d2\(t)−1)∨0 = /a1, d1/(t)∧\a2, d2\(t) .

A typical example of a trapezoidal fuzzy interval 〈/a1, d1/, \a2, d2\〉 is depicted
in Figure 2.

1
a a

2
a
2

a1 d1 + d2−

Fig. 2. A typical example of a trapezoidal fuzzy interval 〈/a1, d1/, \a2, d2\〉.

Obviously we have the following lemma.

Lemma 30 Let 〈/a1, d1/, \a2, d2\〉 be a fuzzy trapezoidal interval. Then its
up-class and down-class can be expressed as follows:

〈/a1, d1/, \a2, d2\〉↑ = /a1, d1/ , 〈/a1, d1/, \a2, d2\〉↓ = \a2, d2\ .

Further, we need to describe the arithmetical operations with trapezoidal fuzzy
intervals.

Lemma 31 The arithmetical operations with up-classes (resp. down-classes)
of trapezoidal fuzzy intervals can be characterized as follows:

/a, d/x =


/ax, dx/ if x > 0 ,

\ax, d|x|\ if x < 0 ,

{0} otherwise.

\a, d\x =


\ax, dx\ if x > 0 ,

/ax, d|x|/ if x < 0 ,

{0} otherwise.

/a, d/+ /b, e/ = /a+ b, d ∨ e/ , \a, d\+ \b, e\ = \a+ b, d ∨ e\ .

PROOF. Firstly, if x = 0 then Ax = {0} for any fuzzy class A. Suppose
that x > 0. Then it is not difficult to check that (/a, d/x)(t) = /a, d/(t/x) =
/ax, dx/(t). The case for x < 0 similar (only note that dx = −d|x|).

The second statement follows from already known facts about addition of
fuzzy intervals (see e.g. [14, Theorem 6]). 2
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ba−d

\b,e\ /a,d/

b+ea

Fig. 3. The intersection of the up-class /a, d/ and the down-class \b, e\.

Lemma 32 The degree of compatibility of an up-class and a down-class of
trapezoidal fuzzy intervals can be computed as follows:

/a, d/ ‖ \b, e\ = /a, d/(b) ∨ \b, e\(a) .

Especially, we have

/a, 0/ ‖ \b, e\ = \b, e\(a) ,

/a, d/ ‖ \b, 0\ = /a, d/(b) ,

/a, 0/ ‖ \b, 0\ =

1 if a ≤ b ,

0 if a > b .

PROOF. Firstly, recall that the degree of compatibility is in fact the height
of the intersection. Assume that d, e 6= 0. Then we have /a, d/ ∩ \b, e\ =
(/a, d/+\b, e\−1)∨0. A typical situation how the intersection may look like is
depicted in Figure 3. We have to prove that the function (/a, d/+\b, e\−1)∨0
attains at a or b its maximal value. Since both /a, d/ and \b, e\ are continuous
piecewise linear, the function /a, d/+\b, e\−1 is also continuous and piecewise
linear. Moreover, the only possible places for the maximum of /a, d/+\b, e\−1
are the points where two pieces are joined together, i.e., a−d, a, b, b+e. Clearly,
a−d and b+e are not interesting since both of them belong to the intersection
to degree 0. The cases when at least one of d, e equals 0 are trivial. 2

Now we will reformulate again the task that we want to solve. Let A~x = ~B
be a fuzzy interval linear system such that A = (Aij) is an m × n matrix of

trapezoidal fuzzy intervals and ~B is a vector of trapezoidal fuzzy intervals.
We are going to find the united solution set Ξ(A∃, ~B ∃) of the system A~x =
~B. Before we state the final theorem describing the united solution set, we
introduce a further notation. Let ~T = 〈T1, . . . , Tm〉 be a tuple of fuzzy classes.

Then
⋂ ~T =

⋂m
i=1 Ti. For a vector of reals ~x = 〈x1, . . . , xn〉, we define |~x| =

〈|x1|, . . . , |xn|〉. Further, let A = (Aij) be an m×n matrix and ~x = 〈x1, . . . , xn〉
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a vector of reals. Then

A� ~x =


A11x1 ∨ · · · ∨ A1nxn

...

Am1x1 ∨ · · · ∨ Amnxn

 .

Thus A � ~x corresponds in fact to the usual multiplication of a matrix and
a vector where all sums are replaced by the operation ∨. Finally, define the
following operation for a, b ∈ R:

a� b =


[

a
b

+ 1
]1
0

if b 6= 0 ,

1 if b = 0, a ≥ 0 ,

0 if b = 0, a < 0 ,

Note that if a, b ≥ 0 then a�b = 1. We extend this definitions also for vectors of
numbers component-wise, i.e. 〈a1, . . . , an〉�〈b1, . . . , bn〉 = 〈a1 � b1, . . . , an � bn〉.
Recall also the notation from the previous section. The orthants are denoted
by Qk, k ∈ K = {↑, ↓}n, kj denotes the j-th component of k, and −kj is
defined as follows:

−kj =

↓ if kj =↑ ,
↑ if kj =↓ .

Let A be a matrix. The element in the i-th row and j-th column will be also
denoted by (A)ij.

Theorem 33 Let A~x = ~B be a fuzzy interval linear system such that A =
(Aij) is an m×n matrix of trapezoidal fuzzy intervals Aij = 〈/a↑ij, c

↑
ij/, \a

↓
ij, c

↓
ij\〉

and ~B = 〈B1, . . . , Bn〉 is a tuple of trapezoidal fuzzy intervals Bi = 〈/b↑i , e
↑
i /, \b

↓
i , e

↓
i \〉.

Then the solution set Ξ(A∃, ~B ∃) can be described as follows:

Ξ(A∃, ~B ∃) =
⊔

k∈K

(
Qk ∩

⋂
~Tk ∩

⋂
~Rk

)
,

where
~Tk(~x) =

(
~b↓ − A↑

k~x
)
�
(
~e↓ ∨

(
C↑

k � |~x|
))

,

~Rk(~x) =
(
A↓

k~x−~b↑
)
�
(
~e↑ ∨

(
C↓

k � |~x|
))

,

~b↓ = 〈b↓1, . . . , b↓n〉, ~b↑ = 〈b↑1, . . . , b↑n〉, ~e↓ = 〈e↓1, . . . , e↓n〉, ~e↑ = 〈e↑1, . . . , e↑n〉, and

A↑
k, A↓

k, C↑
k, C↓

k are m × n matrices such that (A↑
k)ij = a

kj

ij , (A↓
k)ij = a

−kj

ij ,

(C↑
k)ij = c

kj

ij , (C↓
k)ij = c

−kj

ij .

PROOF. According to Theorem 26 we have to prove that

Qk ∩
⋂
~Tk ∩

⋂
~Rk = Qk ∩

m⋂
i=1

(Sd
ik ∩ Su

ik) .
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Firstly we can rewrite the expression
⋂m

i=1(S
d
ik ∩Su

ik) as
⋂m

i=1 S
d
ik ∩

⋂m
i=1 S

u
ik. We

want to show that
⋂ ~Tk =

⋂m
i=1 S

d
ik and

⋂ ~Rk =
⋂m

i=1 S
u
ik for ~x ∈ Qk. Let fix

~x ∈ Qk. Then it is sufficient to prove that the truth-degree of ~x ∈ Sd
ik (resp.

~x ∈ Su
ik) equals i-th component of ~Tk(~x) (resp. ~Rk(~x)). Recall that

~x ∈ Sd
ik ←→

 n∑
j=1

A
kj

ij xj

 ‖ (B ∃
i )↓ .

We have (B ∃
i )↓ = \b↓i , e

↓
i \ and A

kj

ij = /a
kj

ij , c
kj

ij / if kj =↑ and \akj

ij , c
kj

ij \ oth-

erwise. Assume that all xj 6= 0. Then kj =↑ (i.e., xj ≥ 0) implies A
kj

ij xj =

/a
kj

ij xj, c
kj

ij xj/ and kj =↓ (i.e., xj ≤ 0) implies A
kj

ij xj = /a
kj

ij xj, c
kj

ij |xj|/. Thus

we can write A
kj

ij xj = /a
kj

ij xj, c
kj

ij |xj|/ for both values of kj. Consequently, we
get by Lemma 31

n∑
j=1

A
kj

ij xj =
n∑

j=1

/a
kj

ij xj, c
kj

ij |xj|/ = /
n∑

j=1

a
kj

ij xj,
n∨

j=1

c
kj

ij |xj|/ = /(A↑
k)i ~x, (C↑

k)i � |xj|/ ,

(7)
where (A↑

k)i is the 1×n matrix constituted from i-th row of A↑
k and similarly for

(C↑
k)i. Observe that Equation (7) holds also in the case when some (but not all)

xj = 0 by Lemma 19(3) (in particular we use /a, d/ + {0} = /a, d/ + /0, 0/).
Thus the only case when Equation (7) does not hold is the case when all

xj = 0. Then
∑n

j=1A
kj

ij xj = {0}.

According to Lemma 32 if we want to evaluate the degree of compatibility
between

∑n
j=1A

kj

ij xj and (B ∃
i )↓ it is sufficient to compute the following maxi-

mum:

/(A↑
k)i ~x, (C↑

k)i � |xj|/(b↓i ) ∨ \b↓i , e
↓
i \((A

↑
k)i ~x) . (8)

Note that we can use the latter formula also for the case when all xj = 0 by
Lemma 19(4) since then we can replace {0} by /0, 0/.

We want to show that the maximum from (8) equals to the i-th component

of ~Tk. Recall that the i-th component of ~Tk equals

(~Tk)i =
(
b↓i − (A↑

k)i ~x
)
�
(
e↓i ∨

(
(C↑

k)i � |~x|
))

.

There are several cases. Firstly, suppose (C↑
k)i�|xj| > 0 and e↓i > 0. Then (8)
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can be rewritten as follows:

[
b↓i − (A↑

k)i ~x

(C↑
k)i � |xj|

+ 1

]1

0

∨
[
b↓i − (A↑

k)i ~x

e↓i
+ 1

]1

0

=

[(
b↓i − (A↑

k)i ~x

(C↑
k)i � |xj|

+ 1

)
∨
(
b↓i − (A↑

k)i ~x

e↓i
+ 1

)]1

0

=

[(
b↓i − (A↑

k)i ~x

(C↑
k)i � |xj|

∨ b
↓
i − (A↑

k)i ~x

e↓i

)
+ 1

]1

0

. (9)

If b↓i − (A↑
k)i ~x ≥ 0 then (9) equals 1 since (C↑

k)i � |xj| > 0 and e↓i > 0. Also

(~Tk)i equals 1 in this case. Thus assume that b↓i − (A↑
k)i ~x < 0. Then (9) can

be further rewritten as follows:

[(
b↓i − (A↑

k)i ~x

(C↑
k)i � |xj|

∨ b
↓
i − (A↑

k)i ~x

e↓i

)
+ 1

]1

0

=

[
(b↓i − (A↑

k)i ~x)

(
1

(C↑
k)i � |xj|

∧ 1

e↓i

)
+ 1

]1

0

=

[
b↓i − (A↑

k)i ~x

e↓i ∨ ((C↑
k)i � |xj|)

+ 1

]1

0

= (~Tk)i . (10)

Now assume that (C↑
k)i � |xj| = 0 and e↓i > 0. Then by Lemma 32 we have

that (8) equals

[
b↓i − (A↑

k)i ~x

e↓i
+ 1

]1

0

= (b↓i − (A↑
k)i ~x)� e↓i = (~Tk)i .

Similarly we can argue in the case when (C↑
k)i�|xj| > 0 and e↓i = 0. Finally, if

(C↑
k)i�|xj| = 0 and e↓i = 0. Then both (8) and (~Tk)i equals 1 if b↓i−(A↑

k)i ~x ≥ 0
and 0 otherwise.

The proof of the fact that the i-th component of ~Rk(~x) is equivalent to the
truth-degree of ~x ∈ Su

ik is completely analogous. 2

8 Example

In this section we are going to illustrate Theorem 33 on a concrete example.
We will in fact consider a fuzzified version of a favorite example from classical
interval analysis.
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Example 34 Consider the following classical interval linear system: [2, 4] [−2, 1]

[−1, 2] [2, 4]

 ~x =

 [−2, 2]

[−2, 2]

 . (11)

The united solution set of this system is depicted in Figure 4.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

Fig. 4. The united solution set Ξ(A∃, ~B ∃) of the system from Example 35.

Now we fuzzify the latter example and then describe its united solution set.

Example 35 Consider the following fuzzy interval linear system with trape-
zoidal fuzzy intervals: 〈/2, 1

2
/, \4, 1

2
\〉 〈/−2, 1

2
/, \1, 1

2
\〉

〈/−1, 1
2
/, \2, 1

2
\〉 〈/2, 1

2
/, \4, 1

2
\〉

 ~x =

 〈/−2, 1
2
/, \2, 1

2
\〉

〈/−2, 1
2
/, \2, 1

2
\〉

 (12)

In this case n = 2. Thus we have four orthants:

Q1 = {~x | x1 ≥ 0 & x2 ≥ 0} , Q2 = {~x | x1 ≤ 0 & x2 ≥ 0} ,
Q3 = {~x | x1 ≤ 0 & x2 ≤ 0} , Q4 = {~x | x1 ≥ 0 & x2 ≤ 0} .

Due to simplicity we replaced the subscripts of orthants by numbers, i.e. Q1 =
Q{↑,↑}, Q2 = Q{↓,↑}, etc. Similarly we denote other object e.g. A↑

2 = A↑
{↓,↑}.

Since the united solution set is in fact the union over all orthants, we describe
the united solution set only in Q2. This means that we compute ~T2 and ~R2.
We have

~b↓ =

 2

2

 , ~b↑ =

−2

−2

 , ~e↓ = ~e↑ =

 1
2

1
2

 .
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A↑
2 =

 4 −2

2 2

 , A↓
2 =

 2 1

−1 4

 , C↑
2 = C↓

2 =

 1
2

1
2

1
2

1
2

 .

Then

~T2(~x) =


 2

2

−
 4 −2

2 2

 ~x
�


 1

2

1
2

 ∨
 1

2
1
2

1
2

1
2

� |~x|


=

 2− (4x1 − 2x2)

2− (2x1 + 2x2)

�
 1

2
∨ 1

2
|x1| ∨ 1

2
|x2|

1
2
∨ 1

2
|x1| ∨ 1

2
|x2|

 ,

~R2(~x) =


 2 1

−1 4

 ~x−
−2

−2


�


 1

2

1
2

 ∨
 1

2
1
2

1
2

1
2

� |~x|


=

 2x1 + x2 + 2

−x1 + 4x2 + 2

�
 1

2
∨ 1

2
|x1| ∨ 1

2
|x2|

1
2
∨ 1

2
|x1| ∨ 1

2
|x2|

 .

The united solution set Ξ(A∃, ~B ∃) is depicted in Figure 5. Notice that the

kernel of Ξ(A∃, ~B ∃) is the same as the united solution set from Example 34.

-10

-5

 0

 5

 10

-10

-5

 0

 5

 10

 0

 0.2

 0.4

 0.6

 0.8

 1

Fig. 5. The united solution set Ξ(A∃, ~B ∃) of the system from Example 35.
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9 Conclusions

In this paper we have described a solution set for a fuzzy interval linear system.
As a background theory we have used the Fuzzy Class Theory (FCT) devel-
oped in [1] which helps substantially with the formalization and the complex
reasoning about the fuzzy interval linear systems and their solution sets. Thus
FCT seems to be a good candidate also for further research in this direction.

The connection of our results with those coming from classical interval analysis
is well visible in Theorem 33. It is known that the united solution set of
a classical crisp interval linear system forms a convex polyhedron in each
orthant (see [20, Theorem 3.6]). In fact, this is valid for any solution set as
it was defined here (i.e., where all universal quantifiers are followed by the
existential ones). Thus the solution set is described in each orthant by a system
of linear inequalities. In Theorem 33 this system of inequalities is reflected in
the first parts of the expressions for ~Tk(~x) and ~Rk(~x) respectively, i.e.,~b↓−A↑

k~x

and A↓
k~x − ~b↑. The second parts (i.e., ~e↓ ∨

(
C↑

k � |~x|
)

and ~e↑ ∨
(
C↓

k � |~x|
)
)

only represent the fuzziness of the resulting solution set. Thus they have no
influence on the result when all intervals appearing in the linear system are
crisp.

Let us also discuss the possible future work. The classical interval analysis
is of course much more developed as a theory than its fuzzy generalization.
Thus it would be quite natural to generalize also other results to fuzzy logics.
For instance it would be interesting to introduce somehow Kaucher’s interval
arithmetic on fuzzy intervals. Kaucher’s arithmetic in classical interval analysis
is used for computing outer and inner estimations of the solution set since the
complete computation of the solution set is very complex due to the fact that
the number of orthants grows exponentially with the dimension of underlying
vector space Rn. However, the direct generalization to the fuzzy case is not
possible since the addition in classical interval arithmetic is cancellative unlike
the addition of fuzzy intervals (for details see [20]).

Another possible direction is to find a description of the general solution set
as defined in Definition 22. As we mentioned at the beginning of Section 6,
in this case it is not possible to separate the computation of the solution set
according to the particular equations. The problem consists in the definition
of the inclusion between two tuples of fuzzy classes ~A, ~B that appeared at the
end of Subsection 2.2. The definition in fact states that ~A ⊆ ~B is equivalent
to the inclusion of the corresponding cartesian products of components of ~A
and ~B. If we want to separate the particular equations, we have to know that
the inclusion of the cartesian products is equivalent to the conjunction of the
inclusions of particular components of ~A and ~B. But in Fuzzy Class Theory it
is not difficult to find a counterexample showing that this is not true in general.
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Let A be a singleton containing an element a to degree 1
2

and b 6= a. Then in
 Lukasiewicz logic 〈A,A〉 ⊆ 〈{b}, {b}〉 holds to degree 1 since a ∈ A & a ∈ A
holds to degree 0 (i.e., A×A = ∅). On the other hand A ⊆ {b} does not hold
to degree 1 since the formula a ∈ A → a ∈ {b} holds only to degree 1

2
. Thus

A ⊆ {b} & A ⊆ {b} is not valid at all (the truth degree is 0). Consequently, if
we want to use the fundamental theorem for computing a solution set of fuzzy
linear system, we have to work with all equations simultaneously.

Appendix

Here we collect syntactical proofs of the lemmata from Section 3 which were
stated without proofs. In most cases the proofs are based on three steps.
Firstly, the definitions are expanded. Secondly, some quantifier shifts are ap-
plied and finally some properties of real numbers are used.

Lemma 17 The following hold for any fuzzy classes A,B:

A↓ +B↓ = (A+B)↓ , A↑ +B↑ = (A+B)↑ .

PROOF. We will prove only the first part of the statement. The second one
is similar.

z ∈ A↓ +B↓ ←→ (∃a′ ∈ A↓)(∃b′ ∈ B↓)(z = a′ + b′)←→
(∃a′)(∃b′) ((∃a ∈ A)(a′ ≤ a) & (∃b ∈ B)(b′ ≤ b) & z = a′ + b′)←→

(∃a′)(∃b′)(∃a)(∃b) (a ∈ A & b ∈ B & a′ ≤ a & b′ ≤ b & z = a′ + b′)←→
(∃a ∈ A)(∃b ∈ B)(∃a′)(∃b′)(a′ ≤ a & b′ ≤ b & z = a′ + b′)←→

(∃a ∈ A)(∃b ∈ B)(z ≤ a+ b) .

Now we will show that also z ∈ (A + B)↓ is equivalent to the formula
(∃a ∈ A)(∃b ∈ B)(z ≤ a+ b).

z ∈ (A+B)↓ ←→ (∃c ∈ A+B)(z ≤ c)←→
(∃c) ((∃a ∈ A)(∃b ∈ B)(c = a+ b) & z ≤ c)←→
(∃a ∈ A)(∃b ∈ B)(∃c)(c = a+ b & z ≤ c)←→

(∃a ∈ A)(∃b ∈ B)(z ≤ a+ b) . 2

Lemma 18 Let A be a fuzzy class and k ∈ R. If k > 0 then (kA)↓ = kA↓ and
(kA)↑ = kA↑. If k < 0 then (kA)↓ = kA↑ and (kA)↑ = kA↓.

PROOF. We will prove only the claim (kA)↓ = kA↑ for k < 0. The proofs of
other claims are analogous.
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x ∈ kA↑ ←→ (∃a′ ∈ A↑)(x = ka′)←→ (∃a′) ((∃a ∈ A)(a′ ≥ a) & x = ka′)←→

(∃a ∈ A)(∃a′)(a′ ≥ a & x = ka′)←→ (∃a ∈ A)
(
x

k
≥ a

)
←→ (∃a ∈ A)(x ≤ ka) .

In the last equivalence we use the fact that k < 0. Now we will show that also
x ∈ (kA)↓ is equivalent to the formula (∃a ∈ A)(x ≤ ka).

x ∈ (kA)↓ ←→ (∃a′ ∈ kA)(x ≤ a′)←→ (∃a′) ((∃a ∈ A)(a′ = ka) & x ≤ a′)←→
(∃a ∈ A)(∃a′)(a′ = ka & x ≤ a′)←→ (∃a ∈ A)(x ≤ ka) .

2

Lemma 19 Let A,B be fuzzy classes. Then the following is provable in FCT:

(1) A ≤ B ↔ A↑ ‖ B↓,
(2) 0 ∈ B↓ − A↑ ↔ A ≤ B and 0 ∈ B↑ − A↓ ↔ B ≤ A,
(3) A↓ + {0}↓ = A↓ and A↑ + {0}↑ = A↑,
(4) {0}↑ ‖ B↓ ↔ {0} ‖ B↓ and {0}↓ ‖ B↑ ↔ {0} ‖ B↑.

PROOF.

(1) We have

A↑ ‖ B↓ ←→ (∃x)(x ∈ A↑ & x ∈ B↓)←→
(∃x)((∃a ∈ A)(x ≥ a) & (∃b ∈ B)(x ≤ b))←→

(∃x)(∃a)(∃b)(a ∈ A & b ∈ B & x ≥ a & x ≤ b)←→
(∃a)(∃b)(a ∈ A & b ∈ B & (∃x)(x ≥ a & x ≤ b))←→

(∃a)(∃b)(a ∈ A & b ∈ B & a ≤ b))←→ A ≤ B .

(2) We will prove only the first part of the lemma since the second one is
similar.

0 ∈ B↓ − A↑ ←→ (∃x ∈ B↓)(∃y ∈ A↑)(0 = x− y)←→
(∃x)(∃y)((∃b ∈ B)(x ≤ b) & (∃a ∈ A)(y ≥ a) & x = y)←→

(∃a)(∃b)(b ∈ B & a ∈ A & (∃x)(∃y)(x ≤ b & y ≥ a & x = y))←→
(∃a ∈ A)(∃b ∈ B)(a ≤ b)←→ A ≤ B .

(3) We will prove only the first part of the lemma since the second one is

34



analogous.

z ∈ A↓ + {0}↓ ←→ (∃a′ ∈ A↓)(∃b′ ∈ {0}↓)(z = a′ + b′)←→
(∃a′)(∃b′)((∃a ∈ A)(a′ ≤ a) & (∃b ∈ {0})(b′ ≤ b) & z = a′ + b′)←→

(∃a′)(∃b′)(∃a)(a ∈ A & a′ ≤ a & b′ ≤ 0 & z = a′ + b′)←→
(∃a)(a ∈ A & (∃a′)(∃b′)(a′ ≤ a & b′ ≤ 0 & z = a′ + b′))←→

(∃a ∈ A)(z ≤ a)←→ z ∈ A↓ .

(4) We will prove again only the first statement.

{0}↑ ‖ B↓ ←→ (∃x)(x ∈ {0}↑ & x ∈ B↓)←→
(∃x)(x ≥ 0 & (∃b)(b ∈ B & x ≤ b))←→
(∃b)(b ∈ B & (∃x)(x ≥ 0 & x ≤ b))←→

(∃b ∈ B)(0 ≤ b)←→ 0 ∈ B↓ ←→ {0} ‖ B↓ ,

where we use the validity of the formula (∃x)(x ≥ 0 & x ≤ b) ↔ 0 ≤
b. 2
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