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Abstract

The massive increase in the size of deep neural networks (DNNs) is accom-
panied by a significant increase in energy consumption of their hardware im-
plementations which is critical for their widespread deployment in low-power
mobile devices. In our previous work, an abstract hardware-independent
model of energy complexity for convolutional neural networks (CNNs) has
been proposed and experimentally validated. Based on this model, we pro-
vide a theoretical analysis of energy complexity related to the computation of
a fully-connected layer when its inputs, outputs, and weights are transferred
between two kinds of memories (DRAM and Buffer). First, we establish
a general lower bound on this energy complexity. Then, we present two
dataflows and calculate their energy costs to achieve the corresponding up-
per bounds. In the case of a partitioned Buffer, we prove by the weak duality
theorem from linear programming that the lower and upper bounds coincide
up to an additive constant, and therefore establish the optimal energy com-
plexity. Finally, the asymptotically optimal quadratic energy complexity of
fully-connected layers is experimentally validated by estimating their energy
consumption on the Simba and Eyeriss hardware.
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1. Energy Complexity Model for CNNs

Deep neural networks (DNNs) represent a cutting-edge machine learning
technology, with countless applications in computer vision, natural language
processing (NLP), speech recognition, robotics, etc. In particular, the trans-
former models have revolutionized the world of NLP (Vaswani et al., 2017),
and further led to the development of large language models like GPT (Brown
et al., 2020), PaLM (Chowdhery et al., 2023), and LLaMA (Touvron et al.,
2023). The transformer models have also been extended into the field of
computer vision (ViT) (Dosovitskiy et al., 2021) and tasks based on tabu-
lar data (TabTransformer) (Huang et al., 2020). However, their tremendous
performance is achieved at the cost of a huge number of parameters. For in-
stance, GPT-3 contains 175B (billion) parameters and necessitated 34 days
of training on 1024 GPUs consuming 4.68 × 1012 joules of energy (Luccioni
et al., 2022). Similarly, PaLM has 540B parameters and LLaMA’s size ranges
from 7B to 65B parameters.

Thus, deep learning models are very computationally demanding and
consume an enormous amount of energy, which can be critical to their de-
ployment in practical applications. For example, an increasing number of em-
bedded (edge) devices rely on DNNs to deliver sophisticated services, such
as autonomous surveillance systems utilizing advanced object recognition,
personal assistants employing machine translation, smart healthcare appli-
cations, and more (Mishra et al., 2020; Lyu et al., 2023). However, with
the ever-growing use of mobile devices, such as smartphones, smartwatches,
or smartglasses, comes the issue of the implementation, deployment, and
portability of an already trained DNN on low-power hardware operated on
batteries, which is a major bottleneck to the development of smart wearable
electronics. Therefore, recent research has focused on developing methods
that enable energy-efficient processing of DNNs (Sze et al., 2017, 2020).

There are basically two main approaches to reduce the energy cost of
DNNs. The first approach is suitable for error-tolerant applications such
as image classification where enormous amount of energy can be saved at
the cost of only a small loss in accuracy by using approximate computing
methods (Armeniakos et al., 2023; Deng et al., 2020; Li et al., 2023; Lyu
et al., 2023; Mittal, 2016; Tang et al., 2024), e.g. low float precision (Gupta
et al., 2015), approximate multipliers (Ansari et al., 2020), etc. In the
second approach the computational cost is reduced through hardware de-
sign (Silvano et al., 2023; Jouppi et al., 2018) including massive parallelism

2



where DNNs are implemented on a variety of hardware platforms such as
GPUs (Zhou et al., 2018), FPGAs (Mittal, 2020), in-memory computing ar-
chitectures (Mittal et al., 2021), etc.

For a specific DNN hardware implementation, the real energy consump-
tion of the inference process can be either practically measured or analyt-
ically estimated using physical laws. This energy consumption depends on
parameters and constants related to the hardware architecture, and hence, its
evaluation varies for different DNN hardware implementations. Some soft-
ware tools such as Accelergy (Wu et al., 2019) and Timeloop (Parashar et al.,
2019) can calculate and optimize, respectively, the energy consumption of a
particular DNN on various hardware platforms including the Simba (Shao
et al., 2019) and Eyeriss (Chen et al., 2016) architectures.

It has been empirically observed that the energy cost of DNN processing
mainly consists of two components: the computation energy, and the data
energy which represents around 70% of the total cost (Yang et al., 2017). The
computation energy is needed for performing arithmetic operations, especially
the so-called multiply-and-accumulate (MAC) operations (S ← S + wx on
floats S,w, x), used to compute the weighted sums of inputs in neurons. The
data energy is required for moving the data inside the memory hierarchy of
the hardware (dataflow), and is related to the number of memory accesses.

In the general context of high-performance computing, heterogeneous ar-
chitectures merging two kinds of memories, CPUs and GPUs, are considered.
The task scheduling problem aims at minimizing the processing time—and
thus the energy consumption—of a set of tasks involving various types of
data (see Gonthier et al., 2023, and the references therein). This optimization
is achieved through three objectives: minimizing data transfers throughout
the memories, ensuring overlap between data transfers and task computa-
tions, and optimizing the eviction of previously-loaded data. In this context,
the particular problem, close to ours, of scheduling a set of tasks on one GPU
with limited memory, where the tasks share some of their input data but are
otherwise independent, is shown to be NP-complete and is in turn addressed
by means of different heuristics (Gonthier et al., 2023).

Along these lines, we propose a theoretical study of the energy complex-
ity of DNNs where the computational process involves CPU/GPU-like data
transfers. In a recent paper (Š́ıma et al., 2023), we have introduced a sim-
plified machine-independent model of energy complexity for convolutional
neural networks (CNNs). This model abstracts from the implementation de-
tails related to different hardware platforms, and preserves the asymptotic
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Figure 1: The energy complexity model.

energy complexity of the CNN inference. It is composed of only two memory
levels called DRAM and Buffer, as illustrated in Figure 1. The network pa-
rameters and states are stored in DRAM, and the arithmetic operations are
performed only over numerical data stored in Buffer which has a constant ca-
pacity of B bits. The transfer of data between the two memories determines
the dataflow. We assume that any floating-point number is transferred as a
separate, indivisible, and uncompressed block of b bits.

The main idea behind this model is that, for a given CNN stored in
DRAM, the three arguments (input x, weight w and accumulated output S)
of any MAC operation (S ← S + wx) employed for the evaluation of the
network must occur together at the same time in Buffer. This requirement is
common to all conceivable hardware implementations of CNNs, making the
model universal. The CNN inference thus requires a certain number of data
transfers between DRAM and Buffer (i.e., the number of DRAM accesses
multiplied by the number of b bits in a float number), which corresponds to
our measure of the data energy.

For simplicity, we assume that the energy cost is not optimized across
multiple CNN layers (as, e.g., Alwani et al., 2016, for instance). Hence, the
energy complexity is defined as a simple sum over only separate convolutional
layers including the fully-connected ones as a special case, while the less
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energy-intensive max pooling layers are omitted. Formally,

E =
∑

convolutional layer λ

(
Eλ

comp + Eλ
data

)
(1)

where the computation energy Eλ
comp and the data energy Eλ

data for evaluating
a convolutional layer λ is proportional to the corresponding number of MACs
and DRAM accesses, respectively.

The energy complexity model of CNNs has been exploited for calcu-
lating the theoretical energy of processing convolutional layers in the con-
text of two common dataflows with write-once outputs and read-once in-
puts, respectively, and read-once weights, under realistic buffer capacity con-
straints (Š́ıma et al., 2023). These dataflows provide upper bounds on the en-
ergy complexity of CNN layers, which have been compared to the real energy
consumptions estimated for the Simba (Shao et al., 2019) and Eyeriss (Chen
et al., 2016) architectures by using the Timeloop/Accelergy software tool
(Parashar et al., 2019; Wu et al., 2019).

It turns out that the theoretical upper bounds fit asymptotically very
well the empirical optimal energy consumptions, when individual parame-
ters of a convolutional layer such as the height, width, depth, kernel size, and
stride are varied. This was validated by statistical linearity and quadratic-
ity tests (Š́ıma et al., 2023). Thus, the introduced energy complexity model
appears to be able to asymptotically capture all important sources of energy
consumption that are common to different CNN hardware implementations.
The model can also be exploited for proving lower bounds on energy com-
plexity of CNNs, in order to establish asymptotic limits on energy efficiency
of any CNN hardware accelerators.

In this paper, we investigate energy complexity of fully-connected layers
which can be viewed as special convolutional layers where feature maps are
reduced to single neurons. First, we derive a general lower bound on the data
energy complexity. Then we present two types of dataflows in which each
weight and each output (or alternatively each input) are read into Buffer once
only. In the first dataflow, the Buffer memory is assumed to be partitioned
into two separate parts of given fixed capacities for inputs and outputs, re-
spectively. The second dataflow is parameterized by the maximum number
of inputs residing in Buffer at the same time. We determine the data energy
of both dataflows, which provides upper bounds on energy complexity. More-
over, for the first dataflow, we prove that the lower and upper bounds coincide
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up to an additive constant, by means of the weak duality theorem from linear
programming. The optimal energy complexity for fully-connected layers in
situations where Buffer is partitioned into two separate parts for inputs and
outputs, respectively, ensues.

The presented upper bounds differ only by a linear additive term from the
derived lower bound, which provides the asymptotically optimal quadratic
data energy complexity of evaluating a fully-connected layer in terms of the
number of its inputs and outputs. This theoretical energy complexity is
also compared to the real energy consumptions estimated for the Simba and
Eyeriss hardware architectures by the Timeloop/Accelergy tool. It turns
out that it matches very well when the numbers of inputs, outputs, and
weights of fully-connected layers are varied separately, which is validated by
the statistical linearity tests.

The paper is organized as follows. Section 2 formally defines energy com-
plexity for fully-connected layers. A general lower bound on this energy is
derived in Section 3. Section 4 presents two dataflows with their associated
upper bounds on the energy. In Section 5, the matching and thus optimal
lower bound is derived for the case of a partitioned Buffer. Section 6 experi-
mentally validates the asymptotically optimal quadratic energy complexity of
fully-connected layers. Section 7 summarizes the results and discusses open
problems. A preliminary conference version (Š́ıma and Cabessa, 2023) of this
paper is substantially expanded here to include a new general lower bound
on energy, a detailed description of dataflows, and experimental validation
of energy complexity.

2. Energy Complexity of Fully-Connected Layers

Consider a deep (e.g. convolutional) neural network of depth D and a
layer index λ of some of its fully-connected layers, where 0 < λ ≤ D (note
that the index λ = 0 is reserved for the input layer). We assume that the λ-th
layer, referred to as layer λ, is composed of m neurons (units) y1, . . . , ym, each
of which is receiving real-weighted connections from the n neurons x1, . . . , xn
in the previous layer λ− 1.

This situation can be viewed as a complete weighted bipartite graph G =
(X, Y,E,w) where X = {x1, . . . , xn} and Y = {y1, . . . , ym} are disjoint sets
of inputs and outputs, respectively, E = X × Y is the set of directed edges
between inputs and outputs, and w : X×Y → R is a function that associates
each edge (xi, yj) with a real weight wji, for every j ∈ {1, . . . ,m} and every
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i ∈ {1, . . . , n}. Moreover, each output yj is associated with a real bias wj0, for
every j ∈ {1, . . . ,m}. In the sequel, the symbols xi and yj will be indifferently
used to denote input and output units as well as numerical values held by
them, respectively. The distinction will be clear from the context.

The computation of layer λ refers to the computation of the output values
y1, . . . , ym based on the input values x1, . . . , xn, the weights and biases wji,
for j ∈ {1, . . . ,m} and i ∈ {0, . . . , n}, which is controlled by the following
equations:

yj = σ

(
wj0 +

n∑
i=1

wjixi

)
for every j = 1, . . . ,m , (2)

where σ is the activation function. Typically σ can be taken as the rectified
linear unit activation function given by ReLU(x) = max(0, x).

The computation energy Eλ
comp in (1) required for the computation of

layer λ can be evaluated directly. According to (2), each output yj requires
one initialization step followed by n MAC updates:

S ← wj0 and S ← S + wjixi for i = 1, . . . , n ,

where the current value of S is referred to as the accumulated output yj.
Hence, the total number of MAC operations needed for computing the out-
puts y1, . . . , ym in (2) is mn. The computation energy is thus given by

Eλ
comp = Cbmn (3)

where the constant Cb is the energy cost to perform one MAC operation
over b-bit floating-point numbers on a given hardware architecture. Note
that the dependence of Cb on b is non-uniform because the design of the
MAC circuit inside a microprocessor differs for each b. For example, C8 =
0.56 pJ and C16 = 2.20 pJ was estimated by the Timeloop/Accelergy soft-
ware tool (Parashar et al., 2019; Wu et al., 2019) for the 8-bit Simba (Shao
et al., 2019) and 16-bit Eyeriss (Chen et al., 2016) hardware architectures,
respectively. Nevertheless, in our machine-independent energy complexity
model, concrete values of constant Cb do not play a role in the asymptotic
bound Eλ

comp = Θ(mn) on the computation energy which is clearly optimal
since each of the mn weights occurs in a different MAC operation.

We now focus on the data energy Eλ
data in (1) necessary for the compu-

tation of layer λ. This energy cost can be split into three components that
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count the DRAM accesses for the outputs, inputs, and weights separately:

Eλ
data = Eλ

outputs + Eλ
inputs + Eλ

weights . (4)

In order to evaluate the sums in (2), each pair of input and accumulated
output (xi, yj) must occur in Buffer at least once. For this purpose, each input
xi and output yj needs to be read from DRAM at least once. Furthermore,
each output yj must also be written back to DRAM sometime after its reading
in order to store its current value. By contrast, each weight wji only needs
to occur in Buffer once when the associated pair (xi, yj) meets in Buffer for
the first time. It follows that each weight wji requires only one reading from
DRAM, which in turn amounts to mn DRAM accesses for reading all the
weights.

Let ν and µ be the numbers of DRAM accesses to read inputs and outputs
(or biases when initialized), respectively, and b be the number of bits in
the floating point representation of outputs, inputs, and weights. The data
energy (4) can thus be written as

Eλ
data = b (2µ+ ν +mn) , (5)

since each output is read from and later written back to DRAM, which
corresponds to two DRAM accesses, as opposed to the inputs and weights
which are only read from DRAM. Note that in our machine-independent
energy complexity model, the data energy Eλ

data is defined in (5) simply as
the number of transferred bits between DRAM and Buffer, each with the
same unit energy cost in joules, which is in contrast to Eλ

comp in (3) that
includes the actual comparable energy costs Cb of MAC circuits. This is
because the bit transfers can have different meanings even within a single
hardware implementation, let alone in distinct hardware architectures with
different memory hierarchies. Consequently, in order to optimize the data
energy (4), it is sufficient to minimize the quantity 2µ+ ν.

3. A Lower Bound on Energy Complexity

We will now derive a general lower bound on the data energy (4) for fully-
connected layers. Assume that Buffer has a constant size of B = b(β + 1)
bits, where β > 1 floats are reserved for storing inputs and outputs, and
the remaining capacity of one float is dedicated to weights. For notational
simplicity, assume that β−1 divides m, β > 2, and m ≤ n, while the proof for
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the other cases is analogous. Note that, by reading a single input or output
into Buffer, one can get at most β − 1 new input-output pairs in Buffer.

In a dataflow, let r1 be the maximum number of times one input, being
read into Buffer, creates exactly β − 1 new input-output pairs. Denote by
x∗ ∈ X one of such inputs and let Zj ⊂ Y be the sets of outputs forming
the respective β − 1 = |Zj| new pairs {x∗} × Zj for every j ∈ {1, . . . , r1}.
Analogously, let r2 be the maximum number of times one output, being read
into Buffer, produces exactly β − 1 new pairs. Denote by y∗ ∈ Y one of
such outputs and let Zj ⊂ X be the sets of inputs creating the respective
β − 1 = |Zj| new pairs Zj × {y∗} for every j ∈ {r1 + 1, r1 + 2, . . . , r1 + r2}.
Hereafter, we will focus on the sets of outputs, Zj for j ∈ {1, . . . , r1}, while
the analysis for the sets of inputs, Zj for j ∈ {r1+1, . . . , r1+r2}, is analogous.
Note that the sets Zj are pairwise disjoint for all j ∈ {1, . . . , r1}, because
they yield the input-output pairs with x∗ that are new along the dataflow.

For each j ∈ {1, . . . , r1}, we denote by αj a DRAM access through which
an input x∗j ∈ X is read into Buffer that already contains outputs from Zj,
which generates exactly β − 1 new pairs {x∗j} × Zj, while the immediately
preceding reading into Buffer produces less than β − 1 new pairs. From
the definition of x∗, there is at least one such DRAM access for each j ∈
{1, . . . , r1}, and we choose any of them as αj if there are more.

For each j ∈ {1, . . . , r1}, we define β − 1 DRAM accesses ζji, indexed by
i ∈ {1, . . . , β − 1} according to the time order along the dataflow, through
which the β − 1 outputs in Zj are read into Buffer, each one last before the
DRAM access αj. Observe that ζji are pairwise distinct for all j ∈ {1, . . . , r1}
and i ∈ {1, . . . , β − 1} because the sets Zj are pairwise disjoint. For every
i ∈ {1, . . . , β − 1}, denote by yji ∈ Zj the output that is read through the
DRAM access ζji, and let mji be the number of new input-output pairs in
Buffer generated through ζji.

For every i ∈ {1, . . . , β−1}, there are i outputs yj1, . . . , yji ∈ Zj in Buffer
after the DRAM access ζji which remain there at least until the DRAM access
αj. In order to fit the Buffer capacity β, there are thus at most β − i inputs
in Buffer after ζji, which implies mji ≤ β − i for every i ∈ {1, . . . , β − 1}.
Let kj ∈ {1, . . . , β − 1} be the maximum number of new input-output pairs
in Buffer that are produced by a DRAM access ζji over i ∈ {1, . . . , β − 1}.
It follows that

mji ≤
{
kj for 1 ≤ i ≤ β − kj
β − i for β − kj + 1 ≤ i ≤ β − 1 .

(6)
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Altogether, the number of new input-output pairs in Buffer generated through
the DRAM accesses ζji for all i ∈ {1, . . . , β − 1}, can be upper bounded as

β−1∑
i=1

mji ≤
β−kj∑
i=1

kj +

β−1∑
i=β−kj+1

(β − i) = (β − kj)kj +

kj−1∑
i=1

(kj − i)

= (β − 1)kj −
kj−1∑
i=1

i = (β − 1)kj −
kj(kj − 1)

2
(7)

according to (6).
For each j ∈ {1, . . . , r1}, we thus have β − 1 unique DRAM accesses

ζj1, . . . , ζj,β−1 through which the outputs yj1, . . . , yj,β−1 ∈ Zj are read, re-
spectively, creating at most (β − 1)kj − kj(kj − 1)/2 new input-output pairs
in Buffer, according to (7). Analogously, for each j ∈ {r1 +1, . . . , r1 +r2}, we
have β − 1 unique DRAM accesses ζj,1, . . . , ζj,β−1 through which the inputs
from Zj are read that yield at most (β−1)kj−kj(kj−1)/2 new input-output
pairs in Buffer. Let R ⊆ {j | 1 ≤ j ≤ r1 + r2} be a subset of indices of

r = min

(
m

β − 1
, r1 + r2

)
(8)

largest kj, which means kj ≥ k` for every j ∈ R and ` ∈ {1, . . . , r1 + r2} \R.
The number of new input-output couples generated through the (β − 1)r
DRAM accesses ζj1, . . . , ζj,β−1 for all j ∈ R, can be upper bounded as

∑
j∈R

β−1∑
i=1

mji ≤ (β − 1)
∑
j∈R

kj −
∑
j∈R

k2j − kj
2

(9)

according to (7).
Let s be the number of DRAM read accesses that produce exactly β − 1

new pairs, excluding ζj1, . . . , ζj,β−1 for all j ∈ R. By the definition of r1 and
r2, we have

s ≤
∑
j∈R

(n− kj) (10)

because s ≤ mn/(β−1) due to the fact that the total number of input-output
pairs is mn, and there are at most n− kj inputs or m− kj ≤ n− kj outputs
that can create new β−1 input-output pairs with the outputs or inputs from
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Zj, respectively, for all j ∈ R. Since the maximum s, determined in (10),
minimizes the number of DRAM read accesses, any dataflow satisfies

µ+ ν ≥ (β − 1)r +
∑
j∈R

(n− kj) + q + 1 (11)

where q + 1 denotes the number of remaining DRAM read accesses that
produce less than β − 1 new pairs, including the very first DRAM access
yielding no pair and excluding the (β−1)r DRAM accesses ζj1, . . . , ζj,β−1 for
all j ∈ R.

Since all the mn input-output pairs have to occur in Buffer, we have

(β − 1)
∑
j∈R

kj −
∑
j∈R

k2j − kj
2

+ (β − 1)
∑
j∈R

(n− kj) + (β − 2)q ≥ mn (12)

according to (9) and (10), because each of the remaining q DRAM read
accesses yields at most β − 2 new pairs. This reduces to

q ≥ mn

β − 2
− (β − 1)rn

β − 2
+
∑
j∈R

k2j − kj
2(β − 2)

(13)

which, plugged into (11), gives

µ+ ν ≥
(
β − 1− n

β − 2

)
r +

mn

β − 2
+
∑
j∈R

k2j − (2β − 3)kj

2(β − 2)
+ 1 . (14)

Each term of the summation in (14) meets

k2j − (2β − 3)kj

2(β − 2)
≥ − β − 1

2
(15)

for j ∈ R, because the inequality (15) is equivalent to

(kj − (β − 1))(kj − (β − 2)) ≥ 0 (16)

which holds for every integer kj ∈ {1, . . . , β−1}. Hence, the sum in (14) can
be lower bounded by −(β − 1)r/2 as

µ+ ν ≥
(
β − 1

2
− n

β − 2

)
r +

mn

β − 2
+ 1 (17)
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which is a linear function in terms of r, whose slope is negative for sufficiently
large n > (β − 1)(β − 2)/2. Hence, the lower bound (17) remains valid after
we substitute the maximum feasible value for r, that is, r = m

β−1 according

to (8), which gives

µ+ ν ≥ mn

β − 1
+
m

2
+ 1 =

m(n− 1)

β − 1
+

(
β + 1

β − 1

)
m

2
+ 1 (18)

for n > (β − 1)(β − 2)/2.
Since the biases of all m outputs must first be read into Buffer, we have

µ ≥ m, and thus,

2µ+ ν ≥ m(n− 1)

β − 1
+

3β − 1

2(β − 1)
m+ 1 . (19)

This provides the general lower bound on the data energy of a fully-connected
layer λ:

Eλ
data ≥ b

(
mn+

m(n− 1)

β − 1
+

3

2
m+ 1

)
(20)

according to (5).

4. Upper Bounds on Energy Complexity

Any correct dataflow for processing a fully-connected layer can be de-
scribed by a sequence of p sets B0, B1, . . . , Bp ⊆ X ∪ Y , each of which being
composed of vertices in G, that represent the successive contents of Buffer
(excluding weights) after each DRAM access to read an input or output, in
the course of evaluating the sums in (2). The sequence satisfies the following
conditions:

1. B0 = ∅
2. |Bt| ≤ β for every t = 1, . . . , p

3. |Bt \Bt−1| = 1 and |Bt−1 \Bt| ≤ 1 for every t = 1, . . . , p

4. Y ⊆ ⋃ {Bt | x ∈ Bt and 1 ≤ t ≤ p} for every x ∈ X
and its length p is the total number of DRAM read accesses,

p = µ+ ν . (21)

Condition 1 assumes empty Buffer at the beginning, and condition 2 guar-
antees that its size is not exceeded. Condition 3 ensures that, by reading a
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single input or output into Buffer, at most one input or output is overwritten.
Condition 4 ensures that all of the outputs meet every input in Buffer.

In the two following subsections, we present two dataflows for a fixed and
bounded number of inputs in Buffer, respectively, such that each output is
read into Buffer only once (i.e., when initialized by a corresponding bias),
which means that

µ = m. (22)

Clearly, the role of inputs and outputs can be reversed in these dataflows.

4.1. Fixed Number of Inputs in Buffer

For the first dataflow, we assume that Buffer is partitioned into two sep-
arate parts for inputs and outputs, respectively, and contains one more float
for reading the weights. One part is reserved for storing d inputs and the
second one to store β − d outputs, where d is a fixed parameter such that
1 ≤ d ≤ β − 1. For notational simplicity, we assume that β − d divides m.

The main idea of this dataflow is that the m outputs are split into m
β−d

groups. These groups, each of size β − d outputs, are read into Buffer one
after the other with the next group overwriting the current one at specific
times when Buffer already contains d inputs. For each such group loaded into
Buffer, all the remaining n−d inputs are read into Buffer one by one in such
a way that the currently read input replaces a previously read one. This
procedure ensures that all the mn input-output pairs will occur in Buffer
within its capacity of d inputs and β−d outputs. This dataflow is illustrated
in Figure 2.

The dataflow is formally described in Algorithm 1 where the comments
(beginning with double slashes) specify the current Buffer contents Bt ⊆
X∪Y after t DRAM read accesses. Thus, the sequence of sets B0, B1, . . . , Bp

meets conditions 1–4, |Bt∩X| ≤ d, and |Bt∩Y | ≤ β−d for every t = 0, . . . , p.
At the beginning when Buffer is empty (line 1), the first d inputs are

read into Buffer (loop 2-4) so that Bd = {x1, . . . , xd} (line 4). Then the
algorithm continues with the outer for loop 5–27 which goes through all the
m
β−d groups of β − d outputs, indexed as k = 0, . . . , m

β−d − 1. These β − d
outputs are read into Buffer during the first inner loop 6–13. In particular,
for the first group of outputs with the index k = 0 (line 7) when Buffer
contains only the d inputs x1, . . . , xd, these β − d outputs y1, . . . , yβ−d are
just read into Buffer (line 8) in which there is enough space for them. This
means Bβ = {x1, . . . , xd, y1, . . . , yβ−d} (cf. line 13 for k = 0).
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<latexit sha1_base64="GfeuwLy/dF+bPS2lnyibjhzrjTI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IU/DgWvHisaGuhDWWz2bRLN5uwOxFK6U/w4kERr/4ib/4bt20O2vpg4PHeDDPzglQKg6777RTW1jc2t4rbpZ3dvf2D8uFR2ySZZrzFEpnoTkANl0LxFgqUvJNqTuNA8sdgdDPzH5+4NiJRDzhOuR/TgRKRYBStdF8Nq/1yxa25c5BV4uWkAjma/fJXL0xYFnOFTFJjup6boj+hGgWTfFrqZYanlI3ogHctVTTmxp/MT52SM6uEJEq0LYVkrv6emNDYmHEc2M6Y4tAsezPxP6+bYXTtT4RKM+SKLRZFmSSYkNnfJBSaM5RjSyjTwt5K2JBqytCmU7IheMsvr5J2veZd1i7u6pWGm8dRhBM4hXPw4AoacAtNaAGDATzDK7w50nlx3p2PRWvByWeO4Q+czx98xI06</latexit>

d
<latexit sha1_base64="AHpgXzZUFWzQn/lBLHuHcIjiNOs=">AAAB7HicbVBNS8NAEJ34WetX1aOXxVbwYkkKfhwLXjxWMG2hDWWz2bRLN7thdyOU0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhSln2rjut7O2vrG5tV3aKe/u7R8cVo6O21pmilCfSC5VN8Saciaob5jhtJsqipOQ0044vpv5nSeqNJPi0UxSGiR4KFjMCDZW8mviMqoNKlW37s6BVolXkCoUaA0qX/1IkiyhwhCOte55bmqCHCvDCKfTcj/TNMVkjIe0Z6nACdVBPj92is6tEqFYKlvCoLn6eyLHidaTJLSdCTYjvezNxP+8Xmbi2yBnIs0MFWSxKM44MhLNPkcRU5QYPrEEE8XsrYiMsMLE2HzKNgRv+eVV0m7Uvev61UOj2nSLOEpwCmdwAR7cQBPuoQU+EGDwDK/w5gjnxXl3Phata04xcwJ/4Hz+ALN9jek=</latexit>

n� d

<latexit sha1_base64="AynybawIOu+9bYrW8bEG8Zc6dpE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IU/DgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7quy2i9X3Jo7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdr3mXtYu7eqXh5nEU4QRO4Rw8uIIG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8weL9o1E</latexit>n

<latexit sha1_base64="sYQLYZ6gG1500dvVEhh139XZG+o=">AAAB8nicbVDLSsNAFJ34rPVVdelmsBXcWJKCj2XBjcsK9gFpKJPJpB06mQkzN0IJ/Qw3LhRx69e482+ctllo64ELh3Pu5d57wlRwA6777aytb2xubZd2yrt7+weHlaPjjlGZpqxNlVC6FxLDBJesDRwE66WakSQUrBuO72Z+94lpw5V8hEnKgoQMJY85JWAlv9YPGRB8iaPaoFJ16+4ceJV4BamiAq1B5asfKZolTAIVxBjfc1MIcqKBU8Gm5X5mWEromAyZb6kkCTNBPj95is+tEuFYaVsS8Fz9PZGTxJhJEtrOhMDILHsz8T/PzyC+DXIu0wyYpItFcSYwKDz7H0dcMwpiYgmhmttbMR0RTSjYlMo2BG/55VXSadS96/rVQ6PadIs4SugUnaEL5KEb1ET3qIXaiCKFntErenPAeXHenY9F65pTzJygP3A+fwBVro/v</latexit>

� � d

<latexit sha1_base64="sYQLYZ6gG1500dvVEhh139XZG+o=">AAAB8nicbVDLSsNAFJ34rPVVdelmsBXcWJKCj2XBjcsK9gFpKJPJpB06mQkzN0IJ/Qw3LhRx69e482+ctllo64ELh3Pu5d57wlRwA6777aytb2xubZd2yrt7+weHlaPjjlGZpqxNlVC6FxLDBJesDRwE66WakSQUrBuO72Z+94lpw5V8hEnKgoQMJY85JWAlv9YPGRB8iaPaoFJ16+4ceJV4BamiAq1B5asfKZolTAIVxBjfc1MIcqKBU8Gm5X5mWEromAyZb6kkCTNBPj95is+tEuFYaVsS8Fz9PZGTxJhJEtrOhMDILHsz8T/PzyC+DXIu0wyYpItFcSYwKDz7H0dcMwpiYgmhmttbMR0RTSjYlMo2BG/55VXSadS96/rVQ6PadIs4SugUnaEL5KEb1ET3qIXaiCKFntErenPAeXHenY9F65pTzJygP3A+fwBVro/v</latexit>

� � d

<latexit sha1_base64="sYQLYZ6gG1500dvVEhh139XZG+o=">AAAB8nicbVDLSsNAFJ34rPVVdelmsBXcWJKCj2XBjcsK9gFpKJPJpB06mQkzN0IJ/Qw3LhRx69e482+ctllo64ELh3Pu5d57wlRwA6777aytb2xubZd2yrt7+weHlaPjjlGZpqxNlVC6FxLDBJesDRwE66WakSQUrBuO72Z+94lpw5V8hEnKgoQMJY85JWAlv9YPGRB8iaPaoFJ16+4ceJV4BamiAq1B5asfKZolTAIVxBjfc1MIcqKBU8Gm5X5mWEromAyZb6kkCTNBPj95is+tEuFYaVsS8Fz9PZGTxJhJEtrOhMDILHsz8T/PzyC+DXIu0wyYpItFcSYwKDz7H0dcMwpiYgmhmttbMR0RTSjYlMo2BG/55VXSadS96/rVQ6PadIs4SugUnaEL5KEb1ET3qIXaiCKFntErenPAeXHenY9F65pTzJygP3A+fwBVro/v</latexit>

� � d

<latexit sha1_base64="gWTizKk5DRKlljkU3E3mUbzrbh0=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BFvBU9kt+HEsePFY0dZCu5Rsmm1Dk+ySZIWy9Cd48aCIV3+RN/+NabsHbX0w8Hhvhpl5YSK4sZ73jQpr6xubW8Xt0s7u3v5B+fCobeJUU9aisYh1JySGCa5Yy3IrWCfRjMhQsMdwfDPzH5+YNjxWD3aSsECSoeIRp8Q66b4qq/1yxat5c+BV4uekAjma/fJXbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDNT53iM6cMcBRrV8riufp7IiPSmIkMXackdmSWvZn4n9dNbXQdZFwlqWWKLhZFqcA2xrO/8YBrRq2YOEKo5u5WTEdEE2pdOiUXgr/88ipp12v+Ze3irl5peHkcRTiBUzgHH66gAbfQhBZQGMIzvMIbEugFvaOPRWsB5TPH8Afo8weKcY1D</latexit>m

Figure 2: Illustration of the dataflow for a partitioned Buffer with d inputs and β − d
outputs. The column and row indices represent inputs x1, . . . , xn and outputs y1, . . . , ym,
respectively. The horizontal (white) and vertical (black) arrows represent input and output
readings into Buffer, respectively. Every time a new input-output pair (xi, yj) meets in
Buffer, the weight wji is read and the accumulated output yj is updated by the MAC
operation yj ← yj + wjixi. At the beginning, the first d inputs are read (6 first top
horizontal arrows). Then, the first block of β − d outputs is read (top vertical arrows),
which leads to the meeting of new input-output pairs (top left cells, dark region). Then,
the remaining n − d inputs are read (remaining top horizontal arrows), leading to new
input-output pairs (top right cells, light region). At this point, Buffer contains the d
inputs that were lastly read and the second block of β− d outputs is read (middle vertical
arrows), which yields new input-output pairs (middle right cells, dark region). Afterwards,
the remaining n− d inputs are read in the backward direction (middle horizontal arrows),
generating new input-output pairs (middle left cells, light region). The dataflow continues
in this way by reading outputs and inputs alternatively.

For the next group of outputs with the index k > 0 (line 9), these β − d
outputs yk(β−d)+1, . . . , y(k+1)(β−d) are read into Buffer one by one replacing
the β − d outputs y(k−1)(β−d)+1, . . . , yk(β−d) from the previous group with the
index k − 1 (lines 10–11). Thus, the whole group of outputs with the index
k is then contained in Buffer (line 13 where the index of Bk(n+β−2d)+β for
k > 0 takes into account also the DRAM accesses through which inputs are
read into Buffer in between the readings of the two groups, as described on
lines 14–26 and commented below).

The following second inner for loop is used to read the n− d inputs into
Buffer one by one in addition to the d inputs that are already in Buffer.
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Algorithm 1 The dataflow with a fixed number d of inputs in Buffer.
1: // B0 = ∅

2: for i = 1 to d do
3: read xi into Buffer // Bi = {x1, . . . , xi}

4: end for // Bd = {x1, . . . , xd}

5: for k = 0 to m
β−d − 1 do

6: for j = 1 to β − d do
7: if k = 0 then
8: read yj into Buffer // Bd+j = {x1, . . . , xd, y1, . . . , yj}

9: else
10: read yk(β−d)+j into Buffer by overwriting y(k−1)(β−d)+j
11: //

{
yk(β−d)+1, . . . , yk(β−d)+j , y(k−1)(β−d)+j+1, . . . , yk(β−d)

}
⊂ Bk(n+β−2d)+d+j

12: end if
13: end for //

{
yk(β−d)+1, . . . , y(k+1)(β−d)

}
⊂ Bk(n+β−2d)+β

14: if k is even then
15: // Bk(n+β−2d)+β =

{
x1, . . . , xd, yk(β−d)+1, . . . , y(k+1)(β−d)

}
16: for i = 1 to n− d do
17: read xi+d into Buffer by overwriting xi
18: // Bk(n+β−2d)+β+i =

{
xi+1, . . . , xi+d, yk(β−d)+1, . . . , y(k+1)(β−d)

}
19: end for // B(k+1)(n+β−2d)+d =

{
xn−d+1, . . . , xn, yk(β−d)+1, . . . , y(k+1)(β−d)

}
20: else
21: // Bk(n+β−2d)+β =

{
xn−d+1, . . . , xn, yk(β−d)+1, . . . , y(k+1)(β−d)

}
22: for i = n− d downto 1 do
23: read xi into Buffer by overwriting xi+d
24: // Bk(n+β−2d)+n+β−d−i+1 =

{
xi, . . . , xi+d−1, yk(β−d)+1, . . . , y(k+1)(β−d)

}
25: end for // B(k+1)(n+β−2d)+d =

{
x1, . . . , xd, yk(β−d)+1, . . . , y(k+1)(β−d)

}
26: end if
27: end for

In order to keep the capacity of d inputs in Buffer, each newly read input
rewrites an input that has resided in Buffer for the longest time. Namely,
there are two alternating versions of this loop, depending on whether k is
even or not (line 14). For k even, the loop 16–19 starts with Buffer including
the d inputs x1, . . . , xd (line 15), reads the inputs forward (line 17), and
finishes with the d inputs xn−d+1, . . . , xn in Buffer (line 19). On the contrary,
for k odd (line 20), the loop 22–25 starts with Buffer including the d inputs
xn−d+1, . . . , xn (line 21), reads the inputs backward (line 23), and finishes with
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the d inputs x1, . . . , xd in Buffer (line 25). In both cases, all the n inputs meet
each of the β−d outputs of the group with the index k which resides currently
in Buffer. This is repeated for every group of outputs (outer loop 5–27),
which guarantees that all the mn input-output pairs will occur in Buffer.

We will calculate the number p of DRAM read accesses in the dataflow
described by Algorithm 1. After the first d inputs are read into Buffer in the
loop 2–4, the outer loop 5–27 which runs m

β−d times, includes β − d DRAM
accesses to read outputs in the loop 6-13 and n − d DRAM accesses for
reading inputs either in the loop 16–19 or in the loop 22–25. Altogether, we
have

p = d+
m

β − d ((β − d) + (n− d)) =
m(n− d)

β − d +m+ d . (23)

Hence, this dataflow provides an upper bound on the data energy of a
fully-connected layer λ:

Eλ
data ≤ b

(
mn+

m(n− d)

β − d + 2m+ d

)
(24)

according to (5), (21), and (22). This upper bound takes the smallest value
for d = 1, provided that n ≥ β, since n ≥ β is equivalent to

m(n− 1)

β − 1
≤ m(n− d)

β − d .

Furthermore, an alternative upper bound to (24) is obtained when the
roles of the inputs and outputs are reversed in Algorithm 1:

Eλ
data ≤ b

(
mn+

2n(m− (β − d))

d
+ n+ 2(β − d)

)
. (25)

This upper bound has the smallest value for d = β−1, provided that m ≥ β,
since m ≥ β is equivalent to

2n(m− 1)

β − 1
≤ 2n(m− (β − d))

d
.

Finally, assuming n ≥ β and m ≥ β, we can compare (24) and (25) for
their smallest values, namely d = 1 and d = β − 1, respectively:

b

(
mn+

m(n− 1)

β − 1
+ 2m+ 1

)
?

≤ b

(
mn+

2n(m− 1)

β − 1
+ n+ 2

)
(26)
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which can be rewritten as

0
?

≤ m(n− 2β + 3) + n(β − 3) + β − 1 . (27)

This inequality holds for n > 2β−3 implying n ≥ β, due to β ≥ 2. Therefore,
we can conclude that for sufficiently large n > 2β − 3 and m ≥ β, the
minimal energy for fully-connected layers achieved by the dataflow described
in Algorithm 1 is obtained when d = 1, i.e., when Buffer is partitioned to
β−1 outputs, one input, and one weight. This situation leads to the following
upper bound:

Eλ
data ≤ b

(
mn+

m(n− 1)

β − 1
+ 2m+ 1

)
. (28)

4.2. Bounded Number of Inputs in Buffer

The second dataflow is parameterized by the maximum number c of inputs
that can simultaneously occur in Buffer, where 1 ≤ c ≤ β−1. For notational
simplicity, we assume that β − 1 divides m.

The main idea of this dataflow is that the m outputs are split into m
β−1

groups. These groups, each of size β − 1 outputs, are read into Buffer one
after the other in such a way that the next group overwrites β − c outputs
of the current group and c − 1 out of c inputs currently stored in Buffer.
For each such group loaded into Buffer, all the n− 1 inputs are read one by
one into Buffer so that each of the first n − c of these inputs replaces the
previously read input whereas the last c − 1 inputs overwrite outputs from
the current group. This procedure ensures that all the mn input-output pairs
will occur in Buffer containing at most c inputs. This dataflow is illustrated
in Figure 3.

The dataflow is formally described in Algorithm 2 where the comments
(beginning with double slashes) specify the current Buffer contents Bt ⊆
X∪Y after t DRAM read accesses. Thus, the sequence of sets B0, B1, . . . , Bp

satisfies conditions 1–4 and |Bt ∩X| ≤ c for every t = 0, . . . , p.
At the beginning when Buffer is empty (line 1), the first c inputs are read

into Buffer (loop 2–4) so that Bc = {x1, . . . , xc} (line 4). Then the algorithm
continues with the outer for loop 6–28 which goes through all the m

β−1 groups
of β − 1 outputs, indexed as k = 0, . . . , m

β−1 − 1.
The first β− c of these β− 1 outputs are read into Buffer during the first

inner for loop 6–13. Namely, for the first group of outputs with the index
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<latexit sha1_base64="AynybawIOu+9bYrW8bEG8Zc6dpE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IU/DgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7quy2i9X3Jo7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdr3mXtYu7eqXh5nEU4QRO4Rw8uIIG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8weL9o1E</latexit>n

<latexit sha1_base64="gWTizKk5DRKlljkU3E3mUbzrbh0=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BFvBU9kt+HEsePFY0dZCu5Rsmm1Dk+ySZIWy9Cd48aCIV3+RN/+NabsHbX0w8Hhvhpl5YSK4sZ73jQpr6xubW8Xt0s7u3v5B+fCobeJUU9aisYh1JySGCa5Yy3IrWCfRjMhQsMdwfDPzH5+YNjxWD3aSsECSoeIRp8Q66b4qq/1yxat5c+BV4uekAjma/fJXbxDTVDJlqSDGdH0vsUFGtOVUsGmplxqWEDomQ9Z1VBHJTJDNT53iM6cMcBRrV8riufp7IiPSmIkMXackdmSWvZn4n9dNbXQdZFwlqWWKLhZFqcA2xrO/8YBrRq2YOEKo5u5WTEdEE2pdOiUXgr/88ipp12v+Ze3irl5peHkcRTiBUzgHH66gAbfQhBZQGMIzvMIbEugFvaOPRWsB5TPH8Afo8weKcY1D</latexit>m

<latexit sha1_base64="0gzW2JmNCd0JNptmfGJEvI74+WY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IU/DgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7qus2i9X3Jo7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdr3mXtYu7eqXh5nEU4QRO4Rw8uIIG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wd7P405</latexit>c

<latexit sha1_base64="0cJ9BfFsl+0WdvRV7fOVz9ikrYs=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBhPBi2E34OMY8OIxgnlIsoTZSW8yZHZ2mekVQshXePGgiFc/x5t/4yTZgyYWNBRV3XR3BYkUBl3328mtrW9sbuW3Czu7e/sHxcOjpolTzaHBYxnrdsAMSKGggQIltBMNLAoktILR7cxvPYE2IlYPOE7Aj9hAiVBwhlZ6LHcDQHbBy71iya24c9BV4mWkRDLUe8Wvbj/maQQKuWTGdDw3QX/CNAouYVropgYSxkdsAB1LFYvA+JP5wVN6ZpU+DWNtSyGdq78nJiwyZhwFtjNiODTL3kz8z+ukGN74E6GSFEHxxaIwlRRjOvue9oUGjnJsCeNa2FspHzLNONqMCjYEb/nlVdKsVryryuV9tVRzszjy5IScknPikWtSI3ekThqEk4g8k1fy5mjnxXl3PhatOSebOSZ/4Hz+AKQLj5o=</latexit>

� � c

<latexit sha1_base64="lNqz+fAQkFpbGzme8XoYhmZNgVQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXxVbwYkkKfhwLXjxWMG2hDWWz3bRLN5uwOxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubRd2irt7+weHpaPjpkkyzbjPEpnodkgNl0JxHwVK3k41p3EoeSsc3c381hPXRiTqEccpD2I6UCISjKKV/Aq79Cq9UtmtunOQVeLlpAw5Gr3SV7efsCzmCpmkxnQ8N8VgQjUKJvm02M0MTykb0QHvWKpozE0wmR87JedW6ZMo0bYUkrn6e2JCY2PGcWg7Y4pDs+zNxP+8TobRbTARKs2QK7ZYFGWSYEJmn5O+0JyhHFtCmRb2VsKGVFOGNp+iDcFbfnmVNGtV77p69VAr1908jgKcwhlcgAc3UId7aIAPDAQ8wyu8Ocp5cd6dj0XrmpPPnMAfOJ8/VTGNqw==</latexit>

c� 1

<latexit sha1_base64="GsGzQ6h2HRyuvQ8Hu7b1dB0Ov5Y=">AAAB7HicbVBNS8NAEJ34WetX1aOXxVbwYkkKfhwLXjxWMG2hDWWz3bRLN5uwOxFK6W/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777aytb2xubRd2irt7+weHpaPjpkkyzbjPEpnodkgNl0JxHwVK3k41p3EoeSsc3c381hPXRiTqEccpD2I6UCISjKKV/Iq6ZJVeqexW3TnIKvFyUoYcjV7pq9tPWBZzhUxSYzqem2IwoRoFk3xa7GaGp5SN6IB3LFU05iaYzI+dknOr9EmUaFsKyVz9PTGhsTHjOLSdMcWhWfZm4n9eJ8PoNpgIlWbIFVssijJJMCGzz0lfaM5Qji2hTAt7K2FDqilDm0/RhuAtv7xKmrWqd129eqiV624eRwFO4QwuwIMbqMM9NMAHBgKe4RXeHOW8OO/Ox6J1zclnTuAPnM8fsfiN6A==</latexit>n� c

<latexit sha1_base64="0cJ9BfFsl+0WdvRV7fOVz9ikrYs=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBhPBi2E34OMY8OIxgnlIsoTZSW8yZHZ2mekVQshXePGgiFc/x5t/4yTZgyYWNBRV3XR3BYkUBl3328mtrW9sbuW3Czu7e/sHxcOjpolTzaHBYxnrdsAMSKGggQIltBMNLAoktILR7cxvPYE2IlYPOE7Aj9hAiVBwhlZ6LHcDQHbBy71iya24c9BV4mWkRDLUe8Wvbj/maQQKuWTGdDw3QX/CNAouYVropgYSxkdsAB1LFYvA+JP5wVN6ZpU+DWNtSyGdq78nJiwyZhwFtjNiODTL3kz8z+ukGN74E6GSFEHxxaIwlRRjOvue9oUGjnJsCeNa2FspHzLNONqMCjYEb/nlVdKsVryryuV9tVRzszjy5IScknPikWtSI3ekThqEk4g8k1fy5mjnxXl3PhatOSebOSZ/4Hz+AKQLj5o=</latexit>
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Figure 3: Illustration of the dataflow with a bounded number c of inputs in Buffer. At
the beginning, the first c inputs are read (top horizontal arrows). Afterwards, β − c
and then c − 1 outputs are read (top vertical arrows), which generates the first input-
output pairs (top left cells, squared and stair-shaped dark regions, respectively). Note
that the readings of the c − 1 outputs overwrite c − 1 inputs currently stored in Buffer,

and hence only generate c(c−1)
2 new input-output pairs (stair-shaped dark region). Next,

the remaining n− c and the already considered c− 1 inputs are read in the reverse order
(middle horizontal arrows), all of them yielding novel input-output pairs (top right cells,
squared and stair-shaped block, respectively). Note that the last c− 1 inputs read, which
overwrite c − 1 outputs currently stored in Buffer, had already been processed earlier in

Buffer and thus generate only c(c−1)
2 new input-output pairs (stair-shaped light region).

The dataflow continues in this way by reading outputs and inputs alternatively. At each
iteration of the outer loop, input readings are shifted by one position in a circular fashion.

k = 0 (line 7), when Buffer contains only the c inputs x1, . . . , xc, these β − c
outputs y1, . . . , yβ−c are just read into Buffer (line 8) where there is enough
space for them, which means Bβ = {x1, . . . , xc, y1, . . . , yβ−c} (cf. line 13 for
k = 0). For the following groups of outputs with the index k > 0 (line 9),
these β−c outputs yk(β−1)+1, . . . , yk(β−1)+β−c are read into Buffer one by one,
replacing the β − c outputs y(k−1)(β−1)+c, . . . , y(k−1)(β−1)+β−1 which remained
in Buffer from the previous group with the index k − 1 (lines 10–11).

In the following second inner for loop 14–17, the remaining c− 1 outputs
yk(β−1)+β−c+1, . . . , yk(β−1)+β−1 of the current group with the index k ≥ 0, are
read into Buffer one by one, overwriting the c−1 inputs x((k+c−1) mod n)+1, . . . ,
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Algorithm 2 The dataflow with a bounded number c of inputs in Buffer.
1: // B0 = ∅

2: for i = 1 to c do
3: read xi into Buffer // Bi = {x1, . . . , xi}

4: end for // Bc = {x1, . . . , xc}

5: for k = 0 to m
β−1 − 1 do

6: for j = 1 to β − c do
7: if k = 0 then
8: read yj into Buffer // Bc+j = {x1, . . . , xc, y1, . . . , yj}

9: else
10: read yk(β−1)+j into Buffer by overwriting y(k−1)(β−1)+c+j−1
11: //

{
yk(β−1)+1, . . . , yk(β−1)+j , y(k−1)(β−1)+c+j , . . . , yk(β−1)

}
⊂ Bk(n+β−2)+c+j

12: end if
13: end for

// Bk(n+β−2)+β =
{
x(k mod n)+1, . . . , x((k+c−1) mod n)+1, yk(β−1)+1, . . . , yk(β−1)+β−c

}
14: for j = β − c+ 1 to β − 1 do
15: `← ((k + β − j) mod n) + 1
16: read yk(β−1)+j into Buffer by overwriting x`
17: end for // Bk(n+β−2)+β+c−1 =

{
x(k mod n)+1, yk(β−1)+1, . . . , y(k+1)(β−1)

}
18: for i = n+ k downto k + c+ 1 do
19: `← ((i− 1) mod n) + 1 ; `1 ← (i mod n) + 1
20: read x` into Buffer by overwriting x`1
21: // Bk(n+β−2)+n+β+k+c−i =

{
x`, yk(β−1)+1, . . . , y(k+1)(β−1)

}
22: end for // Bk(n+β−2)+n+β−1 =

{
x((k+c) mod n)+1, yk(β−1)+1, . . . , y(k+1)(β−1)

}
23: for i = k + c downto k + 2 do
24: `← ((i− 1) mod n) + 1
25: read x` into Buffer by overwriting yk(β−1)+k+c−i+1

26: // Bk(n+β−2)+n+β+k+c−i =
{
x`, . . . , x((k+c) mod n)+1, yk(β−1)+c+k−i+2, . . . , y(k+1)(β−1)

}
27: end for

// B(k+1)(n+β−2)+c =
{
x((k+1) mod n)+1, . . . , x((k+c) mod n)+1, yk(β−1)+c, . . . , y(k+1)(β−1)

}
28: end for

x(k mod n)+2 with the decreasing index, respectively (line 16), that are cur-
rently stored in Buffer (line 13). This means that only one input x(k mod n)+1

remains there (line 17). Note that the indices of inputs are shifted by k
and looped using the modulo function (line 15) so that the nth input is fol-
lowed by the first one which, on the other hand, is preceded by the nth input.
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Thus, the whole group of outputs with the index k is then contained in Buffer
(line 17 where the index of Bk(n+β−2)+β+c−1 for k > 0 takes into account also
the DRAM accesses in between the readings of the two groups, as described
on lines 18–27 and commented below).

The third inner for loop 18–22 is used to read n − c inputs into Buffer
one by one, starting with x((n+k−1) mod n)+1 and following the decreasing in-
dex, in such a way that each such input replaces the previously read one
(lines 19–20). This continues in the last inner for loop 23–27 where the re-
maining c − 1 inputs x((k+c−1) mod n)+1, . . . , x((k+1) mod n)+1 with the decreas-
ing index are read into Buffer one by one, overwriting the c − 1 outputs
yk(β−1)+1, . . . , yk(β−1)+c−1, respectively, from the current group with the in-
dex k (lines 24–26).

According to line 13, the first β−c outputs yk(β−1)+1, . . . , yk(β−1)+β−c from
the kth group meet the c − 1 inputs x((k+1) mod n)+1, . . . , x((k+c−1) mod n)+1 in
Buffer. The remaining c − 1 outputs yk(β−1)+β−c+1, . . . , y(k+1)(β−1) from this
group occur in Buffer simultaneously with these c − 1 inputs, as stated in
line 27. The whole kth group of outputs yk(β−1)+1, . . . , y(k+1)(β−1) meets the
input x(k mod n)+1 in Buffer after the loop 14–17 is performed (line 17), while
each of the remaining n− c inputs occurs at the same time with this group
in Buffer during the loop 18–22 (line 21). This is repeated for every group
of outputs (outer loop 5–28), which guarantees that all the mn input-output
pairs will occur in Buffer.

We will calculate the number p of DRAM read accesses in the dataflow
described by Algorithm 2. After the first c inputs are read into Buffer in
the loop 2–4, the outer loop 5–28 which runs m

β−1 times, includes β − c and
c − 1 DRAM accesses to read outputs in the inner loops 6-13 and 14-17,
respectively, and n − c and c − 1 DRAM accesses for reading inputs in the
inner loops 18–22 and 23–27, respectively. Altogether, we have

p = c+
m

β − 1
((β − c) + (c− 1) + (n− c) + (c− 1))

=
m(n− 1)

β − 1
+m+ c . (29)

Hence, this dataflow provides an upper bound on the data energy of a fully-
connected layer λ:

Eλ
data ≤ b

(
mn+

m(n− 1)

β − 1
+ 2m+ c

)
(30)
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according to (5), (21), and (22). Note that Algorithm 1 for d = 1 coincides
with Algorithm 2 for c = 1, producing the same upper bound (28).

This upper bound (28) can be compared to the general lower bound (20)
on the data energy which is still smaller by the linear additive term 1

2
m.

The lower bound will be improved in some special cases in Section 5. Never-
theless, we have achieved the asymptotically optimal quadratic data energy
complexity of evaluating a fully-connected layer in terms of the number of
its inputs and outputs.

5. Optimal Energy Complexity for a Partitioned Buffer

We now study the case where Buffer is divided into two separated parts
dedicated to the reading of d inputs and β−d outputs, respectively, plus one
float for weights, where d is a fixed parameter such that 1 ≤ d ≤ β − 1. In
this context, we improve the general lower bound (20) on the data energy
Eλ

data of a fully-connected layer λ so that it matches the upper bounds (24)
and (25), up to an additive constant. We investigate two cases according to
whether d is at most or at least 2

3
β.

Case 1 ≤ d ≤ 2
3
β. First assume that

1 ≤ d ≤ 2
3
β . (31)

We formulate a linear program for finding µ and ν that

minimize 2µ+ ν (32)

subject to dµ+ (β − d)ν ≥ mn (33)

µ ≥ m (34)

ν ≥ 0 , µ ≥ 0 . (35)

The constraint (33) follows from the requirement that all the mn input-
output couples have to occur in Buffer, since by reading one output or input,
at most d or β−d new pairs meet in Buffer, respectively. The constraint (34)
follows from the fact that at least m outputs are read into Buffer. We convert
the linear program (32)–(35) to the corresponding dual linear program for
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finding φ and ψ that

maximize mnφ+mψ (36)

subject to dφ+ ψ ≤ 2 (37)

(β − d)φ ≤ 1 (38)

φ ≥ 0, ψ ≥ 0 . (39)

Observe that φ0 = 1
β−d and ψ0 = 2 − d

β−d is a feasible solution for the dual

program, satisfying (37)–(39) due to (31).
By the weak duality theorem, the objective function value of the primal

(32) at any feasible solution is lower bounded by the objective function value
of the dual (36) at any feasible solution, that is,

2µ+ ν ≥ mnφ0 +mψ0 =
m(n− d)

β − d + 2m. (40)

According to (5), the inequality (40) provides the following lower bound on
the data complexity of a fully-connected layer λ:

Eλ
data ≥ b

(
mn+

m(n− d)

β − d + 2m

)
(41)

when Buffer is divided into two parts for d inputs and β−d outputs, and the
fixed parameter d meets (31). This lower bound matches the corresponding
upper bound (24) achieved by the dataflow described in Algorithm 1, up to
the additive constant d.

Case 2
3
β ≤ d ≤ β − 1. Similarly, for

2
3
β ≤ d ≤ β − 1 , (42)

we have a linear program for finding µ and ν that minimize 2µ + ν subject
to dµ + (β − d)ν ≥ mn, ν ≥ n, ν ≥ 0, and µ ≥ 0. This is converted to
the corresponding dual linear program for finding φ and ψ that maximize
mnφ + nψ subject to dφ ≤ 2, (β − d)φ + ψ ≤ 1, ψ ≥ 0, and ψ ≥ 0, which

has a feasible solution φ1 = 2
d

and ψ1 = 1− 2(β−d)
d

due to (42).
By the weak duality theorem we have

2µ+ ν ≥ mnφ1 + nψ1 =
2n(m− (β − d))

d
+ n (43)
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which provides the following lower bound on the data complexity of a fully-
connected layer λ:

Eλ
data ≥ b

(
mn+

2n(m− (β − d))

d
+ n

)
(44)

when Buffer is divided into two parts for d inputs and β−d outputs, and the
fixed parameter d meets (42). This lower bound matches the corresponding
upper bound (25) achieved by the dataflow described in Algorithm 1 with
the reversed role of inputs and outputs, up to the additive constant 2(β−d).

We can conclude that the data energy for fully-connected layers achieved
by the dataflow described in Algorithm 1 when Buffer is partitioned into d
inputs, β − d outputs, and one weight, is optimal for any fixed d, and the
minimum of data energy (28) is achieved for d = 1.

6. Experimental Validation

In this section, we compare the theoretical energy complexity introduced
in Section 2 to the real energy consumption estimated by the Timeloop/Ac-
celergy software tool for evaluating DNN accelerator designs. The Timeloop
(Parashar et al., 2019) finds a mapping of a convolutional layer specified by
its parameters (e.g. height, width, depth, kernel size, stride) onto a given
hardware platform, which is optimal in terms of energy consumption esti-
mated by Accelergy (Wu et al., 2019) reporting the energy statistics. Here,
we employ the tool for fully-connected layers as a special case of convolutional
layers where the feature maps are reduced to single neurons.

In particular, the Timeloop can design the hardware architecture parame-
ters, the approach of how a layer is mapped to hardware, how memory caches
are used, and so on. In energy optimization, Timeloop performs design space
exploration to find a (sub)optimal configuration for a given layer. Since there
are a reasonable number (tens to hundreds of thousands) of configurations for
some layers and architectures (such as Eyeriss), Timeloop performs a brute-
force search with a guaranteed optimum. Otherwise, an internal heuristic
is involved to limit unsuitable paths (e.g. Simba accelerator), which can be
replaced, for example, by a genetic algorithm. For energy evaluation, the
Timeloop calls the Accelergy tool which determines the exact number of
clock cycles required to process inference, the number of memory accesses
for reads and writes, and other metrics. From these, the overall power con-
sumption of the layer inference is determined based on parameters obtained
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from hardware synthesis for application-specific integrated circuits (such as
Synopsys Design Compiler1 or CACTI2 for memories).

We have employed Simba (Shao et al., 2019) and Eyeriss (Chen et al.,
2016) as the target hardware platforms onto which fully-connected layers
with increasing number of inputs, outputs, and weights have been mapped.
These two hardware architectures have been chosen as prominent examples of
modern DNN inference accelerators which are general and not tied to a spe-
cific DNN as is common in single-purpose accelerators with FPGAs (Mittal,
2020) or printed electronics. They are based on a systolic array of processing
elements which communicate with each other without the need for additional
memory accesses. This represents a state-of-the-art approach widely used in
many real-world DNN inference accelerators such as ARM Cortex-M Proces-
sor (Orăs.an et al., 2022), TPU, etc. Nevertheless, other approaches can be
used to support our energy complexity model. All configuration files used in
experiments are publicly available at Github3.

For a fully-connected layer λ, we measure empirical dependencies of the
optimal data energy independently on its number of inputs n, outputs m, and
weights mn, which is minimized by using the Timeloop/Accelergy tool for the
Simba and Eyeriss architectures. These dependencies are then compared to
the corresponding upper bound (28) on Eλ

data achieved by the dataflows in the
energy complexity model as presented in Section 4, which matches asymp-
totically the quadratic lower bound (20) in terms of n and m, as was proven
in Section 3. In particular, for the comparison of empirical energy consump-
tions to the theoretical data energy Eλ

data, we use the following asymptotic
optimal bounds:

Eλ
data = Θ (n) , Eλ

data = Θ (m) , Eλ
data = Θ (mn) , (45)

which are derived from (20) and (28) for individual variables (when the other
independent parameter is considered to be constant).

Figure 4 presents the results of experimental comparison of energy-effi-
cient CNN hardware implementations to our theoretical energy complexity
model separately for individual parameters of fully-connected layers. By us-
ing the Timeloop/Accelergy tool applied to the Simba and Eyeriss hardware

1https://www.synopsys.com/implementation-and-signoff/

rtl-synthesis-test/dc-ultra.html
2https://github.com/HewlettPackard/cacti
3https://github.com/PetraVidnerova/timeloop-accelergy-test

24



Energy vs. number of inputs n: Eλ
data = c2n+ c1

Energy vs. number of outputs m: Eλ
data = c2m+ c1

Energy vs. number of weights mn: Eλ
data = c2mn+ c1

Figure 4: The data energy estimates by Timeloop/Accelergy (displayed by bars) for a fully-
connected layer λ with increasing parameters n, m, and mn, each separately (from top to
bottom), on the Simba (left) and Eyeriss (right) architectures, which fit the asymptotic
trends (45) in the energy complexity model (dashed lines).

architectures, the optimal values of their data energy consumption have been
estimated for a fully-connected layer λ with increasing parameters n, m, and
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mn, each separately. In order to make the experiment computationally fea-
sible, 32 values for n (the same for m) were taken from the interval 128 to
4096 with the step 128, whereas the other parameter m (respectively n) was
fixed at the value of 1024, which represents realistic sizes of fully-connected
DNN layers. For the number of weights mn, we took all possible 32 × 32
pairs of these values for m and n.

These parameters serve as independent variables in regression analysis
where the relationships between the data energy and the independent vari-
ables are modeled as functions with asymptotics (45), including multiplica-
tive and additive coefficients c2 and c1, respectively. As depicted in Fig-
ure 4, these coefficients are approximated by the method of least squares so
that the theoretical data energy Eλ

data (dashed lines) fits energy estimates
by Timeloop/Accelergy (displayed by bars), which confirms the asymptotic
trends (45) in the energy complexity model.

In addition, the energy complexity model has been validated by statisti-
cal tests using quadratic regression with the function model ax2 + bx+ c for
the independent variable x to be n, m, and mn, respectively. These statis-
tical tests have approved the linearity in n, m, and mn, with the p-values
0.2447, 0.6468, and 0.0575, respectively, for Simba, and 0.1494, 0.4801, and
0.0531, respectively, for Eyeriss, accepting the null hypothesis of a = 0 (at
the significance level 0.05) in all these cases.

The presented experiments have thus validated the energy complexity
model whose upper and lower bounds on theoretical energy for fully-connect-
ed layers fit asymptotically very well the energy consumption estimated by
the Timeloop/Accelergy tool for the Simba and Eyeriss hardware platforms.

7. Conclusion

In this paper, we have theoretically analyzed the energy complexity model
for CNNs introduced in our previous work (Š́ıma et al., 2023) which was
shown to be asymptotically consistent with the energy consumption estimates
of their various hardware implementations. We have restricted ourselves to
fully-connected layers, which constitute the most common blocks of DNNs,
and plan to extend this analysis to the case of convolutional layers.

We have shown a general lower bound on energy complexity of fully-
connected layers. We have presented two dataflows for fixed and bounded
numbers of inputs residing in Buffer, respectively, and calculated their energy
costs to obtain upper bounds on energy complexity. We have proven the
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matching lower bound on the energy for the first dataflow, which in turn,
provides the optimal energy complexity for fully-connected layers in the case
where Buffer is partitioned into two separate parts for inputs and outputs.

Since the presented general lower and upper bounds differ only in a linear
additive term, we have thus achieved the asymptotically optimal quadratic
energy complexity of evaluating a fully-connected layer in terms of the num-
ber of its inputs and outputs. This asymptotic quadratic energy complexity
has been experimentally confirmed by the real energy consumption estimates
for the Simba and Eyeriss hardware architectures, using the Timeloop/Ac-
celergy software tool.

We conjecture that the general lower bound on energy complexity of fully-
connected layers can be improved to match the presented upper bound, which
constitutes a path for future work. The main challenge is to generalize this
analysis to the case of convolutional layers in order to achieve their optimal
energy complexity.
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