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The Computational Power of Neural Networks (NNs)

(discrete-time recurrent NNs with the saturated-linear activation function)

depends on the information contents of weight parameters:

1. integer weights: finite automaton (Minsky, 1967)

2. rational weights: Turing machine (Siegelmann, Sontag, 1995)

polynomial time ≡ complexity class P

polynomial time & increasing Kolmogorov complexity of real weights ≡
a proper hierarchy of nonuniform complexity classes between P and P/poly

(Balcázar, Gavaldà, Siegelmann, 1997)

3. arbitrary real weights: “super-Turing” computation (Siegelmann, Sontag, 1994)

polynomial time ≡ nonuniform complexity class P/poly

exponential time ≡ any I/O mapping

Motivation: filling the gap between integer and rational weights

w.r.t. Chomsky hierarchy:

regular (Type 3) × recursively enumerable (Type 0) languages



The Traditional Chomsky Hierarchy
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Neural Networks with Increasing Analogicity

from binary ({0, 1}) to analog ([0, 1]) neurons’ states

αANN = a binary-state NN with integer weights

+ α extra analog-state neurons with rational weights
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Neural Networks with Increasing Analogicity

equivalently from integer to rational weights

αANN = a binary-state NN with integer weights

+ α extra analog-state neurons with rational weights

wji ∈
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Z j = α+ 1, . . . , s

i ∈ {0, . . . , s}



The Analog Neuron Hierarchy

the computational power of αANNs

increases with the number α of extra analog-state neurons:

integer weights rational weights

↓ ↓
FAs ≡ 0ANNs ⊆ 1ANNs ⊆ 2ANNs ⊆ 3ANNs ⊆ . . . ≡ TMs

↑ × ↑
Type 3 Chomsky hierarchy Type 0

Type 1, 2 ?

The Separation of 1ANNs: 0ANNs $ 1ANNs (Šı́ma, 2017):

• upper bound: 1ANNs ⊂ LBAs ≡ CSLs (Type 1)

• lower bound: 1ANNs 6⊂ PDAs ≡ CFLs (Type 2)
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∈ 1ANNs \ CFLs



Quasi-Periodic Numbers (Šı́ma, Savický, 2017):

for a fixed real base (radix) β (|β| > 1) and a finite set A 6= ∅ of real digits,

we say that a real number x is quasi-periodic if every its β-expansion

x = (0 . a1 a2 a3 . . .)β =
∞∑
k=1

ak β
−k where ak ∈ A

(i.e. non-standard positional numeral system) is eventually quasi-periodic:(
0 . a1 . . . am1︸ ︷︷ ︸

preperiodic

am1+1 . . . am2︸ ︷︷ ︸
quasi-repetend

am2+1 . . . am3︸ ︷︷ ︸
quasi-repetend

am3+1 . . . am4︸ ︷︷ ︸
quasi-repetend

. . .
)
β

part
such that(

0 . am1+1 . . . am2

)
β

=
(
0 . am2+1 . . . am3

)
β

=
(
0 . am3+1 . . . am4

)
β

= · · ·

Example: the plastic β ≈ 1.324718 (β3 − β − 1 = 0), A = {0, 1}

1 = (0 . 0 100︸︷︷︸ 0 011 011 1︸ ︷︷ ︸ 0 011 1︸ ︷︷ ︸ 100︸︷︷︸ . . .)β
with quasi-repetends: (0 . 100)β = (0 . 0(011)i1)β = β for every i ≥ 1



1ANNs with Quasi-Periodic “Weights” (QP-1ANNs):

w11 is the self-loop weight of the one analog-state neuron ( 0 < |w11| < 1)

β = 1/w11 is the base

A =
{∑s

i=0 ; i6=1
w1i
w11
yi

∣∣∣ y2, . . . , ys ∈ {0, 1}
}
∪ {0, β} are the digits

X =
{∑s

i=0 ; i6=1

wji
wj1
yi

∣∣∣ j 6= 1 , wj1 6= 0 , y2, . . . , ys ∈ {0, 1}
}
∪{0, 1}

definition of a QP-1ANN: every x ∈ X is quasi-periodic

(e.g. 1ANNs with Pisot β + other weights from Q(β) are QP-1ANNs)

Regular 1ANNs (even with real weights) (Šı́ma, 2017):

QP-1ANNs ≡ 0ANNs ≡ FAs ≡ REG (Type 3)

Example: 1ANNs with rational weights + the self-loop weight w11 = 1/β

where e.g. β is an integer or the plastic constant (≈ 1.324718)

or the golden ratio (≈ 1.618034)



The Collapse of the Analog Neuron Hierarchy (Šı́ma, 2018)

3ANNs = 4ANNs = 5ANNs = . . . ≡ TMs ≡ RE (Type 0)

three analog-state neurons can simulate any TMs

The Separation of 2ANNs (Šı́ma, 2019)

1ANNs $ 2ANNs

the “counting” language L# =
{
0n1n

∣∣n ≥ 1
}
∈ 2ANNs \ 1ANNs

L# is a (non-regular) deterministic context-free language (DCFL)

accepted by a deterministic push-down automaton (DPDA)

• L# ∈ DCFLs ≡ DPDAs ⊂ 2ANNs

two analog-state neurons can simulate any DPDA

• L# /∈ 1ANNs

one analog-state neuron cannot count up to n (even with real weights)

−→ DCFLs ≡ DPDAs 6⊂ 1ANNs



The Main Result: The Stronger Separation of 2ANNs

(DCFLs \ REG) ⊆ (2ANNs \ 1ANNs)

or equivalently (DCFLs \ REG)∩ 1ANNs = ∅

1ANNs ∩ DCFLs = 0ANNs ≡ REG

Theorem. Any non-regular deterministic context-free language L cannot
be recognized by any 1ANN with one extra analog unit having real weights.

Idea of Proof:

by contradiction: suppose N ∈ 1ANNs recognizes L ∈ DCFLs \ REG

a construction of a bigger N# ∈ 1ANNs which exploits N as its subnetwork

(subroutine) for recognizing the counting language L#

which implies L# ∈ 1ANNs – a contradiction



The Simplest Non-Regular Deterministic CFLs

the counting language L# =
{
0n1n

∣∣n ≥ 1
}

can be reduced through

a Turing-like reduction to every language in the class DCFLs \ REG:

Theorem. For every non-regular deterministic context-free language
L ⊂ Σ∗ over a finite alphabet Σ 6= ∅, there exist words u,w, z ∈ Σ∗,
nonempty strings x, y ∈ Σ+, an integer κ ≥ 0, and languages
Lk ∈ {L,L} for k ∈ K = {−κ, . . . ,−1, 0, 1, . . . , κ}, such that for
every pair of integers, m ≥ 0 and n ≥ κ,(

uxmwyn+kz ∈ Lk for all k ∈ K
)

iff m = n .

Example: L ⊆ {0, 1}∗ is composed of words that contain more 0s than 1s

−→ u,w, z empty, x = 0, y = 1, κ = 1, L−1 = L, L0 = L1 = L(
0m1n−1 ∈ L−1 = L & 0m1n ∈ L0 = L & 0m1n+1 ∈ L1 = L

)
iff (m > n− 1 & m ≤ n & m ≤ n+ 1) iff m = n .

contribution to complexity theory: a counterpart to the hardest problem

in a complexity class to which every problem is reduced (e.g. NP-completeness)



A Summary of the Analog Neuron Hierarchy

FAs ≡ 0ANNs $ 1ANNs $ 2ANNs ⊆ 3ANNs ≡ TMs

Open Problems:

• the separation of the 3rd level: 2ANNs $ 3ANNs ?

• strengthening the 2nd level separation to the nondeterministic CFLs:

(CFLs \ REG)∩ 1ANNs = ∅ ?

• a proper “natural” hierarchy of NNs between integer and rational weights
which can be mapped to known infinite hierarchies of REG/CFLs ?


